JPH02180272A - Blood processing device - Google Patents
Blood processing deviceInfo
- Publication number
- JPH02180272A JPH02180272A JP63335068A JP33506888A JPH02180272A JP H02180272 A JPH02180272 A JP H02180272A JP 63335068 A JP63335068 A JP 63335068A JP 33506888 A JP33506888 A JP 33506888A JP H02180272 A JPH02180272 A JP H02180272A
- Authority
- JP
- Japan
- Prior art keywords
- blood
- flexible member
- processing device
- port region
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008280 blood Substances 0.000 title claims abstract description 85
- 210000004369 blood Anatomy 0.000 title claims abstract description 84
- 238000012545 processing Methods 0.000 title claims abstract description 25
- 230000001105 regulatory effect Effects 0.000 claims abstract description 17
- 230000017531 blood circulation Effects 0.000 claims abstract description 12
- 239000012510 hollow fiber Substances 0.000 claims description 15
- 230000004087 circulation Effects 0.000 abstract description 9
- 230000002159 abnormal effect Effects 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 9
- 210000004072 lung Anatomy 0.000 description 9
- 239000012528 membrane Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 4
- 210000000601 blood cell Anatomy 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940127219 anticoagulant drug Drugs 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- DOSMHBDKKKMIEF-UHFFFAOYSA-N 2-[3-(diethylamino)-6-diethylazaniumylidenexanthen-9-yl]-5-[3-[3-[4-(1-methylindol-3-yl)-2,5-dioxopyrrol-3-yl]indol-1-yl]propylsulfamoyl]benzenesulfonate Chemical compound C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3C(C=3C(=CC(=CC=3)S(=O)(=O)NCCCN3C4=CC=CC=C4C(C=4C(NC(=O)C=4C=4C5=CC=CC=C5N(C)C=4)=O)=C3)S([O-])(=O)=O)=C21 DOSMHBDKKKMIEF-UHFFFAOYSA-N 0.000 description 1
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Landscapes
- External Artificial Organs (AREA)
Abstract
Description
【発明の詳細な説明】
E産業上の利用分野]
本発明は2例えば中空糸膜を多数使用し、血液等の体外
循環を行って、血液の透析、浄化、ガス交換等の処理を
する血液処理装置に関するものである。[Detailed Description of the Invention] E-Industrial Field of Application] The present invention is directed to 2. For example, a large number of hollow fiber membranes are used to perform extracorporeal circulation of blood, etc., and perform blood dialysis, purification, gas exchange, etc. It relates to a processing device.
[従来の技術]
体外循環を行う血液処理装置には人工肺、人工透析器等
があるが、その処理効果を高めるために、生体から導き
出された血液を前記血液処理装置に再循環させることは
体外循環により血中のCO2を除去する療法等でかなり
実施されている0通常、再循環操作は第1図(a)の如
(貯留部(R,、R,)を設けて2台のポンプ(Pl。[Prior Art] Blood processing devices that perform extracorporeal circulation include artificial lungs, artificial dialysis machines, etc., but in order to enhance the processing effect, it is not possible to recirculate blood drawn from a living body to the blood processing device. Normally, the recirculation operation is performed as shown in Figure 1 (a) (using two pumps with a storage part (R, , R, (Pl.
P2)で行うか、第1図(b)の如く貯留部を設けない
で再循環回路中に2台のポンプ(p+Pg)を設けた方
式により行われている。P2), or by a system in which two pumps (p+Pg) are provided in the recirculation circuit without providing a reservoir as shown in FIG. 1(b).
[発明が解決しようとする課題]
しかし、貯留部を設けた方式では循環血液量が多くなり
、また長時間使用する際に出血を防止するために抗凝固
剤を使用しない体外循環も試みられているが、血液の滞
留部において血栓が形成されるため、抗凝固剤を使用し
ない体外循環では貯留部を使用した方式は使用できない
。[Problems to be Solved by the Invention] However, the system with a reservoir increases the amount of circulating blood, and in order to prevent bleeding during long-term use, extracorporeal circulation without the use of anticoagulants has been attempted. However, since thrombi are formed in the blood retention area, methods using the retention area cannot be used in extracorporeal circulation without the use of anticoagulants.
