JPS63308970A - Hybrid type infrared detector - Google Patents

Hybrid type infrared detector

Info

Publication number
JPS63308970A
JPS63308970A JP62146097A JP14609787A JPS63308970A JP S63308970 A JPS63308970 A JP S63308970A JP 62146097 A JP62146097 A JP 62146097A JP 14609787 A JP14609787 A JP 14609787A JP S63308970 A JPS63308970 A JP S63308970A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
bands
hybrid
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62146097A
Other languages
Japanese (ja)
Inventor
Toru Ishizuya
徹 石津谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62146097A priority Critical patent/JPS63308970A/en
Publication of JPS63308970A publication Critical patent/JPS63308970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To maintain high reliability even when the number of picture elements is increased by using a second semiconductor substrate having a thermal expansion coefficient equal to or approximately equal to that of a first semiconductor substrate. CONSTITUTION:When infrared rays are projected as shown in the arrow, infrared rays having 3-5mum bands are photoelectric-converted in an N-type diffusion region 10 formed to an InSb substrate, and infrared rays having 8-14mum bands are transmitted through the substrate 5 as they are, and photoelectric-converted in an N-type diffusion region 2 shaped to an HgCdTe substrate 1. Signal charges photoelectric- converted by a CCD (a charge coupled device) electrode 9 are transferred by properly turning a first transfer gate 8 and a second transfer gate 11 ON at every one side, thus acquiring an infrared picture by both wave bands of 3-5mum bands and 8-14mum bands from a single hybrid type infrared solid-state image sensing device. Since the difference of the thermal expansion coefficients of the substrate 1 and the substrate 5 is brought to zero or approximately zero, no strain is generated even then the title device receives heat history between room temperature and the temperature of liquid nitrogen, thus maintaining reliability even when density and the number of picture elements are increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外線を検出する、0次元、−次元あるいは
二次元のハイブリッド型赤外線検出装置に関するもので
ある。特に本発明は、赤外線固体撮像装置に有用な検出
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zero-dimensional, -dimensional, or two-dimensional hybrid infrared detection device that detects infrared rays. In particular, the present invention relates to a detection device useful for infrared solid-state imaging devices.

〔従来の技術〕[Conventional technology]

波長が0,8μm以上の赤外線のうち、3〜5μm並び
に8〜14μmのいわゆる“°大気の窓゛領域に感度を
有する半導体基板としては、InSb、InAsSb、
t(gcdTc、Pb5nTe等が広く知られている。
Among infrared rays with a wavelength of 0.8 μm or more, semiconductor substrates that are sensitive to the so-called "atmospheric window" region of 3 to 5 μm and 8 to 14 μm include InSb, InAsSb,
t(gcdTc, Pb5nTe, etc. are widely known.

上記半導体基板を用いた赤外線検出装置は、検出感度が
高く、又、動作温度としても液体窒素等の利用により容
易に達成できる77にで充分であるため非常に注[1さ
れ、今日では、−次元あるいは二次元の赤外線固体撮像
装置(以下、IRcTDと称す)が試作されるに至った
The infrared detection device using the above-mentioned semiconductor substrate has a high detection sensitivity, and an operating temperature of 77, which can be easily achieved by using liquid nitrogen or the like, is sufficient, so it is highly regarded, and today - A prototype of a dimensional or two-dimensional infrared solid-state imaging device (hereinafter referred to as IRcTD) has been produced.

