JPH02179452A - Method for judging quality of rice grain - Google Patents

Method for judging quality of rice grain

Info

Publication number
JPH02179452A
JPH02179452A JP33520488A JP33520488A JPH02179452A JP H02179452 A JPH02179452 A JP H02179452A JP 33520488 A JP33520488 A JP 33520488A JP 33520488 A JP33520488 A JP 33520488A JP H02179452 A JPH02179452 A JP H02179452A
Authority
JP
Japan
Prior art keywords
grain
light
rice
amount
rice grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33520488A
Other languages
Japanese (ja)
Other versions
JP2729391B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Satoru Satake
佐竹 覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP33520488A priority Critical patent/JP2729391B2/en
Publication of JPH02179452A publication Critical patent/JPH02179452A/en
Application granted granted Critical
Publication of JP2729391B2 publication Critical patent/JP2729391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To make it possible to judge the quality of a rice grain accurately by using light sources having the different wavelength regions and mirrors or filters matching said light sources. CONSTITUTION:Rice grains which are supplied through a feeding hopper 21 are made to flow through a vibrating grain sending gutter 50. Steps are provided at grain sending grooves 41 and 61 of the gutter 50. The rice grains are aligned. Light sources 91 and 101 project visible light and infrared-ray light from the upper and lower parts of the gutter 50, respectively, at a position of a slit 53. A measuring part 90 for the amount of reflected light and a measuring part 100 for the amount of transmitted light in a light-quantity measuring part are provided on the gutter 50. The measured values are operated in an arithmetic and control part, and the qualities of a plurality of the rice grains are judged. At this time, the rice grains are scanned linearly in the perpendicular direction with respect to the conveying direction of the rice grains with the linear image sensors of the light-quantity measuring part. Measurement and operation are performed for each specified item. The results are combined, and analysis is performed for every judging section which is the base for judging the quality. Thus the quality is judged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は玄米、白米又は籾米の品位を判定するための米
粒品位判別装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rice grain quality discriminating device for determining the quality of brown rice, white rice, or unhulled rice.

〔従来の技術〕[Conventional technology]

米粒等の穀粒は、農産物検査法に基づく農産物規格規定
に従って検査され、標準品と比較して等級決定が行われ
るのであるが、この検査は農産物検査官によって実施さ
れる。検査官は穀類の検査に精通した人が専任され、常
に正しい等級決定が行えるように訓練されているが、目
視検査のため完璧とは言えない。
Grains such as rice grains are inspected in accordance with the Agricultural Products Standards Regulations based on the Agricultural Products Inspection Act and compared with standard products to determine the grade, and this inspection is carried out by agricultural product inspectors. The inspectors are people who are experts in grain inspection, and are trained to always make correct grading decisions, but because the inspection is done visually, it cannot be said to be perfect.

そこで、玄米の粉質判別装置として例えば特開昭56−
125664@公報があり、同方法として、特開昭57
−153249号公報又は同62−150141号公報
に開示されている。
Therefore, as an apparatus for determining the powder quality of brown rice, for example,
125664@Publication is available, and the same method is published in Japanese Unexamined Patent Publication No. 57
It is disclosed in JP-153249 or JP-62-150141.

すなわち、特開昭56−125664号のものは、−粒
毎の玄米に可視光線を照射し、該光線の反射光と透過光
のMを測定することにより、玄米の粉質である整粒、乳
白粒、青米、茶米又は北米に判別しようとする玄米の粉
質判別装置であり、特開昭57−153249号のもの
は、玄米の一粒ずつに任意の波長の光線を照射して透過
率を測定し、該透過率と所定のしきい値とを比較して不
良粒であるか否かを判別する方法である。そして、特開
昭62−150141号のものは、玄米−粒毎に光を照
射し、拡散透過光ω及び拡散反射光量と、拡散反射光中
任意の2波長の先組と、玄米−粒毎の2位置の透過光量
とをそれぞれ検知し、拡散透過光量と拡散反射光量の比
と、拡散反射光中任意の2波長の光量の比と、玄米1粒
毎の2位置の透過光量の比とをそれぞれ演算して各光量
の比を判定処理して玄米の品質である整粒、明白、乳白
粒、青未熟粒、胴割粒、被害粒、着色粒、青死および白
死粒の判別を行う方法ぐある。
That is, in JP-A No. 56-125664, by irradiating each grain of brown rice with visible light and measuring the reflected light and transmitted light M of the light, grain size adjustment, which is the powder quality of brown rice, is carried out. This is a powder quality discriminating device for brown rice that attempts to distinguish milky grains, blue rice, brown rice, or North American rice, and the device in JP-A No. 57-153249 irradiates each grain of brown rice with a light beam of a desired wavelength. This method measures the transmittance and compares the transmittance with a predetermined threshold value to determine whether or not the particles are defective. The method of JP-A No. 62-150141 irradiates each grain of brown rice with light, and calculates the diffuse transmitted light ω, the amount of diffusely reflected light, the preset of two arbitrary wavelengths in the diffusely reflected light, and each grain of brown rice. The amount of transmitted light at two positions of each grain of brown rice is detected, and the ratio of the amount of diffusely transmitted light to the amount of diffusely reflected light, the ratio of the amount of light of two arbitrary wavelengths in the diffusely reflected light, and the ratio of the amount of transmitted light at two positions for each grain of brown rice. The process calculates the ratio of each light amount and determines the quality of brown rice: regular grain, clear grain, milky white grain, immature blue grain, split grain, damaged grain, colored grain, green dead grain, and white dead grain. There are ways to do it.

(発明が解決しようとする問題点〕 しかしながら、これら従来の装置や方法では品位判定の
基準となる検出項目が反射光量及び透過光量の光量だけ
の単一データの要素であり、正確な判定ができなかった
。つまり、整粒(正常粒)であっても、品種、産地又は
生育条件により、反射光量および透過光量に差があるこ
とから、整粒として判別できないことがあり、高精度の
判定は期待し得ないものであった。例えば、異物、着色
粒、粉状質といった各品位の玄米の度数分布は第8図の
ように表され、各玄米はX軸方向(明るさ一反射光口)
に重なり合うので、どの位置に境界線を設けても各品位
別に正確に判定することは不可能である。
(Problems to be Solved by the Invention) However, in these conventional devices and methods, the detection items that serve as standards for quality judgment are single data elements of the amount of reflected light and the amount of transmitted light, and accurate judgment cannot be made. In other words, even if the grain is sized (normal grain), it may not be possible to determine it as sized because there are differences in the amount of reflected light and transmitted light depending on the variety, production area, or growth conditions. For example, the frequency distribution of each grade of brown rice such as foreign matter, colored grains, and powdery quality is shown in Figure 8, and each brown rice is distributed along the X axis (brightness - reflected light )
Because the boundaries overlap, it is impossible to accurately determine each grade no matter where the boundary line is placed.