他方、貯留部のない方式においても2台のポンプの作動
やそのタイミングにより圧力の著しい変動を生じたり、
再循環量が多くなると血液処理装置の出口側の血液ポー
ト領域で陽圧が発生し、血球破壊の危険性があるばかり
でなく、中空糸膜が多孔質であると気泡の混入の可能性
が高くなり、操作の継続が困難となる。さらに1人口側
の血液ポート領域では再循環量が多くなると陽圧が発生
し、血球破壊の危険性が生じる。On the other hand, even in systems without a reservoir, significant pressure fluctuations may occur due to the operation and timing of the two pumps.
If the recirculation volume is high, a positive pressure will be generated in the blood port area on the outlet side of the blood processing device, which not only poses a risk of blood cell destruction, but also the possibility of air bubbles being trapped if the hollow fiber membrane is porous. This makes it difficult to continue operation. Furthermore, if the amount of recirculation increases in the blood port area on the 1st port side, positive pressure will occur, creating a risk of blood cell destruction.
これを防止するためにポンプを非閉鎖的な状態にするこ
とが試みられたが、逆流、空転等が生じ、血液量の把握
が難しくなるばかりでなく、血液の損傷も著しく、しか
も陽圧発生防止の点で殆ど効果がないという問題があっ
た。In order to prevent this, attempts were made to make the pump non-closed, but this resulted in backflow and idling, which not only made it difficult to ascertain the amount of blood, but also caused significant damage to the blood, and caused positive pressure. The problem was that it was almost ineffective in terms of prevention.
本発明は上記問題点を解消するためになされたものであ
って、その目的は、完全閉鎖状態のポンプ(例えばロー
ラーポンプ)を使用しても回路中の望ましくない圧力の
発生、特に陽圧の発生や瞬間的な異常圧力の変動を防止
し、体外循環による血液処理を容易力)、つ安全に行う
ことのできる血液処理装置を提供することにある。The present invention has been made to solve the above-mentioned problems, and its purpose is to prevent the generation of undesirable pressure in the circuit even when a completely closed pump (e.g. roller pump) is used, especially when positive pressure is used. It is an object of the present invention to provide a blood processing device that can easily and safely perform blood processing by extracorporeal circulation by preventing generation and instantaneous abnormal pressure fluctuations.
[課題を解決するための手段]
上記の目的を達成するために、本発明においては、基本
的にいって、血液流通路の少なくとも一部を、血液流通
路内の圧力変動に応じて変形可能な可撓性部材で構成し
た血液処理装置を提案するものである。更に1本発明に
おいては、好ましい構成として、前記可撓性部材の変形
量を規制する規制部材を、当該可撓部材に対し血液流路
と反応側に、当該可撓性部材に対応して設けた構成を提
案するものである。[Means for Solving the Problems] In order to achieve the above object, the present invention basically provides that at least a portion of the blood flow path can be deformed in accordance with pressure fluctuations within the blood flow path. This paper proposes a blood processing device constructed from flexible members. Furthermore, in the present invention, as a preferable configuration, a regulating member for regulating the amount of deformation of the flexible member is provided on the blood flow path and reaction side of the flexible member, corresponding to the flexible member. This paper proposes a new configuration.
[作 用]
本発明は人工肺等の血液処理装置において、前述の提案
構成の採用によって、該血液処理装置の血液循環回路内
の2台のポンプの作動時に該回路内に発生する陽圧、陽
圧や異常な圧力変動を吸収することができる。[Function] The present invention provides a blood processing device such as an artificial lung, by employing the above-mentioned proposed configuration, to reduce the positive pressure generated in the blood circulation circuit of the blood processing device when the two pumps in the circuit operate. Can absorb positive pressure and abnormal pressure fluctuations.
