JPH0217988B2 - - Google Patents

Info

Publication number
JPH0217988B2
JPH0217988B2 JP55180103A JP18010380A JPH0217988B2 JP H0217988 B2 JPH0217988 B2 JP H0217988B2 JP 55180103 A JP55180103 A JP 55180103A JP 18010380 A JP18010380 A JP 18010380A JP H0217988 B2 JPH0217988 B2 JP H0217988B2
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor substrate
crystal
infrared
pyroelectric crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55180103A
Other languages
Japanese (ja)
Other versions
JPS57104380A (en
Inventor
Katsuhiro Mikami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP55180103A priority Critical patent/JPS57104380A/en
Publication of JPS57104380A publication Critical patent/JPS57104380A/en
Publication of JPH0217988B2 publication Critical patent/JPH0217988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は赤外線での二次元センサに関し、特に
全てを固体で形成して赤外線の映像信号を得るた
めの赤外線固体撮像デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared two-dimensional sensor, and more particularly to an infrared solid-state imaging device that is entirely made of solid material and is used to obtain an infrared video signal.

従来赤外線を検出するセンサとしては量子効果
を利用する半導体を用いたものと、赤外線を熱に
変換する焦電結晶などを用いたものがあり、この
二次元センサについても種々考えられている。こ
れを走査方式により分類すると光学走査、電子ビ
ーム走査および自己走査のもので、それぞれ長
所、短所を有しているが、利用範囲が広くて特
性、価格を満足する赤外線での二次元センサはま
だ実用化されていない。即ち光学走査方式のもの
では、主にInSbあるいはHgCdTeからなる赤外
線の単一センサを回転または振動光学系を用いて
二次元走査を行なうのであるが回転、振動といつ
た機械的走査方式と組み合せた方式であるため装
置が大型で消費電力が大きく、また機械的故障等
寿命も短かいという欠点を有しており、赤外カメ
ラとしての光センサ部の性能も限界で改良の方策
は考えられていない。また電子ビーム方式は、主
に焦電結晶を主としたマトリツクス検出器に信号
を結像させ電子ビームにより信号を取り出すもの
であるが、この検出器は一般的に感度が低く、し
かも画素数がそれ程多く形成されないため分解能
が悪く、また電子ビームを必要とするため前者の
場合と同様装置が大型になる等の欠点がある。次
の自己走査方式は最も新しい方式として考えられ
ているもので、CCD(Charge−Coupled Device、
電荷結合素子)のような信号の自己走査機能を有
する半導体素子とセンサ部とで構成したもので、
前二方式に比べ高性能、高信頼、安価といつた利
点が考えられ有望視されているが赤外領域におい
てはまだ満足なものが得られていない。
Conventional sensors for detecting infrared rays include those using semiconductors that utilize quantum effects and those using pyroelectric crystals that convert infrared rays into heat, and various types of two-dimensional sensors have been considered. Classified by scanning method, these are optical scanning, electron beam scanning, and self-scanning, each of which has its advantages and disadvantages, but there is still no infrared two-dimensional sensor that can be used in a wide range of applications and satisfies the characteristics and price. Not put into practical use. That is, in the optical scanning method, a single infrared sensor mainly made of InSb or HgCdTe is used to perform two-dimensional scanning using a rotating or vibrating optical system. This method has disadvantages such as large size, high power consumption, and short lifespan due to mechanical failure.The performance of the optical sensor section as an infrared camera is also at its limit, and no improvement measures have been considered. do not have. In addition, in the electron beam method, the signal is focused on a matrix detector mainly made of pyroelectric crystal, and the signal is extracted using an electron beam, but this detector generally has low sensitivity and has a small number of pixels. Since not so many are formed, the resolution is poor, and since an electron beam is required, there are drawbacks such as the large size of the device, similar to the former case. The next self-scanning method is considered to be the newest method, and is a CCD (Charge-Coupled Device).
It consists of a semiconductor element that has a self-scanning function for signals, such as a charge-coupled device, and a sensor section.
Compared to the previous two methods, this method has advantages such as high performance, high reliability, and low cost, and is considered promising, but nothing satisfactory has yet been achieved in the infrared region.