また、米粒の品位判定における透過光と反則光の計測は
米粒の流下または流動する装置の中の同位置で行うこと
が必要で、米粒の透過・反射のそれぞれの計測を異なる
位置で行うと、透過光小計測部と反射光m計測点との間
で米粒の品位判定に関する粉質に変化が発生した場合対
応できないものである。
In addition, it is necessary to measure the transmitted light and reflected light in rice grain quality judgment at the same position in the device where the rice grains are flowing or flowing. This method cannot be used if there is a change in the quality of the rice grain quality determination between the small transmitted light measurement unit and the measurement point of the reflected light m.

本発明は上記の点に鑑み、米粒の品位判別をより正確に
行うことのできる米粒品位判別装置を提供することを技
術的課題とする。
In view of the above points, the technical object of the present invention is to provide a rice grain quality discriminating device that can more accurately determine the quality of rice grains.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するため、本発明の米粒品位判別装置
においては、米粒供給車ツバ−から供給した米粒を流動
する振動送穀樋と、該送穀樋に設けた送穀用条溝の底面
の進行方向に傾架する段差とにより米粒は整列流動し、
送穀樋のスリットを米粒が通過する際、可視光による反
射光m計測点と赤外光による透過光小計測部は同位置で
米粒の反射・透過を測定し、該計測値を演算制御部でデ
ジタル処理し、11a記処理で得られる反射光と透過光
のそれぞれのデジタル処理値により、平均透過光量、平
均反射光量、最も明るい点の光量、最も暗い点の光♀、
最も明るい点と最も暗い点の差の光量、前記平均透過光
にまたは平均反射光量より一定量以上明るい領域の面積
、同じく平均透過光量または平均反射光量より一定聞以
上暗い領域の面積、全般影面積及び楕円形状の各項目に
ついて計測・演算し、この計測・演算値の組み合せによ
って複数品位に判別することにより解決の手段とした。
In order to solve the above-mentioned problems, the rice grain quality discriminating device of the present invention includes a vibrating grain feeding gutter that flows the rice grains supplied from the rice grain supply vehicle collar, and a bottom surface of the grain feeding groove provided in the grain feeding gutter. The rice grains flow in an aligned manner due to the steps tilted in the direction of movement.
When the rice grains pass through the slit of the grain feeding trough, the visible light reflected light m measurement point and the infrared light transmitted light small measuring section measure the reflection and transmission of the rice grains at the same position, and the measured values are sent to the calculation control section. The average transmitted light amount, the average reflected light amount, the light amount of the brightest point, the light of the darkest point ♀,
The amount of light that is the difference between the brightest point and the darkest point, the area of the area that is brighter by a certain amount or more than the average transmitted light amount or the average reflected light amount, the area of the area that is also darker than the average transmitted light amount or average reflected light amount by a certain amount or more, and the overall shadow area. The solution was to measure and calculate each item of the elliptical shape and to discriminate into multiple grades based on the combination of the measured and calculated values.

また、光量計測部は可視光と赤外光の混在することから
反射光m計測部に赤外光カットフィルターを、透過光量
計測部に可視光カットフィルクーを設けるか、または光
量計測部にダイクロイックミラーを設けて可視光と赤外
光を分離するかのどちらかの構成にすることにより問題
解決の手段とした。
In addition, since the light amount measurement section contains a mixture of visible light and infrared light, it is necessary to provide an infrared light cut filter in the reflected light measurement section and a visible light cut filter in the transmitted light amount measurement section, or to install a dichroic filter in the light amount measurement section. The problem was solved by installing a mirror to separate visible light and infrared light.

〔作 用〕[For production]

振動送穀樋の送穀用条溝に段差を設けたことで?!2雑
な構造を用いず米粒を整列させることができ反射・透過
先回測定部へ一粒ごとに間隙をおいて流下させることが
できる。
By providing a step in the grain feeding groove of the vibrating grain feeding trough? ! 2. Rice grains can be aligned without using a complicated structure, and each grain can be flowed down to the reflection/transmission measurement section with gaps between grains.

反射光量計測部と透過光重計測部の81測値の経時変化
する値つまり米粒が計測部を通過する時に計測部が計測
する波形を演算制御部でデジタル処理することは、微小
単位の波形の変化をその波形の特徴とし複数の情報とフ
ることができるが、アナログでは1つの波形を1つの情
報としか見ることができない。
Digitally processing the 81 measured values of the reflected light amount measuring section and the transmitted light weight measuring section, which change over time, that is, the waveform measured by the measuring section when the rice grain passes through the measuring section, in the arithmetic and control section allows the waveform to be processed in minute units. Changes can be treated as a characteristic of a waveform and can be treated as multiple pieces of information, but in analog, one waveform can only be viewed as one piece of information.

さらに上記デジタル処理による複数の情報は演算処理さ
れて、平均透過先回、平均反射光量、最も明るい点の光
量、最も暗い点の光ω、最も明るい点と最も暗い点の差
の光m、前記平均透過光量または平均反射光ωより一定
量以上明るい領域の面積、同じく平均透過光■または平
均反射先回より一定m以上暗い領域の面積、全般形面積
及び楕円形状等が存在し、この多種類の情報の組み合せ
による判別を行うことで、米の等級判別の基礎となる肌
ずれ粒、未熟粒、被害粒、北米、着色粒、異物等を判別
すると共にその比率を求める際の精度の向上が計れる。
Furthermore, the plurality of pieces of information obtained by the above digital processing are subjected to calculation processing, such as the average number of transmitted times, the average amount of reflected light, the amount of light at the brightest point, the light ω at the darkest point, the difference in light m between the brightest point and the darkest point, and the above. The area of a region that is brighter by a certain amount or more than the average transmitted light amount or average reflected light ω, the area of a region that is darker by a certain amount or more than the average transmitted light ■ or the average previous reflected light, general area, elliptical shape, etc., and there are many types of these. By performing discrimination based on a combination of information, it is possible to distinguish grains with rough skin, immature grains, damaged grains, North American grains, colored grains, foreign substances, etc., which are the basis of rice grading, and improve the accuracy when calculating the ratio. It can be measured.