さらに、本発明の好ましい構成においては、可撓性部材
の圧力のかかる面とは反対側に、該部材の変形量を規制
する規制部材の配設により可撓性部材の過度の変形を防
止し、より安全で耐久性に富む装置の提供が可能となる
。Further, in a preferred configuration of the present invention, excessive deformation of the flexible member is prevented by disposing a regulating member that regulates the amount of deformation of the flexible member on the side opposite to the surface on which pressure is applied. , it becomes possible to provide a safer and more durable device.
[実施例]
以下添付図面を参照して、本発明の中空糸型血液処理装
置を具体化した人工肺の実施例を説明する。[Example] Hereinafter, an example of an artificial lung embodying the hollow fiber blood processing device of the present invention will be described with reference to the accompanying drawings.
第2図(a)、(b)は、第1の実施例を示すものであ
る。この実施例の人工肺は筒状本体1の両端の側壁2a
、2b内にそれぞれ固定された隔壁3aに多数の中空糸
状の膜よりなる中空糸束4の端部がそれぞれ血液ポート
領域5aに開口するように固定されている。血液ポート
領域5aは側壁2aの端部に固定された側壁7によって
周囲が囲まれており、側壁7には一方の血液導通管をな
す血液導入バイブロaが接続されている。lOは可撓性
部材で、厚さ100ミクロンのシリコンゴムの膜材料で
形成され、血液ポート領域5a内の血液の圧力変動に応
じて容易に変形する構成となっている。これによって導
入バイブロaより流入した血液により血液ポート領域5
a内の圧力変動が生じた場合に、この可撓性部材lOが
その圧力変動に応じて変形し、血液ポート領域5a内の
圧力を常に安定状態に保つ作用を果す、この可撓性部材
10の周縁は側壁7の開口端縁に接着固定され、血液ポ
ート領域5aを液密状態に区画している。当該可撓性部
材10が配置された部分の上面、すなわち、血液ポート
領域5の外側には、該部材lOの変形量を規制するため
の規制部材を構成する金属又はプラスチック製の網状部
材11が可撓性部材10を挟む状態で側壁7の開口端縁
に固定されている。第2図aで示すように網状部材11
は可撓性部材10より離間する方向に球面状に湾曲が形
成されており、従って、可撓性部材lOが血液の圧力変
動に応じて変形し、特にポート領域りa内が過圧状態で
膨出した際に、この可撓性部材10の過度の膨出変形を
規制することができる。又この網状部材11は球面状の
ため膨出変形した際に可撓性部材lOはこの部材11の
内面全体にわたり均一に接するため、可撓性部材IOに
対する規制力が局部的にならず、当該部材lOを損傷し
ない利点がある。FIGS. 2(a) and 2(b) show the first embodiment. The artificial lung of this embodiment has side walls 2a at both ends of the cylindrical body 1.
, 2b, the ends of a hollow fiber bundle 4 made of a large number of hollow fiber membranes are fixed to the partition walls 3a, which are respectively fixed in the blood port regions 5a. The blood port region 5a is surrounded by a side wall 7 fixed to the end of the side wall 2a, and a blood introduction vibro a forming one blood conduction tube is connected to the side wall 7. IO is a flexible member made of a 100 micron thick silicone rubber film material, and is configured to easily deform in response to pressure fluctuations of blood within the blood port region 5a. As a result, the blood flowing in from the introduction vibro a causes the blood port area 5 to
When a pressure fluctuation occurs in blood port region 5a, this flexible member 10 deforms in accordance with the pressure fluctuation, and serves to keep the pressure in blood port region 5a stable at all times. The peripheral edge of the blood port area 5a is adhesively fixed to the opening edge of the side wall 7 to partition the blood port area 5a in a liquid-tight manner. On the upper surface of the portion where the flexible member 10 is arranged, that is, on the outside of the blood port area 5, there is a mesh member 11 made of metal or plastic that constitutes a regulating member for regulating the amount of deformation of the member IO. It is fixed to the opening edge of the side wall 7 with the flexible member 10 sandwiched therebetween. As shown in FIG. 2a, the mesh member 11
is curved in a spherical shape in a direction away from the flexible member 10, and therefore the flexible member lO deforms in response to blood pressure fluctuations, especially when the inside of the port area a is in an overpressure state. When the flexible member 10 bulges out, excessive bulging deformation of the flexible member 10 can be prevented. In addition, since the net-like member 11 has a spherical shape, when it bulges and deforms, the flexible member 10 contacts the entire inner surface of the member 11 uniformly, so that the restraining force on the flexible member IO is not localized and This has the advantage of not damaging the member IO.