即ち可視光領域では、普通の半導体シリコン
(Si)で波長によりSiの適当な深さで吸収される
ため適当なSiの厚さのところにPN接合を形成
(ホトダイオード)すれば光を電流として検出す
ることができ、CCD等の駆動部を同一Si基板に
形成することにより自己走査方式の固体撮像デバ
イスを構成することができる。しかし赤外線で波
長が長くなるとSi半導体を透過してしまい検出す
ることができないため、これら長波長のものをこ
の方式で検出するためには例えばInやGaなどの
不純物をSi半導体にドープしてバンドギヤツプを
狭くするか、Si半導体を使用しないでInSbとか
HgCdTeなどバンドギヤツプの狭い半導体を使用
しなければならない。しかしながらバンドギヤツ
プの狭い半導体は本質的に熱雑音が増加し、相対
的な感度低下が著しい。そのためこの熱雑音を低
下させるためにはこのセンサ部を冷却(50゜K)
しなければならず、冷却装置が大変であると共
に、駆動部であるCCD部も冷却されて動作に異
常を来たし実用的でないため、赤外領域でのモノ
リシツク型固体撮像デバイスは実用化されていな
い。
In other words, in the visible light range, ordinary semiconductor silicon (Si) absorbs light at an appropriate depth depending on the wavelength, so if a PN junction (photodiode) is formed at an appropriate thickness of Si, light can be detected as an electric current. By forming a drive unit such as a CCD on the same Si substrate, a self-scanning solid-state imaging device can be constructed. However, when infrared rays have long wavelengths, they pass through the Si semiconductor and cannot be detected. Therefore, in order to detect these long wavelengths using this method, impurities such as In or Ga are doped into the Si semiconductor to create a band gap. Either make it narrower or use InSb instead of using Si semiconductor.
A narrow bandgap semiconductor such as HgCdTe must be used. However, semiconductors with narrow band gaps inherently have increased thermal noise and a significant relative decrease in sensitivity. Therefore, in order to reduce this thermal noise, this sensor part must be cooled (50°K).
Monolithic solid-state imaging devices in the infrared region have not been put to practical use because the cooling equipment is difficult and the CCD part, which is the driving part, is also cooled and causes abnormal operation, making it impractical. .

一方、赤外領域で従来考えられているこの方式
に近いものとしてハイブリツト型の構成が考えら
れている。即ちハイブリツト型はInSb、
HgCdTe、PbSnTeなどの半導体型センサあるい
は焦電結晶を用いたセンサとSi−CCD駆動部と
で構成したもので、例えば第1図に斜視図で示す
ような構成で形成され、1が赤外センサアレイ、
2が入力ゲート、3が駆動部であるSi−CCD部
で、半導体型センサは分離して冷却でき、Si−
CCD駆動部は室温に保ち駆動できる。また焦電
結晶の場合は冷却の必要はないが、熱容量を小さ
く形成することに難点があり感度の低下を免れな
いと共に、このハイブリツト型では半導体型およ
び焦電結晶型共に素子数が多くなるのに伴ないセ
ンサ部とSi−CCD部との配線が困難となり、素
子数に限度が生じ、高解像度のものを得ることが
できないという重大な欠点がある。
On the other hand, a hybrid type configuration is being considered as a system similar to this conventionally considered system in the infrared region. In other words, the hybrid type is InSb,
It is composed of a semiconductor type sensor such as HgCdTe or PbSnTe or a sensor using a pyroelectric crystal and a Si-CCD drive unit.For example, it is formed with the configuration shown in the perspective view in Figure 1, and 1 is an infrared sensor. array,
2 is the input gate, 3 is the Si-CCD part which is the drive part, the semiconductor type sensor can be cooled separately, and the Si-CCD part is the input gate.
The CCD drive unit can be kept at room temperature and driven. Although pyroelectric crystals do not require cooling, it is difficult to form them with a small heat capacity, resulting in a decrease in sensitivity.In addition, this hybrid type requires a large number of elements for both semiconductor and pyroelectric crystal types. As a result, the wiring between the sensor section and the Si-CCD section becomes difficult, which limits the number of elements, making it impossible to obtain high resolution, which is a serious drawback.

本発明はこれらの欠点を鑑みなされたもので、
感度が良く、高解像度が得られ、冷却の必要のな
いモノリシツク型の赤外線固体撮像デバイスを提
供することを目的とするものである。具体的には
半導体基板上の絶縁皮膜上に焦電結晶および電極
材料を薄膜状に付着して輻射波検出のセンサ部を
形成し、そのセンサ部の下に位置する絶縁皮膜下
の半導体基板の一部を腐蝕除去させて腐蝕孔を設
けセンサ部の熱容量を小さくして感度を良くする
と共に、前記半導体基板上の他の部分にMOS構
造およびCCD等の駆動部を形成する構成とした
ものである。
The present invention was made in view of these drawbacks.
The object of the present invention is to provide a monolithic infrared solid-state imaging device that has good sensitivity, high resolution, and does not require cooling. Specifically, a pyroelectric crystal and an electrode material are deposited in a thin film on an insulating film on a semiconductor substrate to form a sensor part for detecting radiation waves, and the semiconductor substrate under the insulating film located below the sensor part is A portion of the semiconductor substrate is removed by corrosion to form a corrosion hole to reduce the heat capacity of the sensor portion to improve sensitivity, and a MOS structure and a drive portion such as a CCD are formed on other portions of the semiconductor substrate. be.