例えば、3〜5μm帯の赤外線に感度を有するInSb
を利用したI RCTDとしては、光電変換を行う受光
部と、該受光部で発生した信号電荷を読み出すための電
荷転送部と共に同一半導体基板に設置してなるモノリシ
ック型IRCTDを中心に開発が行なわれており、既に
、1oooo以上の画素数からなる1nsbモノリシツ
ク型IRCTDが実現されている。それに対し、8〜1
4μmの赤外線に感度を有するH g Cd T eを
利用したIRCTDとしては、光電変換を行う受光部と
、該受光部で発生した信号電荷を読み出すための電荷転
送部とを、それぞれ異なった半導体2S +l1iEに
設置し、さらに両生導体基板を互いに接続してなるハイ
ブリッド型IRCTDを中心に開発が行なわれているが
、未だ、高密度化されたH g CdTeハイブリッド
型IRCTDは実現されておらず、その画素数はせいぜ
い4000程度である。
For example, InSb, which is sensitive to infrared rays in the 3-5 μm band,
Development of IRCTDs that utilize this technology has focused on monolithic IRCTDs, which have a light receiving section that performs photoelectric conversion and a charge transfer section that reads out the signal charges generated in the light receiving section, both of which are installed on the same semiconductor substrate. A 1nsb monolithic IRCTD having a pixel count of 1oooo or more has already been realized. On the other hand, 8 to 1
In an IRCTD using HgCdTe that is sensitive to infrared rays of 4 μm, a light receiving section that performs photoelectric conversion and a charge transfer section for reading signal charges generated in the light receiving section are made of different semiconductor 2S. Development is mainly focused on hybrid IRCTDs, which are installed in +l1iE and further connect amphibic conductor substrates to each other, but a high-density H g CdTe hybrid IRCTD has not yet been realized, and The number of pixels is about 4000 at most.

尚、上述したモノリシック型I RCTDもしくはハイ
ブリッド型I RCTDを用いて、より高画質の赤外線
画像を得るためには、まず、空間分解能を向上させるた
めに画素数を増加させることが重要であるが、その他、
目標物体を識別する能力を高めるために、単一のIRc
TDが互いに異なる波長帯の赤外線を検知できるように
することが望ましい。
In order to obtain higher quality infrared images using the monolithic I RCTD or hybrid I RCTD described above, it is important to first increase the number of pixels in order to improve the spatial resolution. others,
A single IRc to enhance the ability to identify target objects.
It is desirable that the TDs be able to detect infrared rays in different wavelength bands.

ここで、8〜14μm帯の赤外線に感度を有する半導体
材料として知られるH gCd T eを利用したIR
cTDについてさらに詳しく説明する。
Here, IR using HgCdTe, which is known as a semiconductor material sensitive to infrared rays in the 8 to 14 μm band, is used.
cTD will be explained in more detail.

まず、i(g Cd T eモノリン、り型IRcTD
は、受光部ど電荷転送部とが共にl−1g Cd、 T
 e基板上に設置されてなるが、このことは、該Hg 
c d’re基板上に電荷転送装置(以下、CCDと称
す)等の信号読み出し装置を作製する必要があることを
意味する。しかしながら、高性能なCCDの製作のため
に不可欠な技術要素である「良好な界面特性を呈する絶
縁膜形成技術」が未だ薙立さておらず、従って、画素数
の増加などはとても達成し得ない状況である。さらには
、8〜14μm帯の赤外線検出基板としてのt(g C
d T eはバンドギャップが0.1 e V程度と非
常に小さいため、CCDのポテンシャルウェルに蓄積で
きる電荷量は大変少なくなってしまい、咳HgCdTe
基板上にCCDを形成することは原理的に困難である、
といった問題を抱えている。
First, i(g Cd T e monoline, ri-type IRcTD
In this case, both the light receiving part and the charge transfer part are l-1g Cd, T
This means that the Hg
This means that it is necessary to fabricate a signal readout device such as a charge transfer device (hereinafter referred to as CCD) on the c d're substrate. However, ``insulating film formation technology that exhibits good interface characteristics'', which is an essential technological element for manufacturing high-performance CCDs, has not yet been established, and therefore increasing the number of pixels is extremely difficult to achieve. It's a situation. Furthermore, t(g C
Since the bandgap of dTe is very small, about 0.1eV, the amount of charge that can be accumulated in the CCD potential well is very small.
It is difficult in principle to form a CCD on a substrate.
I have problems like this.