また、波長域の異なる2つの光源を用いることで米粒の
反射光量と透過光量の信号を同位置で取り込むことが可
能となった。
Furthermore, by using two light sources with different wavelength ranges, it became possible to capture signals of the amount of reflected light and the amount of transmitted light from the rice grains at the same location.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、波長域の異なる光源と、波
長域に対応するミラーまたはフィルター等の使用で、米
粒の透過光mまたは、反射光量の測定信号を送穀樋上の
同位置で取り込むことが可能である。つまり計測部の送
I2樋上の測定位置の前後において米粒品位に関する米
粒の変化が発生しても何ら計測値に影響することなく、
正確に判別することができる。また米粒品位判別装置の
心臓部とも言うべき計測部の信号は、デジタル処理によ
る複数の情報と更に反射・透過による2種の情報とによ
り倍加することで、従来の米粒全体として串−のデータ
による判別に比し非常に正確なものとなり、米の検査l
による検査に代えて正確な等級判別を迅速に行うことが
可能となる。
As described above, according to the present invention, by using light sources with different wavelength ranges and mirrors or filters corresponding to the wavelength ranges, the transmitted light m of the rice grains or the measurement signal of the amount of reflected light is captured at the same position on the grain feeder. Is possible. In other words, even if a change in rice grain quality occurs before and after the measurement position on the feed I2 gutter of the measurement unit, it will not affect the measured value in any way.
Can be accurately determined. In addition, the signal from the measurement unit, which can be called the heart of the rice grain quality discriminator, is multiplied by multiple pieces of information through digital processing and two types of information from reflection and transmission. It is very accurate compared to discrimination, and it is useful for rice inspection.
It becomes possible to quickly perform accurate grade determination in place of inspection by

〔実施例〕〔Example〕

本実施例の構成を第1図〜第3図、第7図および第10
図により説明する。まず第1の実施例から説明する。
The configuration of this embodiment is shown in Figs. 1 to 3, Fig. 7, and Fig. 10.
This will be explained using figures. First, a first example will be explained.

符号1は本発明の米粒品位判別装置である。Reference numeral 1 indicates a rice grain quality discriminating device of the present invention.

機枠10上左側端の支持枠11に支持したサンプル供給
ホッパー21と該ホッパー下方にサンプルを適量ずつ放
出するバルブ22を設け、該バルブの回転軸23に軸装
するプーリー24が、支持枠11に支持する駆動モータ
25の回転軸26に軸装ケるプーリー27と該プーリー
に巻装するタイミングベルト28とにより連動すること
で、前記バルブ22は駆動モータ25により回転し前記
供給ホッパー21と共にバルブユニット20を形成する
。またバルブユニット20内部の供給ホッパ−21下部
から前記パルプ22外周に周接するごとく飛散防止カバ
ー29を設ける。前記バルブ22にはサンプルを間欠放
出するようバルブ円周上の回転軸方向に任意間隔でfS
30を形成する。
A sample supply hopper 21 supported on the support frame 11 at the upper left end of the machine frame 10 and a valve 22 for discharging an appropriate amount of sample under the hopper are provided, and a pulley 24 mounted on the rotation shaft 23 of the valve The valve 22 is rotated by the drive motor 25, and the valve 22 is rotated by the drive motor 25, and the valve 22 is rotated by the drive motor 25, and the valve 22 is rotated by the drive motor 25, and the valve 22 is rotated by the drive motor 25. A unit 20 is formed. Further, a scattering prevention cover 29 is provided so as to surround the outer periphery of the pulp 22 from the lower part of the supply hopper 21 inside the valve unit 20. The valve 22 is provided with fS at arbitrary intervals in the direction of the rotation axis on the circumference of the valve so as to intermittently release the sample.
form 30.

前記バルブユニット20から放出するサンプルは機枠1
0上に設けた複数の送穀用条溝41を形成した振動送穀
樋(以下「送すフィーダ」と称する)40の供給側に流
動し、送りフィーダ40の排出側に関連的に連結する送
穀樋50を設ける。このとき送穀樋50上面には前記送
りフィーダ40上の前記送穀用条溝41と同数で送穀用
条溝41の各々の幅より比較的大ぎい幅の送穀用条溝5
4を設ける。送穀樋50を通過したサンプルは前記送り
フィーダ40とは異なる前記送穀樋50に関連的に連絡
した振動送rQ樋(以下「選別用フィーダー」と称する
)60に流動する。選別用フィーダ60の任意位置には
低品位、たとえば肌ズレ粒、胴割粒、着色粒、北米等を
選別する選別装置80を遊架する。
The sample released from the valve unit 20 is placed in the machine frame 1.
Flows into the supply side of a vibrating grain feeding gutter (hereinafter referred to as "feeding feeder") 40 having a plurality of grain feeding grooves 41 provided on the top of the feeder 40, and is connected to the discharge side of the feeding feeder 40. A grain feeding gutter 50 is provided. At this time, on the upper surface of the grain feeding gutter 50, there are provided grain feeding grooves 5 which have the same number as the grain feeding grooves 41 on the feeding feeder 40 and have a relatively larger width than each of the grain feeding grooves 41.
4 will be provided. The sample passing through the grain feeding gutter 50 flows into a vibrating rQ gutter (hereinafter referred to as "sorting feeder") 60 which is different from the feeding feeder 40 and is connected to the grain feeding gutter 50 in a related manner. A sorting device 80 for sorting out low-quality grains, such as grains with loose skin, split grains, colored grains, and North American grains, is suspended at an arbitrary position of the sorting feeder 60.

選別フィーダ60により流動するサンプルは選別フィー
ダ60の排出側の排出口86より機外に排出される。ま
たサンプルのうち前記低品位のサンプルは選別装fi!
ff180で選別し、搬送管83を通り前記フィーダ6
0の排出側とは異なる排出口(図示せず)から機外に排
出する。
The sample flowing through the sorting feeder 60 is discharged to the outside of the machine from an outlet 86 on the discharge side of the sorting feeder 60. Also, among the samples, the low-quality samples are sorted using fi!
sorted by ff180 and passed through the conveying pipe 83 to the feeder 6.
It is discharged to the outside of the machine from a discharge port (not shown) different from the discharge side of 0.

前記送りフィーダ40.選別フィーダ60はそれぞれ防
振ゴム42.62を介在し、それぞれの基部43.63
と機枠10に固設し、さらに送りフィーダ40および選
別フィーダ60には進行方向前方に傾架する段差部45
.65を1カ所または数カ所形成する。(第2図)次に
光量計測装置120について詳述する。
Said feeder 40. The sorting feeders 60 each have anti-vibration rubber 42,62 interposed therebetween, and each base 43,63
The feeder 40 and the sorting feeder 60 are provided with a stepped portion 45 that is fixed to the machine frame 10 and tilted forward in the advancing direction.
.. 65 is formed at one or several locations. (FIG. 2) Next, the light amount measuring device 120 will be described in detail.