本発明の特徴は駆動部であるCCD等を形成し
た半導体基板と同一の半導体基板上に焦電結晶を
用いて感度の高い、冷却の必要のないセンサ部を
形成することにあり、駆動部はCCD以外でも
BBD(Bucket−Brigade Device、バケツト・ブ
リゲード素子)、CID(Charge Injection Device)
等他の方式でもよく、またこれらの構成は従来知
られている技術なので主にセンサ部について、以
下図面により詳細に説明する。
A feature of the present invention is that a highly sensitive sensor section that does not require cooling is formed using a pyroelectric crystal on the same semiconductor substrate on which the driving section, such as a CCD, is formed. Other than CCD
BBD (Bucket-Brigade Device), CID (Charge Injection Device)
Other systems such as the above may also be used, and since these configurations are conventionally known techniques, the sensor section will mainly be described in detail below with reference to the drawings.

第2図は本発明の一実施例である赤外線固体撮
像デバイスの平面図で、第3図はそのA−A′断
面図、第4図は第2図のB−B′断面図である。
第2図ないし第4図で、4,6は主表面が(100)
面または(110)面を有するn型のシリコン結晶
層、5はあらかじめ形成したP+型不純物層、7,
8は高温酸化膜あるいはCVD法等により形成し
た酸化珪素膜、窒化珪素膜などの絶縁皮膜、9は
電極13をオーミツク接触するためのn+拡散層、
10はチヤンネルストツパのためのn+型拡散層、
11,13は焦電結晶12の電極、14はゲート
電極で、絶縁皮膜8、n型シリコン結晶層6とで
MOS構造を構成し、焦電結晶に生じた電荷を駆
動部であるCCDのパルスに合わせて転送し画素
の信号と他の画素信号を混合させないようにする
ものである。15,17,18は駆動部である
CCDを構成する電極、16は焦電結晶12の下
部のn型シリコン結晶6に設けた腐蝕孔、19は
出力電力取り出しのためのP型拡散層で、20は
その電極、21は腐蝕孔16を得るための絶縁皮
膜8に設けた目抜き孔である。
FIG. 2 is a plan view of an infrared solid-state imaging device according to an embodiment of the present invention, FIG. 3 is a sectional view taken along line AA', and FIG. 4 is a sectional view taken along line BB' in FIG.
In Figures 2 to 4, the main surface of 4 and 6 is (100)
an n-type silicon crystal layer having a plane or a (110) plane; 5 is a P + type impurity layer formed in advance; 7;
8 is a high-temperature oxide film or an insulating film such as a silicon oxide film or a silicon nitride film formed by a CVD method; 9 is an n + diffusion layer for making ohmic contact with the electrode 13;
10 is an n + type diffusion layer for channel stopper;
11 and 13 are electrodes of the pyroelectric crystal 12, and 14 is a gate electrode, which is connected to the insulating film 8 and the n-type silicon crystal layer 6.
It has a MOS structure and transfers the charge generated in the pyroelectric crystal in accordance with the pulses of the CCD, which is the driving unit, to prevent pixel signals from being mixed with other pixel signals. 15, 17, 18 are drive parts
16 is a corrosion hole provided in the n-type silicon crystal 6 below the pyroelectric crystal 12; 19 is a P-type diffusion layer for extracting output power; 20 is the electrode; 21 is the corrosion hole 16 This is a perforation provided in the insulating film 8 to obtain the following.