上記と同様に、中空糸束4の他端にも側壁2bと該側壁
2bに固定された血液導入部と同様の構造を有する血液
ポート領域8が形成されており、その血液ポート領域と
連結するように他方の血液導通管をなす血液導出バイブ
ロbが接続されている。なお、9a、9bはそれぞれ酸
素等の血液の浄化流体の導入口及び導出口である。第3
図(a)、(b)は第2の実施例を示している。この実
施例の人工肺も第1実施例と同様に筒状本体lの側壁2
a内に固定された隔壁3aに多数の中空糸状の膜よりな
る中空糸束4の端部が血液ポート領域!2aに開口する
ように固定されている。Similarly to the above, a blood port region 8 having a structure similar to that of the side wall 2b and the blood introduction portion fixed to the side wall 2b is formed at the other end of the hollow fiber bundle 4, and is connected to the blood port region. The blood lead-out vibro b forming the other blood conducting pipe is connected in this manner. Note that 9a and 9b are an inlet and an outlet for a blood purification fluid such as oxygen, respectively. Third
Figures (a) and (b) show a second embodiment. The artificial lung of this embodiment also has a side wall 2 of the cylindrical body l, similar to the first embodiment.
The end of the hollow fiber bundle 4 made up of a large number of hollow fiber membranes on the partition wall 3a fixed in the partition wall 3a is the blood port region! It is fixed so as to open at 2a.
血液ポート領域12aは側壁2aによって周囲が囲まれ
ている。13は可撓性部材で厚さ100ミクロンのシリ
コーンゴムの膜材料で形成され、中心部に一方の血液導
通管をなす血液導入バイブ13aが一体に接続されてい
る。この可撓性部材13は血液ポート領域12a内の圧
力変動が生じた場合に、該部材13がその圧力変動に応
じて変形し血液ポート領域12a内の圧力を常に安定状
態に保つ。可撓性部材13aの周縁は側壁2aの開口端
縁に接着固定され、血液ポート領域12aを液密状態に
区画している。当該可撓性部材13が配置された部分の
上面、すなわち、血液ポート領@12aの外側には該部
材13の変形量を規制するための規制部材が設けられて
いる。該規制部材を構成するポリカーボネイト製の網状
部材14の周部で可撓性部材13を挟みかつ周のリム1
4aが側壁2aの端部の外周に差し込まれて固定されて
いる。網状部材14は中心部に血液バイブ13が挿入で
きる孔14bが開口されている。Blood port region 12a is surrounded by side wall 2a. Reference numeral 13 denotes a flexible member made of a silicone rubber membrane material with a thickness of 100 microns, and a blood introduction vibrator 13a forming one blood conduction tube is integrally connected to the center thereof. When pressure fluctuations occur within the blood port region 12a, the flexible member 13 deforms in response to the pressure fluctuations to keep the pressure within the blood port region 12a stable at all times. The peripheral edge of the flexible member 13a is adhesively fixed to the opening edge of the side wall 2a, thereby partitioning the blood port region 12a in a liquid-tight manner. A regulating member for regulating the amount of deformation of the flexible member 13 is provided on the upper surface of the portion where the flexible member 13 is arranged, that is, on the outside of the blood port region @12a. The flexible member 13 is sandwiched between the circumference of the polycarbonate net-like member 14 constituting the regulating member, and the circumferential rim 1
4a is inserted into and fixed to the outer periphery of the end of the side wall 2a. The mesh member 14 has a hole 14b opened in the center thereof into which the blood vibrator 13 can be inserted.
第3図(a)に示すように当該部材14は可撓性部材1
3より離間する方向に球面状に湾曲が形成されている。As shown in FIG. 3(a), the member 14 is the flexible member 1.