送穀樋50上方には送穀樋50に設けたスリット53を
中心にその前後位置に可視光からなる光源91と該光源
91の上部外周にFA設するスリット92を開設したカ
バー93とを設け、また送穀樋50下方には送穀樋50
に設けたスリット53の下部に赤外光からなる光源10
1を設ける。更に送穀樋面52に対し前記スリット53
と前記スリット92の中心とを通る垂線上の任意延長上
に集光レンズ94と、リニアイメージセンサ−から成る
反射光間検出素子96と、前記垂線に対し直角方向にリ
ニアイメージセンサ−からなる透過光量検出素子106
と、反射光量検出素子96には赤外光カットフィルター
97と、透過光量検出素子106には可視光カットフィ
ルター107および前記垂線に対し粗45°の傾きを持
ら、その中心を前記透過光ω検出素子106の光軸と前
記反射光間検出素子96の光軸との交点に置くハーフミ
ラ−102とから成る光m計測部90を設ける。
Above the grain feeding gutter 50, a light source 91 of visible light is provided at the front and rear positions around the slit 53 provided in the grain feeding gutter 50, and a cover 93 is provided with a slit 92 for FA installation on the upper outer periphery of the light source 91. , and below the grain feeding gutter 50 there is a grain feeding gutter 50.
A light source 10 consisting of infrared light is placed at the bottom of the slit 53 provided in the
1 will be provided. Furthermore, the slit 53 is connected to the grain feeding trough surface 52.
A condenser lens 94 is placed on an arbitrary extension on a perpendicular line passing through the center of the slit 92, and a reflected light detection element 96 is formed of a linear image sensor. Light amount detection element 106
The reflected light amount detection element 96 has an infrared light cut filter 97, the transmitted light amount detection element 106 has an inclination of 45 degrees to the perpendicular line, and the transmitted light ω A light m measurement unit 90 is provided which includes a half mirror 102 placed at the intersection of the optical axis of the detection element 106 and the optical axis of the reflected light detection element 96.

また前記光量検出素子96,106はリニアイメージセ
ンサ−を40961jl並設したりニアイメージセンサ
−アレイを内蔵しており、送穀樋50のスリット上を米
粒が通過する時の透過及び反射による米粒の性状がリニ
アイメージセンサ−上に結像される。
The light amount detection elements 96 and 106 have 40961jl linear image sensors arranged in parallel or a built-in near image sensor array, and detect the rice grains by transmission and reflection when they pass over the slits of the grain feeder 50. The feature is imaged onto a linear image sensor.

以上の光源91と光源101および光量計測部90で光
量計測装置120を形成する。
The light source 91, light source 101, and light amount measuring section 90 described above form a light amount measuring device 120.

ここで集光レンズ94は、前記送穀150の流下用条溝
54と同数か、もしくは前記流下用条溝54のうち複数
個に1個の割合で設けることもできる。
Here, the number of condensing lenses 94 may be the same as the number of flow grooves 54 of the grain feeder 150, or one condenser lens may be provided for every plurality of flow grooves 54.

次に、選別装置80について詳述する(第3図参照)。Next, the sorting device 80 will be described in detail (see FIG. 3).

選別装置80は選別用フィーダ60の各条溝上に吸引管
81の吸引口82を臨ませる。吸引管81は選別用フィ
ーダ60の搬送面に対して直角に垂下するごとく設ける
。各吸引管81の上端は、はぼ水平状に横架した搬送管
83に連結され、吸引管81及び搬送管83共に、米粒
が通過可能な内径とする。また、各搬送管83の一端は
図外の空気圧縮機に接続するとともに、他端は機枠10
内外の適宜な空間に載置した米粒受箱内に臨ませる。そ
して、各搬送管83には、吸引管81よりも空気圧縮機
側に電磁弁84を介設し、各電磁弁84は演算制御装置
113からの出力信号によって作動するように形成され
る。また、各搬送管83内には、電磁弁84の作動によ
って送風される圧縮空気が吸引管81の取付は部に至る
直前部にノズル部85を設けてエゼクタ(ejecto
r )を形成する。これにより、演算制御装置113が
光量計測装置120の計測値を分析し、ある米粒を低品
位粒と判別したときは、演算制御装置113からの信号
によって電磁弁84が作動し、圧縮空気がノズル部85
を通過する。このとぎ、吸引管81内は低圧となり、当
該米粒を吸引口82から吸い込み、搬送管83によって
米粒受箱に搬送するものである。なお、選別用フィーダ
60の各条溝底には多数の通気孔51を設け、溝の下方
から空気を吸引させることにより、胴割粒以外の米粒を
吸引することのないようにするとよい。
The sorting device 80 has a suction port 82 of a suction tube 81 facing each groove of the sorting feeder 60. The suction pipe 81 is provided so as to hang down perpendicularly to the conveying surface of the sorting feeder 60. The upper end of each suction tube 81 is connected to a conveying tube 83 that is horizontally suspended, and both the suction tube 81 and the conveying tube 83 have an inner diameter that allows rice grains to pass through. Also, one end of each conveying pipe 83 is connected to an air compressor (not shown), and the other end is connected to the machine frame 10.
It faces inside a rice grain receiving box placed in an appropriate space inside and outside. A solenoid valve 84 is interposed in each conveyance pipe 83 closer to the air compressor than the suction pipe 81 , and each solenoid valve 84 is configured to be operated by an output signal from the arithmetic and control device 113 . In addition, compressed air blown by the operation of a solenoid valve 84 is supplied to each conveying pipe 83 by providing a nozzle part 85 just before the suction pipe 81 is attached to an ejector.
r). As a result, when the arithmetic and control unit 113 analyzes the measured value of the light amount measuring device 120 and determines that a certain rice grain is a low-grade grain, the solenoid valve 84 is actuated by a signal from the arithmetic and control unit 113, and compressed air is supplied to the nozzle. Part 85
pass through. At this time, the pressure inside the suction tube 81 becomes low, and the rice grains are sucked through the suction port 82 and conveyed to the rice grain receiving box through the conveyance tube 83. In addition, it is preferable to provide a large number of ventilation holes 51 at the bottom of each groove of the sorting feeder 60 so as to suck air from below the groove to prevent rice grains other than split grains from being sucked in.

次に演算制御装置の構成を第4図において説明する。反
射光量計測素子96と透過光量計測素子106はそれぞ
れA/D変換111と微分回路112を介して演算制御
装置113に接続する。前記演算制御装置113とA/
D変換111及び微分回路112とにより演算制御部1
10を成す。また演算制御装置113には選別装置80
と供給バルブ22の駆動モータ25と送りフィーダ40
および選別フィーダ60を接続する。
Next, the configuration of the arithmetic and control device will be explained with reference to FIG. The reflected light amount measuring element 96 and the transmitted light amount measuring element 106 are connected to an arithmetic and control unit 113 via an A/D conversion 111 and a differentiation circuit 112, respectively. The arithmetic and control unit 113 and A/
The calculation control unit 1 is operated by the D conversion 111 and the differentiation circuit 112.
Make 10. In addition, the arithmetic and control unit 113 includes a sorting device 80.
and the drive motor 25 of the supply valve 22 and the feeder 40
and the sorting feeder 60 are connected.