次に、この赤外線固体撮像デバイスの実施例に
ついての製造手順を以下に説明する。まずあらか
じめP+型不純物層5をサンドイツチ状に形成し
た主表面が(100)面または(110)面を有するn
型のSi結晶4,6からなる一つの半導体基板を準
備し、その両面に絶縁皮膜を形成し、上方の絶縁
皮膜(高温酸化皮膜)を写真蝕刻技術により目抜
き、n型拡散層9,10およびP型拡散層19を
形成する。その後目抜いた絶縁皮膜(高温酸化皮
膜)を全て剥離し新たに高温酸化膜法あるいは
CVD法等により酸化珪素皮膜もしくは窒化珪素
皮膜などの絶縁皮膜8を形成する。その後、再度
電極13,20をオーミツク接触するための孔お
よび焦電結晶12の下部に腐蝕孔16を設けるた
めの孔21を絶縁皮膜8に写真蝕刻技術により目
抜く。次にCr−Pt合金で電極11,14,15,
17,18を形成する。更に電極11の一部の上
部に焦電結晶12をスパツタ等により形成する。
更に焦電結晶12の上部に上部電極13および
n+拡散層9、P型拡散層19にオーミツク接触
の電極13,20を構成する。次に絶縁皮膜8に
目抜いた孔21から苛性ソーダあるいは苛性カリ
を主体とするアルカリ系の異方性化学腐蝕液、あ
るいはエチレンジアミンとピロカテコールよりな
る異方性化学腐蝕液、あるいはヒドラジンと水よ
りなる異方性化学腐蝕液で代表されるシリコンの
異方性化学腐蝕液を用いて化学腐蝕を行なうと、
結晶軸に沿つた領域は他の結晶軸に沿つた領域よ
り早くエツチングされるため、主表面が(100)
面のSi結晶においては第3図に示すごとくαが
54゜44′をなすように腐蝕されてP+型不純物層5で
とまる腐蝕孔16を形成でき、焦電結晶に下の絶
縁皮膜8をブリツジ状に残すことができ、焦電素
子センサ部の熱容量を小さくしかも強固で駆動部
と連結したコンパクトな赤外線固体撮像デバイス
を得ることができる。この実施例では半導体基板
の中間にP+不純物層5を設けて半導体基板の焦
電結晶12を付着した側から腐蝕して腐蝕を不純
物層5で止まる例で説明したが、P+不純物層5
を設けなくてもSi結晶6が十分厚ければ54゜44′の
角度で腐蝕が進み境界面が合致するところで腐蝕
は止まり角錐状の腐蝕孔が形成できるし、また単
一導電型結晶基板で薄くても半導体基板の裏側か
ら腐蝕させることにより焦電結晶12の下側部分
のSi結晶を腐蝕除去することができる。この腐蝕
方法については特願昭55−102893号に詳述した通
りである。
Next, the manufacturing procedure for this embodiment of the infrared solid-state imaging device will be described below. First, a P + type impurity layer 5 is formed in advance in the shape of a sandwich arch.
One semiconductor substrate consisting of type Si crystals 4 and 6 is prepared, an insulating film is formed on both sides of the substrate, the upper insulating film (high temperature oxide film) is cut out by photolithography, and n-type diffusion layers 9 and 10 are formed. and a P-type diffusion layer 19 is formed. After that, all of the cut-out insulation film (high temperature oxide film) is peeled off and a new high temperature oxide film method or
An insulating film 8 such as a silicon oxide film or a silicon nitride film is formed by a CVD method or the like. Thereafter, holes for bringing the electrodes 13 and 20 into ohmic contact again and holes 21 for providing the corrosion holes 16 in the lower part of the pyroelectric crystal 12 are punched out in the insulating film 8 by photolithography. Next, electrodes 11, 14, 15,
17 and 18 are formed. Furthermore, a pyroelectric crystal 12 is formed on a portion of the electrode 11 by sputtering or the like.
Furthermore, an upper electrode 13 and
Ohmic contact electrodes 13 and 20 are formed on the n + diffusion layer 9 and the P type diffusion layer 19. Next, through the holes 21 cut in the insulating film 8, an alkaline anisotropic chemical etchant mainly consisting of caustic soda or caustic potash, an anisotropic chemical etchant consisting of ethylenediamine and pyrocatechol, or an anisotropic chemical etchant consisting of hydrazine and water is applied. When chemical etching is performed using an anisotropic chemical etchant for silicon, such as an anisotropic chemical etchant,
Regions along the crystal axes are etched faster than regions along other crystal axes, so that the major surface is (100)
In a plane Si crystal, α is as shown in Figure 3.
A corrosion hole 16 can be formed in the shape of 54°44' and stopped by the P + type impurity layer 5, and the lower insulating film 8 can be left in the shape of a bridge on the pyroelectric crystal. It is possible to obtain a compact infrared solid-state imaging device that has a small heat capacity, is strong, and is connected to a driving section. In this embodiment, the P + impurity layer 5 is provided in the middle of the semiconductor substrate, and the pyroelectric crystal 12 of the semiconductor substrate is corroded from the side to which it is attached, and the corrosion is stopped at the impurity layer 5 .
If the Si crystal 6 is thick enough, corrosion will proceed at an angle of 54°44' and stop when the interfaces meet, forming a pyramid-shaped corrosion hole. Even if it is thin, the Si crystal in the lower part of the pyroelectric crystal 12 can be etched away by etching it from the back side of the semiconductor substrate. This corrosion method is detailed in Japanese Patent Application No. 55-102893.