3. A spherical curve is formed in the direction away from 3.
従って、可撓性部材13は血液ポート領域12aに流入
した血液の圧力変動に応じて変形し、特にポート領域1
2aが過圧状態になったため可撓性部材13が膨出した
際に、この可撓性部材13の過度の変形を規制すること
ができる。Therefore, the flexible member 13 deforms in response to pressure fluctuations of blood flowing into the blood port region 12a, and in particular
When the flexible member 13 bulges due to the overpressure state at 2a, it is possible to prevent excessive deformation of the flexible member 13.
同様に、中空糸束の他端の側壁2bとこの側壁2bに固
定された血液導入部と同様の構造を有する血液ポート領
域15が形成されており、血液ポート領域と連結するよ
うに他方の導通管をなす血液導出バイブ13bが接続さ
れている。Similarly, a blood port region 15 having a structure similar to that of the side wall 2b at the other end of the hollow fiber bundle and the blood introduction portion fixed to this side wall 2b is formed, and the other conduction is connected to the blood port region. A blood lead-out vibe 13b in the form of a tube is connected.
第5図は第3の実施例を示している。本実施例では、第
1.2実施例とは、可撓性部材の位置が相異している。FIG. 5 shows a third embodiment. This embodiment differs from the first and second embodiments in the position of the flexible member.
すなわち、本実施例で使用される人工肺は、血液を中空
糸の外側に流し、酸素ガスを内側に流す、いわゆる外部
潅流型の人工肺であり、血液導入バイブ17aより導入
された血液は中空糸の外側と筒状本体16の内部から形
成される空間を通って導出バイブ17bより導出される
。可撓性部材■8は筒状本体拡径部19に設けられ、血
液量の変動による圧力変化の発生を緩衝する働きをして
いる。なお、本実施例においても可撓性部材18の変形
量を規制するための規制部材を設けても良い。That is, the oxygenator used in this example is a so-called external perfusion type oxygenator in which blood flows outside the hollow fibers and oxygen gas flows inside, and the blood introduced from the blood introduction vibrator 17a flows through the hollow fibers. The thread passes through a space formed from the outside of the thread and the inside of the cylindrical body 16, and is led out from the lead-out vibe 17b. The flexible member 8 is provided on the enlarged diameter portion 19 of the cylindrical body, and functions to buffer pressure changes caused by fluctuations in blood volume. Note that in this embodiment as well, a regulating member for regulating the amount of deformation of the flexible member 18 may be provided.
比較例1.2
本発明を適用した前記の実施例1〜3の構成の人工肺(
膜面積3. 3rn’)と、従来の構成の人工肺(膜面
積3.3m″)の性能を比較するために、第4図に示す
フロー回路により特性の測定を行なった。なお、第1.
2実施例に対する比較例として比較例1、第3実施例に
対する比較例として比較例2.3とする。Comparative Example 1.2 Artificial lung (with the configuration of Examples 1 to 3) to which the present invention is applied
Membrane area 3. 3rn') and an oxygenator with a conventional configuration (membrane area 3.3 m''), characteristics were measured using the flow circuit shown in FIG.
Comparative Example 1 is a comparative example for the second embodiment, and Comparative Example 2.3 is a comparative example for the third embodiment.
図中、LTは液槽、MP、BPはそれぞれメインポンプ
、バイパスポンプ、Pは圧力センサーを示している。ポ
ンプにはローラポンプを使用し、図中の人工肺の回路位
置に各実施例及び比較例の人工肺を交換設置して測定を
行なった。すなわち、各人工肺のそれぞれについて、メ
インポンプMPの各流量における人工肺からの気泡発生
が目視で観察されるバイパスポンプBPの最小流量を測
定した。In the figure, LT represents a liquid tank, MP and BP represent a main pump and bypass pump, respectively, and P represents a pressure sensor. A roller pump was used as the pump, and measurements were performed by replacing and installing the oxygenators of each example and comparative example in the circuit position of the oxygenator in the figure. That is, for each oxygenator, the minimum flow rate of the bypass pump BP at which bubble generation from the oxygenator was visually observed at each flow rate of the main pump MP was measured.