そこで、8〜14μI帯の赤外線検出基板としてのHg
CdTe基板に光電変換を行う受光部を形成し、該受光
部で発生した信号電荷を読み出すための電荷転送装置と
してはSi基板CCDを使用し、上記Hg Cd T 
e 、ZS板とCODが形成されたSi基板とを上下に
重ね合わせて接合し、受光部と処理回路(CCD)とを
電気的に接続して一体化とした「ハイブリッド型IRC
TI)Jなるものが堤案された。
Therefore, Hg as an infrared detection substrate in the 8-14μI band
A light receiving section for photoelectric conversion is formed on a CdTe substrate, and a Si substrate CCD is used as a charge transfer device to read out signal charges generated in the light receiving section.
e. A "hybrid type IRC" in which the ZS board and the Si substrate on which the COD is formed are stacked and bonded vertically, and the light receiving part and the processing circuit (CCD) are electrically connected and integrated.
TI) J was proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、該ハイブリッド型IRcTDは、電荷転
送装置としてS 1−CCDを使用するため、高性能な
信号読み出し装置を容易に実現することが可能であるが
、一方で、HgCdTc7S+fflとSl基板との接
続部の信頬性が低く、詳しく言い喚えれば、Hg Cd
 T e基千反と、Si基牟反との間に存在する熱膨張
係数の差異により、上述したハイブリッド型IRcTD
が室温と液体窒素温度との間で熱履歴を受けると、接続
部に亀裂が入ったり、若しくは剥離する、といった問題
点を引き起こしていた。
However, since the hybrid IRcTD uses an S1-CCD as a charge transfer device, it is possible to easily realize a high-performance signal readout device, but on the other hand, the connection between the HgCdTc7S+ffl and the Sl substrate is If you have low confidence in the
Due to the difference in thermal expansion coefficient between Te-based IRcTD and Si-based IRcTD, the above-mentioned hybrid IRcTD
When subjected to thermal history between room temperature and liquid nitrogen temperature, problems such as cracking or peeling of the joints occurred.

上述の問題点(現象)を、以下図面を用いて詳しく説明
する。第2図(A)は、従来のHg CdTeハイブリ
ッド型IRc’FDの一例で部分断面図であり、簡単の
ために、該ハイブリッド型I RCTDの左右両端の画
素周辺部のみを示j、た。
The above-mentioned problems (phenomena) will be explained in detail below using the drawings. FIG. 2(A) is a partial cross-sectional view of an example of a conventional Hg CdTe hybrid type IRc'FD, and for the sake of simplicity, only the peripheral parts of pixels at both left and right ends of the hybrid type I RCTD are shown.

第2図(A)にわいて、P型HgCd1’e、lfM2
1には、受光部どなるn型拡散領域22、該受光部で発
生した信号電荷を外部へ取り出すための金属バッド23
、絶縁膜24がそれぞ才1形成されている。一方、P型
Si%板25には、信号電荷を受は取るための金属バッ
ド26及び入力ダイオード27、さらに受は取った信号
電荷2cc。
In Figure 2 (A), P-type HgCd1'e, lfM2
1 includes an n-type diffusion region 22 which is a light receiving part, and a metal pad 23 for extracting signal charges generated in the light receiving part to the outside.
, an insulating film 24 are formed respectively. On the other hand, the P-type Si% plate 25 includes a metal pad 26 and an input diode 27 for receiving and receiving signal charges, and 2 cc of signal charges received.

へ送るためのトランスファーゲート28、電荷転送を行
うCCD電極29がそれぞれ形成されている。そして、
11記P型Hg Cd ’■’e4+反21とP型Si
基板25とを金属ハンプ、′30により接続することに
より、第2図(A)のどとくのハイブリッド型IRCT
Dが得られる。尚、上述した接続作業は通常室温にて行
なわれる。
A transfer gate 28 and a CCD electrode 29 for charge transfer are formed, respectively. and,
11 P-type Hg Cd '■'e4+anti-21 and P-type Si
By connecting the substrate 25 with a metal hump '30, the hybrid IRCT shown in FIG.
D is obtained. Note that the above-mentioned connection work is normally performed at room temperature.