ここで第10図のブロック線図を参照しながら、A/D
変換111について詳述すると、リニアイメージセンサ
−アレイ90は、送穀樋50のスリット53上の米粒の
、ある瞬間における切断面を線状にとらえて全体の画像
を作るものであり、このリニアイメージセンサ−アレイ
90は白さ測定用A/D変換器70と一般用A/D変換
器71とに接続され、白さ測定用A/D変換器70は画
像正常化装置72を介して灰色値平均化装置73に接続
され、一般用A/D変換器71は画像正常化装置74を
介して一般用比較器75に接続される。そして、この一
般用比較器75と灰色値平均化装置73とは符号器76
を介して演算制御装置113に接続される。
Here, while referring to the block diagram in FIG.
To explain the conversion 111 in detail, the linear image sensor array 90 linearly captures the cut surface of the rice grains on the slit 53 of the grain feeder 50 at a certain moment to create an overall image. The sensor array 90 is connected to a whiteness measurement A/D converter 70 and a general A/D converter 71, and the whiteness measurement A/D converter 70 converts gray values through an image normalization device 72. The general A/D converter 71 is connected to an averaging device 73 and a general comparator 75 via an image normalizing device 74. The general comparator 75 and the gray value averaging device 73 are connected to the encoder 76.
It is connected to the arithmetic and control unit 113 via.

以上の構成における作用を説明する。供給ホッパー21
にサンプルを投入し演算制御装置113でバルブ22と
送りフィーダ40および選別フィーダ60を起動する。
The operation of the above configuration will be explained. Supply hopper 21
A sample is introduced into the feeder, and the valve 22, feeder 40, and sorting feeder 60 are activated by the arithmetic and control unit 113.

サンプルの米粒はパルプ22の回転で送りフィーダ40
の投入部に放出され送りフィーダ40により光量計測装
置120に流動する。次に米粒を光量計測装置120の
送穀1i1150に米粒を投入する。このとき送穀15
0のスリット53上を米粒が長手方向に通過する。この
とき要する時間を10m5とする。光量計測部100は
計測を開始すると光■計測部に設けたスリット92の透
過および反射の先回を光量計測部はあらかじめ決められ
た順序で各条溝を計測してゆく。ここで送穀樋50と送
りフィーダ40および選別用フィーダ60それぞれに設
けられた条溝の数量により異−なるが、前記スリット9
2がら各条溝の光量をひと通り計測するに要する時間を
0.5msとする。つまり1つの米粒がスリット92を
通過する10m5の間に各光量計測部は20回の計測信
号を得ることができる。この20回の計測信号を1つの
米粒の計測信号とするもので、公知の米粒品位判別装置
と大ぎく異なる点である。
The sample rice grains are sent to the feeder 40 by the rotation of the pulp 22.
The light is discharged into the input section of the light source and flows to the light amount measuring device 120 by the feeder 40. Next, the rice grains are put into the grain feeder 1i 1150 of the light amount measuring device 120. At this time, grain feeding 15
The rice grains pass over the 0 slits 53 in the longitudinal direction. The time required at this time is assumed to be 10 m5. When the light amount measurement section 100 starts measurement, the light amount measurement section measures each groove in a predetermined order based on the transmission and reflection of the slit 92 provided in the light measurement section. Although the number of grooves provided in each of the grain feeder 50, the feeder 40, and the sorting feeder 60 differs, the slits 9
It is assumed that the time required to measure the light intensity of each of the two grooves once is 0.5 ms. In other words, each light amount measuring section can obtain measurement signals 20 times during the 10 m5 period in which one rice grain passes through the slit 92. These 20 measurement signals are used as a measurement signal for one rice grain, which is very different from known rice grain quality discriminating devices.

さてスリット92を通して得られる反射と透過の混在し
た光量は、ハーフミラ−102によって光軸方向と、光
軸の直角方向とに分割される。光軸方向に分割された光
量は赤外光カットフィルター97により可視光のみ通過
し米粒の反射光量として反射光量検出素子96に計測さ
れる。一方光軸の直角方向に分割された光量は可視光カ
ットフィルター107により赤外光のみ通過し、米粒の
透過光量として透過光量検出素子106に計測される。
Now, the amount of reflected and transmitted light obtained through the slit 92 is divided by the half mirror 102 into the direction of the optical axis and the direction perpendicular to the optical axis. The amount of light divided in the optical axis direction passes only visible light through an infrared light cut filter 97, and is measured by a reflected light amount detection element 96 as the amount of reflected light from the rice grains. On the other hand, the amount of light divided in the direction perpendicular to the optical axis passes only infrared light through a visible light cut filter 107, and is measured by a transmitted light amount detection element 106 as the amount of light transmitted through the rice grains.

ここで前記リニアイメージセンサ−アレイ51によって
検出すべき項目について説明する。
Here, items to be detected by the linear image sensor array 51 will be explained.

まず反射光はA・・・平均反射光ff11B・・・最も
明るい点の光量、C・・・最も暗い点の光量、D・・・
最も明るい点と最も暗い点の差の光量、E・・・平均反
射光量より一定量以上明るい領域の面積、F・・・平均
反射光mより一定量以上暗い領域の面積、G・・・全投
影面積及びH・・・楕円形状である。
First, the reflected light is A... Average reflected light ff11B... Light intensity at the brightest point, C... Light intensity at the darkest point, D...
Light amount difference between the brightest point and the darkest point, E... Area of a region that is a certain amount or more brighter than the average reflected light amount, F... Area of a region that is a certain amount or more darker than the average reflected light m, G... Total Projected area and H...elliptical shape.

また透過光はa・・・平均透過光量、b・・・最も明る
い点の光■、C・・・最も暗い点の光量、d・・・最も
明るい点と最も暗い点の差の光量、e・・・平均透過光
量より一定m以上明るい領域の面積、f・・・平均透過
光量より一定量以上暗い領域の面積、9・・・全投影面
積及びh・・・楕円形状である。
In addition, the transmitted light is a... average amount of transmitted light, b... light at the brightest point, C... light amount at the darkest point, d... light amount of the difference between the brightest point and the darkest point, e . . . Area of a region that is a certain amount or more brighter than the average transmitted light amount, f . . . Area of a region that is darker than the average transmitted light amount by a certain amount or more, 9.