各測定試験テストにおいて、液槽LTにはグリセリンに
より粘度を3センチボイスに調整した水溶液が充填され
、メインポンプMPの流量を毎分500.600.70
0m12としたときに、それぞれの人工肺から気泡が発
生するバイパスポンプBPの最小流量(ff/m1n)
を測定し、表−1の結果を得た6表−1の中で第1実施
例によるものをA、第2実施例をB、比較例1をC1第
3実施例をD、比較例2をEとした。In each measurement test, the liquid tank LT was filled with an aqueous solution whose viscosity was adjusted to 3 cm voice with glycerin, and the flow rate of the main pump MP was adjusted to 500.600.70 cm/min.
Minimum flow rate (ff/m1n) of bypass pump BP at which air bubbles are generated from each oxygenator when 0m12
were measured and obtained the results in Table 1. 6 In Table 1, those according to the first example are A, the second example is B, the comparative example 1 is C, the third example is D, and the comparative example 2. was set as E.
表−1
ては6. C14/minであるのでそれ以上の検討
も行なわなかった。Table-1 6. Since it was C14/min, no further study was conducted.
表−1から明らかなように1本発明を適用した人工肺で
は、両実施例A、Hのいずれのものについても、人工肺
の許容最大流量においても気泡は発生しなかった。一方
、従来の人工肺では比較的低流量で気泡が発生した。こ
の結果より、本発明の実施例の人工肺は2台のポンプ(
MP、BP)を有する回路内で使用しても、従来のもの
と比較して気泡の発生し難いことが認められた。As is clear from Table 1, in the oxygenator to which the present invention was applied, no bubbles were generated in any of Examples A and H, even at the maximum allowable flow rate of the oxygenator. On the other hand, conventional oxygenators generate air bubbles at relatively low flow rates. From this result, the oxygenator of the embodiment of the present invention has two pumps (
Even when used in a circuit with MP, BP), it was found that bubbles were less likely to be generated compared to conventional ones.
各測定試験において、更にP点における圧力を測定し、
瞬時の防圧が発生するBPの最小流量を測定した。その
結果を表2に示す。In each measurement test, further measure the pressure at point P,
The minimum flow rate of BP at which instantaneous barrier pressure occurs was measured. The results are shown in Table 2.
700 3.3< 3.3< 3.0
5.3< 2.0※本人工肺の臨床における最大流量
は4氾/minであるので、A、Hについてはこれより
大流量の検討は行なわなかった。同様にDにつぃ表−2
1503,85< 3.85< 0.6 5
.85< 0.にの結果より、本発明の実施例のも
のでは防圧の発生を防止できることを確認できた。700 3.3<3.3<3.0
5.3 < 2.0 *Since the maximum flow rate of this artificial lung in clinical practice is 4 floods/min, a larger flow rate was not investigated for A and H. Similarly, D table-2 1503,85<3.85< 0.6 5
.. 85<0. From the results, it was confirmed that the examples of the present invention could prevent the occurrence of pressure barrier.
以上実施例について説明したが、上記いずれの実施例に
おいても、可撓性部材l0113は血液流入側及び流出
側の血液ポート領域に設けた構成を示したが、気泡の混
入を防ぐために、瞬時の防圧を防止するためであれば、
流出ポート部に設けるのみでよい、また瞬時の加圧、防
圧の両者を防止するためには流入、流出両血液ポートに
設けることが望ましい。又、その他、本発明は実施例に
限定されるものでなく、種々の変形例を含むものである
。Although the embodiments have been described above, in each of the above embodiments, the flexible member 10113 is provided in the blood port area on the blood inflow side and the blood outflow side. In order to prevent pressure-blocking,
It is sufficient to provide it only at the outflow port, and it is desirable to provide it at both the inflow and outflow blood ports in order to prevent both instantaneous pressurization and pressure protection. Furthermore, the present invention is not limited to the embodiments, but includes various modifications.