それに対し、IRCTDを実際に動作させる場合は液体
窒素等の利用による装置冷却が不可欠であり、該IRc
TDの温度は77に程度となるが、ここで、第2図(B
)を用いて、第2図(A)に示したハイブリッド型IR
CTDが冷却された時の状態を図示した。冷却により、
Hg Cd T e基板21及びSi基板25は共に収
縮するが、HgCdTe基板21の熱膨張係数はSiの
熱膨張係数より極めて大であるため、HgCdTe基板
21の縮小量はSi基板25に比べてはるかに大きい。
On the other hand, when actually operating an IRCTD, it is essential to cool the device using liquid nitrogen, etc.
The temperature of TD is about 77, but here, as shown in Fig. 2 (B
) to create the hybrid IR shown in Figure 2(A).
The state when the CTD is cooled is illustrated. By cooling,
Both the HgCdTe substrate 21 and the Si substrate 25 shrink, but since the coefficient of thermal expansion of the HgCdTe substrate 21 is much larger than that of Si, the amount of shrinkage of the HgCdTe substrate 21 is much smaller than that of the Si substrate 25. big.

従って、ハイブリッド型IRCTDの特に金属バンプの
部分に歪が集中し、例えば、金属バンブは30aのごと
く変形してしまう。さらに、検出装置の使用をやめ一旦
室温に戻し、再び冷却して使用する、といったことを繰
り返していけば、ついには金属パイプは30bのごとく
亀裂が入ったり、もしくは30cのように剥離する、と
いった現象を引き起こす。以上の現象は、すなわぢ画素
欠陥を意味し、ハイブリッド型IRcTDによって得ら
れる画像が大幅に劣化する不都合を生じていた。
Therefore, strain concentrates particularly on the metal bump portion of the hybrid IRCTD, and for example, the metal bump is deformed as shown in 30a. Furthermore, if you stop using the detection device, return it to room temperature, cool it again, and use it repeatedly, the metal pipe will eventually crack as shown in 30b or peel off as shown in 30c. cause a phenomenon. The above-mentioned phenomenon essentially means a pixel defect, resulting in the inconvenience that the image obtained by the hybrid IRcTD is significantly degraded.

次に、上述したハイブリッド型IRCTDを用い、より
高画質の赤外線画像を得るために画素数を増加させた場
合における、該ハイブリッド型IRCTDの一画素が受
ける歪について考察する。
Next, when using the hybrid IRCTD described above and increasing the number of pixels in order to obtain an infrared image of higher quality, the distortion that a single pixel of the hybrid IRCTD receives will be considered.

例えば、画素数mのハイブリッド型IRcTDの両端部
の画素における、画素寸法に対する歪の量の割合をaと
すると、 a=□・1α−βj・ΔT−m・・・・・・(1)にて
与えられる。ただし、1α−β1はハイブリッド型IR
CTDを構成する第1及び第2の半導体基板の熱膨張係
数の差異、ΔTはハイブリッド型IRCTDが受ける温
度差である。よって、上記(1)式から明白であるとう
り、従来のハイブリッド型IRCTDでは、高画質の赤
外線画像を得るために画素を微細化し、画素数mを上げ
れば上げる程、画素寸法に対する歪の量の割合aは増大
し、その結果、ハイブリッド型IRCTDの接続部にお
ける欠陥発生率が増加するため、信顧性の高い、画素数
を増加させたハイブリッド型IRCTDの実現は非常に
困難なものであった。
For example, if a is the ratio of the amount of distortion to the pixel size in pixels at both ends of a hybrid IRcTD with m pixels, then a=□・1α−βj・ΔT−m・・・(1) given. However, 1α-β1 is a hybrid IR
The difference in thermal expansion coefficient ΔT between the first and second semiconductor substrates constituting the CTD is the temperature difference that the hybrid IRCTD is subjected to. Therefore, as is clear from equation (1) above, in the conventional hybrid IRCTD, the pixels are made finer to obtain high-quality infrared images, and the higher the number of pixels (m), the greater the amount of distortion with respect to the pixel size. The ratio a increases, and as a result, the defect occurrence rate at the connection part of the hybrid IRCTD increases. Therefore, it is extremely difficult to realize a highly reliable hybrid IRCTD with an increased number of pixels. Ta.