また、これらの検出値を組み合わせることによって得ら
れる米粒(玄米)品位判定用の分析区分は、■整粒・・
・完全良品であり、肌ずれしてないもの、■肌ずれ粒・
・・玄米の皮部が剥離又は遊離したものをいい、その面
積が1mm2以上で8mm2以下のもの(1粒の一側面
の面積は14〜15mm2である)、■未熟粒・・・中
心部に白色不透明部(粉状質)のある心白粒、腹部や背
部に白色不透明部がある腹白粒(いずれも粉状質の面積
は4nue2〜8+11112)又は粒の充実が不充分
で果実の部分が緑色を呈して粉状質のない青未熟粒、■
被害粒・・・後述する胴割粒以外の被害粒であり、虫害
粒、発芽粒、病吉粒、芽くされ粒、茶米、砕粒(整粒面
積に対し1/3〜2/3)等をいい、着色部の大きさが
0.5〜1.0mm2か、又は粒の大きざが整粒の1/
4〜2/3(4〜10mm2)のもの、■北米・・・粉
状置部の大ぎさが粒の1/2  (8mm2 )以上の
ものをいい、白死米及び青死米がある、■着色粒・・・
虫、熱、カビ又は菌によって粒の表面の全部又は一部が
褐色又は黒色を呈するものをいい、着色部の大きさがl
ll1m2以上のもの又は反射光量が正常粒の70%以
下(つまり、粒全体が着色したもの)のもの、■異物・
・・測定しようとする米粒以外の穀粒または土砂等、で
ある。
In addition, the analysis classification for determining the quality of rice grains (brown rice) obtained by combining these detection values is:
・Completely good product with no skin irritation, ■Skin irritation grains・
...Refers to brown rice whose skin has peeled off or come loose, and whose area is 1 mm2 or more and 8 mm2 or less (the area of one side of one grain is 14 to 15 mm2), ■Immature grains... in the center White-heart grain with a white opaque area (powdery substance), white-belly grain with a white opaque area on the abdomen and back (the area of the powdery substance in each case is 4nue2~8+11112), or the part of the fruit with insufficient grain filling. Blue immature grains with green color and no powdery substance, ■
Damaged grains: Damaged grains other than the shell-split grains described below, including insect-damaged grains, germinated grains, diseased grains, sprouted grains, brown rice, and crushed grains (1/3 to 2/3 of the size of the grain size) etc., and the size of the colored part is 0.5 to 1.0 mm2, or the grain size is 1/1 of the regular grain size.
4 to 2/3 (4 to 10 mm2), ■ North America: refers to the size of the powdered part is 1/2 (8 mm2) or more of the grain, and there are white dead rice and blue dead rice. ■Colored grains...
A particle whose surface is brown or black in whole or in part due to insects, heat, mold, or fungi, and the size of the colored part is l.
ll1m2 or more, or the amount of reflected light is less than 70% of normal grains (in other words, the entire grain is colored), ■ Foreign matter.
...These are grains other than the rice grains to be measured, soil, etc.

前記検出項目と分析区分との関係は第1表及び第2表に
示すとおりであり、整粒及び肌ずれ粒は前での検出項目
によって分析され、その他の分析区分は、検出項目を適
宜に組合わせて行うものである。
The relationship between the detection items and analysis categories is as shown in Tables 1 and 2. Regular grains and grains with rough skin are analyzed according to the previous detection items, and other analysis categories are analyzed using the detection items as appropriate. This is done in combination.

第1表 第2表 以上各々の光量計測素子がスリット92から得た1つの
米粒の20回の計測信号のうち1つの計測信号をデジタ
ル処理し横軸に時間t、縦軸にt11信号の信号レベル
vtとって図示すると第5図のごとくなる。時間Tは米
粒の幅方向の長さによって1qられるものである。
Table 1 Table 2 and above Each light intensity measuring element digitally processes one of the 20 measurement signals of one rice grain obtained from the slit 92, and the horizontal axis represents time t, and the vertical axis represents the t11 signal. If the level vt is illustrated, the result will be as shown in FIG. The time T is calculated by 1q depending on the length of the rice grain in the width direction.

図中表示TO時のVdはその部分だ【プ透過光量が減少
していることを示しているが、これだけでは肌ズレによ
るものか胴割か着色によるものか判別は不可間である。
The Vd at the time of display in the figure shows that the amount of transmitted light is decreasing, but it is difficult to determine from this alone whether this is due to skin misalignment, body splitting, or coloring.

ここでさらに同じ米粒から同時に得られた反射光量計測
信号を図示すると第6図■のごとくなる。図中表示TO
時のVeはその部分だけ反射光量が増加していることか
ら、その部分の米粒表面が他の米粒表面より白く見えて
いることが理解でき、透過光量の第5図と組み合わせて
この米粒は肌ズレ粒であることが判別できる。また同じ
反射光間計測部の信号が第6図■であったとすると、図
中10時の部分は透過光量計測信号と同じ<Vfだけ反
射光量が減少していることが理解でき、透過光量の第5
図と組み合せてこの米粒は着色粒であることが判別でき
る。
Here, the reflected light amount measurement signals obtained simultaneously from the same rice grain are illustrated as shown in FIG. 6 (2). Displayed in the diagram TO
Since the amount of reflected light increases in that part of Ve at time, it can be understood that the surface of the rice grain in that part appears whiter than the other surface of the rice grain. It can be determined that the grains are misaligned. Furthermore, if the signal from the same reflected light measurement section is shown in Figure 6 (■), it can be seen that at the 10 o'clock part in the figure, the amount of reflected light has decreased by <Vf, which is the same as the transmitted light amount measurement signal, and the amount of transmitted light has decreased. Fifth
In combination with the figure, it can be determined that these rice grains are colored grains.

以上の如く1つの米粒がスリットを通過する間に反射光
量計測信号と透過光量計測信号とによって1qられた信
号をそれぞれデジタル処理してその波形分析を行い2つ
の光量計測信号の組み合わせによる判別で米粒の品位判
別は容易かつ正確となる。
As described above, while one rice grain passes through the slit, the reflected light amount measurement signal and the transmitted light amount measurement signal are digitally processed and their waveforms are analyzed, and the rice grains are determined based on the combination of the two light amount measurement signals. It becomes easy and accurate to judge the quality of the product.

第6図に■整粒、■肌ズレ粒、■胴割粒、■着色粒それ
ぞれが通過した場合の反α1、透過光量の米粒の断面的
な計測信号の1例を図示した。
FIG. 6 shows an example of a cross-sectional measurement signal of a rice grain with anti-α1 and transmitted light amount when ① regular grain, ② textured grain, ② split grain, and ③ colored grain pass through each grain.

以上の説明のものはあくまで米粒を断面的にとらえたも
のであり、それぞれのリニアイメージセンサ−にとらえ
られた1米粒の20回の信号を米粒全体のイメージとし
て処理するものが本発明の骨子である。つまり、第5図
に示す信号を1米粒分(ここでは20回分)重ねて連続
して分析すると、米粒全体のどの部分に、どの位の肌ズ
レもしくは着色が存在するのか、また米粒全体の大きさ
、米粒全体の色などを信号から探ることができる。これ
はデジタル処理した信号を1つの画素としてどらえるこ
とで米粒全体をあたかも人間の目で見ているごとくセン
サーに写し、信号処理するからである。
The above explanation is just a cross-sectional view of a rice grain, and the gist of the present invention is to process the 20 signals of one rice grain captured by each linear image sensor as an image of the entire rice grain. be. In other words, if the signals shown in Figure 5 are overlaid and analyzed continuously for one rice grain (in this case, 20 times), it will be possible to determine which part of the entire rice grain has skin deviation or coloring, and the size of the entire rice grain. The color of the entire rice grain can be determined from the signal. This is because by storing digitally processed signals as a single pixel, the entire rice grain is imaged on the sensor as if it were seen by the human eye, and the signal is processed.