第5図は本発明の他の実施例の第3図と同様な
断面図を示したもので、本実施例では焦電結晶の
電極のとり方を、焦電結晶12の薄膜を付着した
後、その焦電結晶の両側面から電極11,13を
取り出す構成としたものである。
FIG. 5 shows a cross-sectional view similar to FIG. 3 of another embodiment of the present invention, and in this embodiment, the method of forming the pyroelectric crystal electrodes was changed after the thin film of the pyroelectric crystal 12 was attached. The structure is such that electrodes 11 and 13 are taken out from both sides of the pyroelectric crystal.

以上説明した本発明の実施例で、焦電結晶とし
てPbTiO3、画素数100×100、焦電素子画素の大
きさ20μm×20μmの特性は 温度測定範囲 0〜2000℃ 温度分解能 0.05℃ 感 度 100V/W 雑音 RMS 10μV 飽和出力 2mV を得る。従つて本発明は従来のハイブリツド式の
二次元赤外線センサより、はるかに分解能感度が
良く、しかも生産工程は非常に簡易で、非常に低
コストでできると共に、使用においても冷却等の
必要はなく非常に簡便であるという利点がある。
In the embodiment of the present invention described above, the characteristics of PbTiO 3 as the pyroelectric crystal, number of pixels 100 x 100, and size of the pyroelectric element pixel 20 μm x 20 μm are as follows: Temperature measurement range: 0 to 2000°C Temperature resolution: 0.05°C Sensitivity: 100V /W Noise RMS 10μV Obtains saturated output 2mV. Therefore, the present invention has much better resolution and sensitivity than conventional hybrid two-dimensional infrared sensors, has a very simple production process, can be done at a very low cost, and is very easy to use as it does not require cooling. It has the advantage of being simple.

このような使用方法が容易で、低コストで分解
能、感度の良好な二次元赤外線固体撮像デバイス
の本発明により医用の人体表面の温度分布測定、
地質調査、気象観測、軍事、公害防止、防犯、防
災等各種工業計測への応用が可能となり非常に利
用範囲が広いという効果を有する。
The present invention provides a two-dimensional infrared solid-state imaging device that is easy to use, low-cost, and has good resolution and sensitivity.
It can be applied to various industrial measurements such as geological surveys, meteorological observation, military, pollution prevention, crime prevention, and disaster prevention, and has the effect of having a very wide range of uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来考えられているハイブリツド型の
赤外領域固体撮像デバイスの斜視図、第2図は本
発明の一実施例であるモノリシツク型の赤外線固
体撮像デバイスの平面図、第3図は第2図のA−
A′断面図、第4図は第2図のB−B′断面図、第
5図は本発明の他の実施例である第3図と同様の
断面図である。 4,6…n型またはP型シリコン結晶、5…
P+型不純物層、8…絶縁皮膜、11,13…電
極、12…焦電結晶、14…ゲート電極、15,
17,18…駆動部を構成する電極、16…腐蝕
孔、21…腐蝕用目抜き孔。
FIG. 1 is a perspective view of a conventionally considered hybrid type infrared solid-state imaging device, FIG. 2 is a plan view of a monolithic type infrared solid-state imaging device that is an embodiment of the present invention, and FIG. A- in Figure 2
4 is a sectional view taken along the line BB' in FIG. 2, and FIG. 5 is a sectional view similar to FIG. 3 showing another embodiment of the present invention. 4, 6...n-type or p-type silicon crystal, 5...
P + type impurity layer, 8... Insulating film, 11, 13... Electrode, 12... Pyroelectric crystal, 14... Gate electrode, 15,
17, 18... Electrodes constituting the drive unit, 16... Corrosion holes, 21... Corrosion holes.