本発明は、上記問題点を解決するためになされたもので
あり、すなわち、より高画質の赤外線画像を得るために
、画素数を増加させても高い信頼性が維持できるのみな
らず、さらには、場合により、異なった波長帯の赤外線
を同時に検出できる、全く新規なハイブリッド型IRc
TDを堤供せんとするものである。
The present invention has been made to solve the above-mentioned problems. In other words, in order to obtain higher quality infrared images, high reliability can be maintained even when the number of pixels is increased, and furthermore, high reliability can be maintained even when the number of pixels is increased. , a completely new hybrid type IRc that can detect infrared rays in different wavelength bands simultaneously in some cases.
The purpose is to provide TD.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、受光部を設けた第1半導体基板例えば、Hg
CdTeと等しいか又はは−等しい熱膨張率を有する第
2半導体基板例えば、InSbを用いたハイブリッド型
赤外線検出装置を従供する。
The present invention provides a first semiconductor substrate provided with a light receiving section, for example, Hg
A hybrid infrared detection device using a second semiconductor substrate, such as InSb, having a coefficient of thermal expansion equal to or less than that of CdTe is provided.

〔作用〕[Effect]

本発明によれば、第1半導体43 +5.と第2半導体
基板との熱膨張係数の差異、すなわち、前述の(1)式
における1α−β1の値は0又はほぼOに等しくなる。
According to the invention, the first semiconductor 43 +5. The difference in thermal expansion coefficient between the first semiconductor substrate and the second semiconductor substrate, that is, the value of 1α−β1 in the above-mentioned equation (1) is equal to 0 or approximately O.

従って、本発明によるハイブリッド型IRCTDでは、
画素数を増大させても歪はほとんど発生せず、ゆえに、
画素数を増大させても充分な信十■性を維持することが
可能なハイブリッド型IRcTDを実現できる。
Therefore, in the hybrid IRCTD according to the present invention,
Even if the number of pixels is increased, almost no distortion occurs, and therefore,
A hybrid IRcTD that can maintain sufficient reliability even when the number of pixels is increased can be realized.

第1半導体基板として有用なHgCdTe基板は8〜1
4μ−帯の赤外線の感度を有する。一方、第2半導体基
板として有用なInSb基板は3〜51tm帯の赤外線
に感度を有するのみならず、InSb基板上には高性能
な信号読み出し回路が作製可能である。そこで、場合に
より、酸HgCdTe−1nSb両半導体基板に共に光
電変換を行う受光部を設け、受光部で発生した信号電荷
を1nSb75板上に作製したCCD等で読み出せば、
3〜5μm帯及び8〜14μm帯の2つの波長帯の赤外
線を同時に検出できるハイブリッド型IRCTDを実現
できる。
The HgCdTe substrate useful as the first semiconductor substrate is 8 to 1
It has sensitivity to infrared rays in the 4μ-band. On the other hand, an InSb substrate useful as a second semiconductor substrate not only has sensitivity to infrared rays in the 3 to 51 tm band, but also allows for fabrication of a high-performance signal readout circuit on the InSb substrate. Therefore, depending on the case, a light receiving section for photoelectric conversion may be provided on both the acid HgCdTe-1nSb semiconductor substrates, and the signal charge generated in the light receiving section may be read out using a CCD etc. fabricated on a 1nSb75 board.
A hybrid IRCTD that can simultaneously detect infrared rays in two wavelength bands, 3 to 5 μm band and 8 to 14 μm band, can be realized.

[実施例] 以下、本発明の一実施例を図面を用いて説明する、第1
図は、本発明の構成によるハイブリッド型IRCTDの
一実施例の部分断面図で、第1半導体基板であるP型H
gCdTe基板1には、第1の受光部となるn型拡散領
域2、該受光部で発生した信号電荷を外部へ取り出すた
めの金属バッド3、絶縁膜4がそれぞれ形成されている
[Example] Hereinafter, an example of the present invention will be explained using the drawings.
The figure is a partial cross-sectional view of one embodiment of a hybrid IRCTD according to the configuration of the present invention, in which the first semiconductor substrate is a P-type H
On the gCdTe substrate 1, an n-type diffusion region 2 serving as a first light receiving section, a metal pad 3 for extracting signal charges generated in the light receiving section to the outside, and an insulating film 4 are formed.