上記光量計測で得られた信号を前述のごとく演算制御装
置113で処理し、米粒の品位判別を行うものである。
The signal obtained by the light amount measurement is processed by the arithmetic and control unit 113 as described above, and the quality of the rice grains is determined.

たとえば、平均反射光ff1(A)の測定は、リニアイ
メージセンサ−アレイ90からのデータを、白さ測定用
A/D変換器70及び画像正常化装置72によって処理
した後、灰色性平均化装置73によって平均化し、符号
器76を介して演算制御装置113に入力され、米粒全
体の反射光量の平均が演算される。また、一般用A/D
変換器71及び画像正常化装置74で処理された信号は
、一般用比較器75においてはりニアイメージセンサ−
アレイ51からのデータによって第1表中の分析区分を
刻々に処理し、演算制御装置13によって当該米粒全体
の分析を行い、いずれかの分析区分に判別する。これら
は、リニアイメージセンサ−アレイ90の走査と同じ速
度で処理される。
For example, the average reflected light ff1(A) is measured by processing the data from the linear image sensor array 90 by the whiteness measurement A/D converter 70 and the image normalization device 72, and then by the grayness averaging device. 73 and input to the arithmetic and control unit 113 via the encoder 76, where the average amount of reflected light of the entire rice grain is calculated. In addition, general A/D
The signal processed by the converter 71 and the image normalization device 74 is sent to a general-purpose comparator 75 for a near image sensor.
The analysis categories in Table 1 are processed moment by moment based on the data from the array 51, and the arithmetic and control unit 13 analyzes the entire rice grain to determine one of the analysis categories. These are processed at the same speed as the linear image sensor array 90 scans.

次にこの結果に基づき低品位と判別された米粒が前記選
別装置80の下を通るとき通過する米粒の順序及び通過
平均時間が記憶されているために正確に該当する米粒を
前記演算制御装置113からの信号で電磁弁84の作動
により低品位米粒は吸引口82に吸引され搬送管83に
よって米粒受箱に搬送する。
Next, when the rice grains determined to be low quality based on this result pass under the sorting device 80, the order and average passing time of the rice grains are stored, so that the corresponding rice grains are accurately selected by the arithmetic and control device 113. The low-grade rice grains are sucked into the suction port 82 by the operation of the solenoid valve 84 in response to a signal from the rice grain receiving box, and are transported to the rice grain receiving box through the transport pipe 83.

次に光量計測装置120の別の実施例について第9図に
より説明する。ただし第1の実施例と共通する部分につ
いては同符号で示し、第1の実施例と異な−る部分つま
り光Φ計測装置の構成と作用につき説明する。
Next, another embodiment of the light amount measuring device 120 will be described with reference to FIG. 9. However, parts common to the first embodiment are indicated by the same reference numerals, and parts different from the first embodiment, that is, the structure and operation of the optical Φ measuring device, will be explained.

まず、送穀樋50上方には送穀樋50に設けたスリット
53を中心にその前後位置に可視光からなる光源91と
該光源91の上部外周に繞設するスリット92を開設し
たカバー93とを設け、また送穀樋50下方には送穀樋
50に設けたスリット53の下部に赤外光からなる光源
101を設ける。更に傾斜面52に対し前記スリット5
3と前記スリット92の中心とを通る垂線上の任意延長
上に集光レンズ94と、反射光量検出素子96と、前記
垂線に対し直角方向に透過光量検出素子106および前
記垂線に対し粗45°の傾きをもち、その中心を前記透
過光ω検出素子106の光軸と前記反射光量検出素子9
6の光軸との交点に置くダイクロイックミラー103と
から成る光量計測部100を設ける。
First, above the grain feeding gutter 50, there is a cover 93 which has a light source 91 of visible light at the front and rear positions around the slit 53 provided in the grain feeding gutter 50, and a slit 92 that surrounds the upper outer periphery of the light source 91. A light source 101 made of infrared light is provided below the grain feeding gutter 50 below the slit 53 provided in the grain feeding gutter 50. Further, the slit 5 is connected to the inclined surface 52.
3 and the center of the slit 92, a condensing lens 94, a reflected light amount detecting element 96, a transmitted light amount detecting element 106 in a direction perpendicular to the perpendicular line, and an angle of approximately 45 degrees to the perpendicular line. The center thereof is the optical axis of the transmitted light ω detection element 106 and the reflected light amount detection element 9.
A light amount measuring section 100 is provided, which is comprised of a dichroic mirror 103 placed at the intersection with the optical axis of the light source 6.

以上の光源91と光源101および光D計測部100で
光量計測装置120を形成する。
The light source 91, light source 101, and light D measuring section 100 described above form a light amount measuring device 120.

次に第2の実施例における光m計測装置120の作用に
ついて述べる。   ゝ スリット92を通して得られる反射と透過の混在した光
量は、ダイクロイックミラー103によって光軸方向と
光軸の直角方向とに分割されるが、光軸方向にはたとえ
ば400nm〜700nmの光が、一方光軸の直角方向
には11000n〜1500nmの光がそれぞれ分割さ
れる。光軸方向に分割された光量は可視光であり、米粒
の反射光量として反射光量検出素子96に計測される。
Next, the operation of the optical m measuring device 120 in the second embodiment will be described. The amount of reflected and transmitted light obtained through the slit 92 is divided by the dichroic mirror 103 into the optical axis direction and the direction perpendicular to the optical axis. Light of 11000n to 1500nm is divided in the direction perpendicular to the axis. The amount of light divided in the optical axis direction is visible light, and is measured by the reflected light amount detection element 96 as the amount of reflected light from the rice grains.

一方光軸の直角方向に分割された光量は赤外光であり、
米粒の透過光量として透過光量検出素子106に計測さ
れる。このように計測された反射・透過の各光量は、第
1の実施例と同様に演算処理装置により演算処理されて
品位判別を行うものとなる。
On the other hand, the amount of light divided perpendicular to the optical axis is infrared light,
The amount of transmitted light is measured by the transmitted light amount detection element 106 as the amount of light transmitted through the rice grains. The amounts of reflected and transmitted light measured in this manner are processed by the processing unit to determine the quality, as in the first embodiment.

尚本発明に係る実施例において光ffi if側部はハ
ーフミラ−やダイク0イツクミラーを使った集光レンズ
1つによる一体構成のものを示したが、送穀樋上の1つ
のポイントを透過用と反射用と別々の集光レンズを用い
て2ケ所から計測することも可能であることは言うまで
もない。
In the embodiment according to the present invention, the side part of the light ffi IF is shown as having an integral structure with one condensing lens using a half mirror or a dike mirror, but one point on the grain feeding gutter is used for transmission and for reflection. It goes without saying that it is also possible to measure from two locations using separate condensing lenses.