Claims (1)

【特許請求の範囲】[Claims] 1 (100)又は(110)面を主表面とする単一の
半導体基板上に形成した絶縁皮膜と、該絶縁皮膜
上に電極用金属、焦電結晶及び電極用金属をそれ
ぞれ薄膜状に積層し、該焦電結晶の下側の前記半
導体基板の少なくとも前記絶縁皮膜に接する部分
を腐蝕除去して形成した輻射波検出のためのセン
サ部と、該センサ部に隣接して前記絶縁皮膜上に
前記センサ部からの検出電荷を転送するためのゲ
ート電極及び転送用パルスを入力するための電極
群で形成した駆動部とを前記半導体基板に一体的
に形成したことを特徴とする赤外線固体撮像デバ
イス。
1 An insulating film formed on a single semiconductor substrate having a (100) or (110) plane as its main surface, and an electrode metal, a pyroelectric crystal, and an electrode metal each laminated in a thin film form on the insulating film. a sensor section for detecting radiation waves formed by etching away at least a portion of the semiconductor substrate below the pyroelectric crystal that is in contact with the insulating film; An infrared solid-state imaging device, characterized in that a gate electrode for transferring detected charge from a sensor section and a driving section formed of a group of electrodes for inputting transfer pulses are integrally formed on the semiconductor substrate.
JP55180103A 1980-12-19 1980-12-19 Infrared ray solid-state image pickup device Granted JPS57104380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55180103A JPS57104380A (en) 1980-12-19 1980-12-19 Infrared ray solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55180103A JPS57104380A (en) 1980-12-19 1980-12-19 Infrared ray solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS57104380A JPS57104380A (en) 1982-06-29
JPH0217988B2 true JPH0217988B2 (en) 1990-04-24

Family

ID=16077474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55180103A Granted JPS57104380A (en) 1980-12-19 1980-12-19 Infrared ray solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS57104380A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527419B2 (en) * 1983-04-14 1996-08-21 ニッコーム株式会社 Thick film pyroelectric element and manufacturing method thereof
JPS6017429U (en) * 1983-07-14 1985-02-06 株式会社 堀場製作所 Dual type pyroelectric infrared detector
US4565720A (en) * 1983-07-27 1986-01-21 Idemitsu Petrochemical Co., Ltd. Packaging bag
JP2502505B2 (en) * 1985-08-13 1996-05-29 松下電器産業株式会社 Pyroelectric infrared imaging device
JP2584124B2 (en) * 1990-11-01 1997-02-19 松下電器産業株式会社 Pyroelectric infrared detector and method of manufacturing the same
US5413667A (en) * 1992-11-04 1995-05-09 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector fabricating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536324B2 (en) * 1976-04-20 1980-09-19

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675987A (en) * 1971-03-29 1972-07-11 Sperry Rand Corp Liquid crystal compositions and devices
JPS6021781Y2 (en) * 1978-08-29 1985-06-28 株式会社村田製作所 infrared detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536324B2 (en) * 1976-04-20 1980-09-19

Also Published As

Publication number Publication date
JPS57104380A (en) 1982-06-29

Similar Documents

Publication Publication Date Title
US4876586A (en) Grooved Schottky barrier photodiode for infrared sensing
US4603258A (en) Photocapacitive detector array
US6114696A (en) Uncooled infrared detector
JP2000205944A (en) Thermal infrared array sensor for detecting plurality of infrared wavelength band
US7208734B2 (en) Infrared array detection device
US4093957A (en) SOS extrinsic infrared detector and read-out device
US4063268A (en) Silicon-polysilicon infrared image device with orientially etched detector
US5751049A (en) Two-color infrared detector
US5006711A (en) Multielement infrared detector for thermal imaging
JPH0217988B2 (en)
JPH0289368A (en) Solid-state image sensing device
JPH07283444A (en) Manufacture of infrared detector
US4148052A (en) Radiant energy sensor
JPH10104062A (en) Thin-film electrode and method
US4566024A (en) Matrix infrared detector
JP3311869B2 (en) Semiconductor photoelectric conversion element and imaging device using the same
JP2541458B2 (en) Infrared sensor and manufacturing method thereof
US5517029A (en) Dual-band IR scanning focal plane assembly having two monolithically integrated linear detector arrays for simultaneous image readout
KR960001182B1 (en) Solid state image pick-up device
JP2508579B2 (en) Method of manufacturing array type infrared detector
GB2241605A (en) Infrared photodiodes, arrays and their manufacture
JPH03212979A (en) Infrared sensor
JP2742203B2 (en) Infrared sensor
JP2697081B2 (en) Semiconductor light receiving device
JPS63308970A (en) Hybrid type infrared detector