一方、第2半導体基板であるP型1nSb基板5には、
外部からの信号電荷を受は取るための金属バッド6及び
人力ダイオード7、受は取った信号電荷をCCDを送る
ための第1のトランスファー電極1−8、電荷転送を行
うCCD電極9の他、第2の受光部となるn型拡散領域
10、該受光部で発生した信号電荷をCCDへ送るため
の第2のトランスファーゲート11が形成されている。
On the other hand, in the P-type 1nSb substrate 5 which is the second semiconductor substrate,
In addition to a metal pad 6 and a human-powered diode 7 for receiving and taking signal charges from the outside, a first transfer electrode 1-8 for sending the received signal charges to a CCD, and a CCD electrode 9 for transferring charges, An n-type diffusion region 10 serving as a second light receiving section and a second transfer gate 11 for transmitting signal charges generated in the light receiving section to the CCD are formed.

そして、前記Hg Cd T e基+Fi、1と1ns
bi仮5とを金属バンブ12にて接続することにより、
ハイブリッド型IRCTDが構成される。
Then, the Hg Cd Te group + Fi, 1 and 1 ns
By connecting the bi temporary 5 with the metal bump 12,
A hybrid IRCTD is configured.

上述のハイブリッド型IRCTDに、第1図で矢印にて
示したごとく赤外線を入射させれば、3〜5μl帯の赤
外線はInSb基板5に形成されたn型拡散領域IOで
光電変換される一方、8〜14μm帯の赤外線はInS
b基板5はそのまま透過し、Hg Cd T e基板1
に形成されたn型拡散領域2で光電変換される。そして
、第1のトランスファーゲート8及び第2のトランスフ
ァーゲート11を片方ずつ適宜オンすることにより、C
CD電極9にて光電変換された信号電荷を転送すれば、
結局、本実施例による単一のハイブリッド型IRCTD
から、3−5μm帯と8〜14μ−帯の両波長帯による
赤外線画像を得ることが可能となる。
When infrared rays are incident on the hybrid IRCTD described above as shown by the arrows in FIG. Infrared rays in the 8-14μm band are InS
The b-substrate 5 passes through as it is, and the Hg Cd T e-substrate 1
Photoelectric conversion is performed in the n-type diffusion region 2 formed in the. Then, by appropriately turning on the first transfer gate 8 and the second transfer gate 11 one by one, the C
If the signal charge photoelectrically converted at the CD electrode 9 is transferred,
In the end, a single hybrid IRCTD according to this embodiment
Therefore, it is possible to obtain infrared images in both the 3-5 μm band and the 8-14 μm band.

又、本発明によるハイブリッド型IRcTI)では、H
gCdTe基板lとIn5bi板5の熱膨張係数の差異
はO又はほぼ0であるため、該ハイブリッド型IRCT
Dが室温と液体窒素温度との間で熱履歴を受けても歪は
発生せず、従って、高密度化し画素数を増加させても充
分な信頼性と維持することが可能となる。
In addition, in the hybrid IRcTI according to the present invention, H
Since the difference in thermal expansion coefficient between the gCdTe substrate l and the In5bi plate 5 is O or almost 0, the hybrid IRCT
No distortion occurs even if D undergoes thermal history between room temperature and liquid nitrogen temperature, and therefore, sufficient reliability can be maintained even when the density is increased and the number of pixels is increased.

以上の実施例においては、説明の便宜上、HgCdTe
基板1と1nsI?基板5とを金属バンブ12を用いて
接続したが、この接続方法は特に限定されるものではな
い、又、信号読み出し装置においてもCCDの他、電荷
注入装置(Ci D)、チャージ・イメージング・マト
リックス(CIM)等を用いても、本発明の効果が同様
によく適用して得ることは明らかである。
In the above examples, for convenience of explanation, HgCdTe
Substrate 1 and 1nsI? Although the substrate 5 is connected to the substrate 5 using the metal bump 12, this connection method is not particularly limited.In addition, the signal readout device may also include a charge injection device (CiD), a charge imaging matrix, in addition to a CCD. (CIM) etc., it is clear that the effects of the present invention can be similarly applied and obtained.