[発明の効果]
以上のように、本発明を適用した血液処理装置は、血液
流通路の少なくとも一部を血液の圧力の変動に応じて変
形可能な可撓性材料で構成されているので、圧力の変動
を吸収することができ、このため血液流通路内で防圧が
発生して血球が破壊されるという危険性がなく、中空糸
束に気泡の混入の恐れもない。[Effects of the Invention] As described above, in the blood processing device to which the present invention is applied, at least a portion of the blood flow path is made of a flexible material that can be deformed according to fluctuations in blood pressure. Fluctuations in pressure can be absorbed, so there is no risk that pressure will occur in the blood flow path and blood cells will be destroyed, and there is no risk of air bubbles being mixed into the hollow fiber bundle.
従って、本発明の血液処理装置は貯留部なしで再循環を
容易にすることができ、効率的な血液処理を簡便に行う
ことができるものである。Therefore, the blood processing device of the present invention can facilitate recirculation without a storage section, and can easily perform efficient blood processing.
又、可撓性部材に対応して規制部材を配し、該可撓性部
材の過度の変形を防止することにより、さらに安全で耐
久性に冨む血液処理装置を得ることができるものである
。Further, by arranging a regulating member corresponding to the flexible member and preventing excessive deformation of the flexible member, a blood processing device that is safer and more durable can be obtained. .
第1図(a)は貯留部を有する再循環路を設けた従来の
血液処理装置の体外循環路の回路図、第1図(b)は貯
留部を有しない再循環路を設けた従来の血液処理の体外
循環路の回路図、第2図(a)は本発明の第1実施例の
血液処理装置を構成する人工肺の要部破断正面図、第2
図(b)は同実施例の人工肺の平面図、第3図(a)は
本発明の第2実施例の血液処理装置を構成する人工肺の
要部破断正面図、第3図(b)は第2実施例の人工肺の
平面図、第4図は比較試験に使用されたフロー回路図、
第5図は本発明の第3の実施例に係る人工肺の断面構成
図である。
F・・・流量計、LT・・・液槽、MP・・・メインポ
ンプBP・・・バイパスポンプ
ト・・筒状本体、 2a、2b・・・側壁3・・・隔
壁、 4・・・中空糸束
5a、12a・・−血液ポート領域
6a、13a、17a・・・血液導入バイブロb、13
b、17b・・・血液導出バイブ7・・・側壁、 8
.15・・・ヘッドカバー9a、9b・・・浄化流体の
導入口及び導出口10.13.16・・・可撓性部材FIG. 1(a) is a circuit diagram of a conventional extracorporeal circulation path of a blood processing device equipped with a recirculation path having a storage section, and FIG. 1(b) is a circuit diagram of a conventional extracorporeal circulation path provided with a recirculation path without a storage section. FIG. 2(a) is a circuit diagram of an extracorporeal circulation path for blood processing; FIG.
FIG. 3(b) is a plan view of the artificial lung of the second embodiment of the present invention, FIG. ) is a plan view of the oxygenator of the second embodiment, and FIG. 4 is a flow circuit diagram used in the comparative test.
FIG. 5 is a cross-sectional configuration diagram of an artificial lung according to a third embodiment of the present invention. F...flow meter, LT...liquid tank, MP...main pump BP...bypass pump...cylindrical body, 2a, 2b...side wall 3...partition wall, 4... Hollow fiber bundles 5a, 12a...-Blood port regions 6a, 13a, 17a...Blood introduction vibro b, 13
b, 17b...Blood extraction vibe 7...Side wall, 8
.. 15...Head cover 9a, 9b...Inlet and outlet for purifying fluid 10.13.16...Flexible member
Claims (4)
圧力変動に応じて変形可能な可撓性部材で構成したこと
を特徴とする血液処理装置。(1) A blood processing device characterized in that at least a portion of the blood flow path is constructed of a flexible member that can be deformed according to pressure fluctuations within the blood flow path.
が開口した血液ポート領域を備えた中空糸型血液処理装
置において、前記血液ポート領域を形成する壁手段の少
なくとも一部を前記血液ポート領域内の血液の圧力変動
に応じて変形可能な可撓性部材で構成したことを特徴と
する血液処理装置。(2) In a hollow fiber type blood processing device provided with a blood port region to which a blood conducting tube is connected and an end of a hollow fiber bundle is open, at least a portion of the wall means forming the blood port region is connected to the blood port region. A blood processing device comprising a flexible member that can be deformed according to pressure fluctuations of blood within a port region.
当該可撓性部材に対し血液流路面と反対側に当該可撓性
部材に対応して設けてなる請求項1または2記載の血液
処理装置。(3) A regulating member that regulates the amount of deformation of the flexible member,
3. The blood processing device according to claim 1, wherein the blood processing device is provided on a side opposite to the blood flow path surface of the flexible member so as to correspond to the flexible member.
面状に湾曲形成されてなる請求項1乃至3のいずれかに
記載の血液処理装置。(4) The blood processing device according to any one of claims 1 to 3, wherein the regulating member is curved into a spherical shape in a direction away from the flexible member.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63335068A JPH02180272A (en) | 1988-12-29 | 1988-12-29 | Blood processing device |
US07/457,263 US5139741A (en) | 1988-12-29 | 1989-12-27 | Blood processing apparatus of hollow fiber type |
DE89124062T DE68909902T2 (en) | 1988-12-29 | 1989-12-28 | Blood treatment device of the hollow fiber type. |
EP89124062A EP0376298B1 (en) | 1988-12-29 | 1989-12-28 | Blood processing apparatus of hollow fiber type |
AU47383/89A AU618440B2 (en) | 1988-12-29 | 1989-12-29 | Blood processing apparatus of hollow fiber type |
AU86917/91A AU648600B2 (en) | 1988-12-29 | 1991-10-30 | Blood processing apparatus of hollow fiber type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63335068A JPH02180272A (en) | 1988-12-29 | 1988-12-29 | Blood processing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02180272A true JPH02180272A (en) | 1990-07-13 |
Family
ID=18284401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63335068A Pending JPH02180272A (en) | 1988-12-29 | 1988-12-29 | Blood processing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH02180272A (en) |
AU (1) | AU648600B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2646358C2 (en) * | 1976-10-14 | 1982-05-13 | Dr. Eduard Fresenius, Chemisch-pharmazeutische Industrie KG Apparatebau KG, 6380 Bad Homburg | Hollow fiber dialyzer |
-
1988
- 1988-12-29 JP JP63335068A patent/JPH02180272A/en active Pending
-
1991
- 1991-10-30 AU AU86917/91A patent/AU648600B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AU8691791A (en) | 1991-12-19 |
AU648600B2 (en) | 1994-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1054073A (en) | Gas purging fluid filter | |
US6337049B1 (en) | Soft shell venous reservoir | |
US4559034A (en) | Line for use in body fluid treatment | |
JP4173969B2 (en) | Hemodialysis filter and hemodiafiltration device | |
JP4026037B2 (en) | Hollow fiber membrane gas-liquid gas exchange device and gas exchange method thereof | |
JP4998555B2 (en) | Blood reservoir | |
JP5046063B2 (en) | Blood reservoir | |
JP3742711B2 (en) | Medical heat exchanger | |
JPH02180272A (en) | Blood processing device | |
US20100114004A1 (en) | Heat exchanger for medical use and artificial heart-lung machine | |
JP2003111837A (en) | Hollow fiber membrane type artificial lung | |
JP5046062B2 (en) | Blood reservoir | |
US4284505A (en) | Flexible membrane filter assembly | |
JPH05123396A (en) | Entrance header for artificial lung and artificial lung using it | |
SE461632B (en) | MEMBRANE TYPE BLOOD OXYGENATOR | |
JP5088538B2 (en) | Medical heat exchanger and heart-lung machine | |
JPH0127794Y2 (en) | ||
JPS609820B2 (en) | Hollow fiber membrane mass transfer device | |
JP3595371B2 (en) | Blood assist circulator | |
JPS59103670A (en) | Hollow yarn type artificial lung | |
JPH0357784B2 (en) | ||
JP2811455B2 (en) | Hollow fiber type blood processing device | |
JPS59108563A (en) | Hollow yarn type artifical long | |
JPS6330441Y2 (en) | ||
JPH06245997A (en) | Blood concentrating device-containing artificial lung |