(発明の効果〕 以上に説明したように、本発明によれば、画素数を増大
させても高い信頼性が確保できる。しかも、異なった波
長帯の赤外線感度を有する受光部を第1、第2基板に設
ければ、2つの波長を同時に検出できる赤外線検出装置
を簡単な構成にて提供することが可能となり、サーマル
イメージングカメラへの応用や実用上多大な効果が期待
できる。
(Effects of the Invention) As explained above, according to the present invention, high reliability can be ensured even when the number of pixels is increased.Furthermore, light receiving parts having infrared sensitivities in different wavelength bands are arranged in the first and second light receiving parts. If provided on two substrates, it becomes possible to provide an infrared detection device capable of detecting two wavelengths simultaneously with a simple configuration, and a great effect can be expected in application to thermal imaging cameras and in practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による赤外線検出装置の一実施例の部
分断面図、第2図(A)は、従来のハイブリッド型I 
RCTDの一例の部分断面図、第2図CB)は、第2図
(A)のハイブリッド型IRCTDを冷却した場合の部
分断面図である。 〔主要部分の符号の説明] 1.21−P型Hg Cd T e 4板(第1半導体
基牟反) 2.22・・・n型拡散領域 3.23・・・金属バッド 4.24・・・絶縁膜 5 、、、 p型1 n S b?s+i (第2半導
体?S+反)25・・・P型Si基板 6.26・・・金属バッド ア、27・・・入力ダイオード 8・・・第1のトランスファー電極 28・・・トランスファー電極 9.29・・・CCD電極 10・・・n型拡散領域 11・・・第2のトランスファー電極 12.30・・・金属バンブ 30a・・・変形した金属バンブ 30b・・・亀裂の入った金属ハンプ 30C・・・剥離した金属バンプ g?77    5    10 ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑廿孔ソ(△) (B) 第2図
FIG. 1 is a partial sectional view of an embodiment of an infrared detection device according to the present invention, and FIG. 2(A) is a conventional hybrid type I
A partial cross-sectional view of an example of the RCTD (FIG. 2 CB) is a partial cross-sectional view of the hybrid IRCTD of FIG. 2(A) when it is cooled. [Explanation of symbols of main parts] 1.21-P-type Hg Cd Te 4 plate (first semiconductor substrate) 2.22...n-type diffusion region 3.23...metal pad 4.24- ...Insulating film 5... p-type 1 n S b? s+i (second semiconductor? S+anti) 25...P-type Si substrate 6.26...Metal bad door, 27...Input diode 8...First transfer electrode 28...Transfer electrode 9.29 ...CCD electrode 10...n-type diffusion region 11...second transfer electrode 12.30...metal bump 30a...deformed metal bump 30b...cracked metal hump 30C... ...Peeled metal bump g? 77 5 10 ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑廿口so(△) (B) Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)、赤外線受光部を備えた第1半導体基板と、前記
受光部からの電気信号を処理する処理回路を備えた第2
半導体基板とを重ね合わせて接合し、かつ前記受光部と
処理回路とを電気的に連結してなるハイブリッド型赤外
線検出装置において、第1半導体基板と熱膨張率が等し
いか又はほゞ等しい第2半導体基板を用いたことを特徴
とする装置。
(1) A first semiconductor substrate including an infrared light receiving section, and a second semiconductor substrate including a processing circuit that processes an electrical signal from the light receiving section.
In a hybrid infrared detection device formed by overlapping and bonding a semiconductor substrate and electrically connecting the light receiving section and a processing circuit, a second semiconductor substrate having the same or substantially the same coefficient of thermal expansion as the first semiconductor substrate; A device characterized by using a semiconductor substrate.
(2)、前記第1半導体基板がHgCdTeで、第2半
導体がInSbであることを特徴とする特許請求の範囲
第1項記載のハイブリッド型赤外線検出装置。
(2) The hybrid infrared detection device according to claim 1, wherein the first semiconductor substrate is HgCdTe and the second semiconductor is InSb.
(3)、前記第2半導体基板に前記受光部とは波長感度
の異なる第2の受光部を設け、これを前記処理回路と電
気的に連結させたことを特徴とする特許請求の範囲第1
項記載のハイブリッド型赤外線検出装置。
(3) A second light receiving section having a wavelength sensitivity different from that of the light receiving section is provided on the second semiconductor substrate, and this is electrically connected to the processing circuit.
The hybrid infrared detection device described in .
JP62146097A 1987-06-11 1987-06-11 Hybrid type infrared detector Pending JPS63308970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146097A JPS63308970A (en) 1987-06-11 1987-06-11 Hybrid type infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146097A JPS63308970A (en) 1987-06-11 1987-06-11 Hybrid type infrared detector

Publications (1)

Publication Number Publication Date
JPS63308970A true JPS63308970A (en) 1988-12-16

Family

ID=15400071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146097A Pending JPS63308970A (en) 1987-06-11 1987-06-11 Hybrid type infrared detector

Country Status (1)

Country Link
JP (1) JPS63308970A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543641A (en) * 1993-12-30 1996-08-06 Texas Instruments Incorporated Hybrid signal conditioning/infared imaging structure
US5591678A (en) * 1993-01-19 1997-01-07 He Holdings, Inc. Process of manufacturing a microelectric device using a removable support substrate and etch-stop
US5652150A (en) * 1995-06-07 1997-07-29 Texas Instruments Incorporated Hybrid CCD imaging
US7768048B2 (en) 2003-09-09 2010-08-03 Asahi Kasei Emd Corporation Infrared sensor IC, and infrared sensor and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591678A (en) * 1993-01-19 1997-01-07 He Holdings, Inc. Process of manufacturing a microelectric device using a removable support substrate and etch-stop
US5543641A (en) * 1993-12-30 1996-08-06 Texas Instruments Incorporated Hybrid signal conditioning/infared imaging structure
US5652150A (en) * 1995-06-07 1997-07-29 Texas Instruments Incorporated Hybrid CCD imaging
US7768048B2 (en) 2003-09-09 2010-08-03 Asahi Kasei Emd Corporation Infrared sensor IC, and infrared sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Kosonocky et al. 160× 244 element PtSi Schottky-barrier IR-CCD image sensor
EP3514831B1 (en) Solid-state image pickup apparatus and image pickup system
US7535073B2 (en) Solid-state imaging device, camera module and electronic equipment module
KR0175175B1 (en) Solid state imaging device
US20080055451A1 (en) Solid-state imaging device and imaging apparatus
JPH0846169A (en) Ccd image device and its preparation
US9888197B1 (en) Methods and apparatus for a CMOS image sensor with an in-pixel amplifier
US5585624A (en) Apparatus and method for mounting and stabilizing a hybrid focal plane array
Sizov Infrared detectors: outlook and means
JP2866328B2 (en) Solid-state imaging device
JPS63308970A (en) Hybrid type infrared detector
Wada et al. 512x512-element GeSi/Si heterojunction infrared FPA
JPS6142869B2 (en)
Konuma et al. 324* 487 Schottky-barrier infrared imager
Kanno et al. 256 x 256 element HgCdTe hybrid IRFPA for 8-to 10-um band
Pommerrenig Extrinsic silicon focal plane arrays
EP0831535B1 (en) Hybrid focal plane array stabilization and isolation scheme
JP2576383B2 (en) Method for manufacturing hybrid structure element by bump bonding
EP0825651A2 (en) Monolithically integrated infrared detector circuits
Broudy et al. Infrared/Charge Coupled Devices (IR/CCD) Hybrid Focal Planes
US20240055544A1 (en) Photodiode and image sensor including the same
Kosonocky et al. High fill factor silicide monolithic arrays
US4727406A (en) Pre-multiplexed detector array
EP0829907A1 (en) Hybrid focal plane array comprising stabilizing structure
JP3511463B2 (en) Solid-state imaging device and large-area solid-state imaging device