以上の構成、作用の米粒品位判別方法は米粒を品位判別
するためのデータを送穀樋上の同位置で数多く取り入れ
ることで判別の基準を多く設けることが可能となり、公
知の装置のように1米粒から1つの信号を取り入れて判
別する方法とは、その判別の精度が大きく向上したもの
である。
The method for determining the quality of rice grains with the above structure and operation makes it possible to set many criteria for determination by incorporating a large number of data for determining the quality of rice grains at the same position on the grain feeding trough. The method of discriminating by taking in one signal from the source greatly improves the accuracy of the discrimination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図、第2図は送り、選別用フィー
ダの側面図、第3図は選別装置の斜視部分図、第4図は
ブロック図、第5図は透過光波形分析図、第6図は反射
光、透過光の組み合せによるパターン図、第7図は送り
、選別用フィーダのA−A断面図、第8図は度数分布図
、第9図は第2の実施例の構成図、第10図はA/D変
換の詳細ブロック図である。 1・・・米粒品位判別装置、10・・・機枠、11・・
・支持枠、20・・・バルブユニット、21・・・供給
ホッパー、22・・・バルブ、23.26・・・回転軸
、24.27・・・プーリー 25・・・駆動モータ、
28・・・タイミングベルト、2つ・・・飛散防止カバ
ー30・・・溝、40・・・送りフィーダ、41.61
・・・送穀用条溝、42.62・・・防振ゴム部、43
゜63・・・基部、45.65・・・段差、50・・・
送IQ樋、51・・・通気孔、52・・・送穀樋面、5
3・・・スリット、54・・・流下条溝、60・・・選
別用フィーダ、70・・・白さ測定用A/D変換器、7
1・・・一般用A/D変換器、72・・・画像正常化装
置、73・・・灰色値平均化装置、74・・・画像正常
化装置、75・・・一般用比較器、76・・・符号器、
80・・・選別装置、81・・・吸引管、82・・・吸
引口、83・・・搬送管、84・・・電磁弁、85・・
・ノズル部、86・・・排出口、90・・・光量計測部
、91.101・・・光源、92・・・スリット、93
・・・カバー 94・・・集光レンズ、96・・・反…
光量検出素子、97・・・赤外光カットフィルター 1
00・・・光量計測部、102・・・ハーフミラ−11
03・・・ダイクロイックミラー、106・・・透過光
量検出素子、107・・・可視光カットフィルター、1
10・・・演算制御部、111・・・’A / D変換
、112・・・微分回路、113・・・演算制御装置、
120・・・光ω計測装置。
Fig. 1 is a configuration diagram of the present invention, Fig. 2 is a side view of the feeding and sorting feeder, Fig. 3 is a perspective partial view of the sorting device, Fig. 4 is a block diagram, and Fig. 5 is a transmitted light waveform analysis diagram. , Fig. 6 is a pattern diagram of a combination of reflected light and transmitted light, Fig. 7 is a sectional view taken along A-A of the feeding and sorting feeder, Fig. 8 is a frequency distribution diagram, and Fig. 9 is a diagram of the second embodiment. The configuration diagram, FIG. 10, is a detailed block diagram of A/D conversion. 1...Rice grain quality discrimination device, 10...Machine frame, 11...
- Support frame, 20... Valve unit, 21... Supply hopper, 22... Valve, 23.26... Rotating shaft, 24.27... Pulley 25... Drive motor,
28...Timing belt, 2 pieces...Scatter prevention cover 30...Groove, 40...Feeder, 41.61
... Grain feed groove, 42.62 ... Vibration-proof rubber part, 43
゜63...Base, 45.65...Step, 50...
Feed IQ gutter, 51... Ventilation hole, 52... Grain feed gutter surface, 5
3...Slit, 54...Flowing groove, 60...Feeder for sorting, 70...A/D converter for whiteness measurement, 7
1... General A/D converter, 72... Image normalization device, 73... Gray value averaging device, 74... Image normalization device, 75... General use comparator, 76 ...encoder,
80... Sorting device, 81... Suction pipe, 82... Suction port, 83... Conveying pipe, 84... Solenoid valve, 85...
・Nozzle part, 86... Discharge port, 90... Light amount measurement part, 91.101... Light source, 92... Slit, 93
...Cover 94...Condensing lens, 96...Reverse...
Light amount detection element, 97...Infrared light cut filter 1
00... Light amount measurement unit, 102... Half mirror 11
03... Dichroic mirror, 106... Transmitted light amount detection element, 107... Visible light cut filter, 1
10... Arithmetic control unit, 111... 'A/D conversion, 112... Differential circuit, 113... Arithmetic control device,
120... Optical ω measurement device.

Claims (2)

【特許請求の範囲】[Claims] (1)、米粒を流動する送穀用条溝を設けた振動送穀樋
を横架状に設置し、前記振動送穀樋の供給側に米粒供給
部を設けて該送穀樋にスリットを設け、該スリットに関
連して前記送穀樋上部の前後位置に米粒に送穀樋上方よ
り照射する可視光からなる光源と、前記送穀樋の下方に
米粒に送穀樋下方よりスリットを通して照射する赤外光
からなる光源と、前記送穀樋のスリットに関連して送穀
樋上部に反射光量計測部と透過光量計測部とを備える光
量計測部および、前記計測部それぞれの測定値を演算処
理し米粒を複数品位に判別する演算制御部とを備えた米
粒品位判別装置において前記送穀樋により順次搬送され
る米粒に光を照射するとともに、光間計測部のリニアイ
メージセンサーを米粒の搬送方向に直交する方向に線状
に走査し、平均透過先量、平均反射光量、最も明るい点
の光量、最も暗い点の光量、最も明るい点と暗い点の差
の光量、前記平均透過先量または平均反射光量より一定
量以上明るい領域の面積、同じく平均透過光量または平
均反射光量より一定量以上暗い領域の面積、全般影面積
及び楕円形状の各項目について計測・演算し、これらの
計測・演算値を適宜組み合わせるこによつて品位判定の
基となる判定区分毎の分析を行い、この分析結果により
当該サンプルの品位判定を行うことを特徴とする米粒品
位判別方法。
(1) A vibrating grain feeding gutter provided with grain feeding grooves for flowing rice grains is installed horizontally, a rice grain supply section is provided on the supply side of the vibrating grain feeding gutter, and a slit is provided in the grain feeding gutter. a light source consisting of visible light that irradiates the rice grains from above the grain feeding gutter at the front and back positions of the upper part of the grain feeding gutter in relation to the slit, and a light source that irradiates the rice grains from below the grain feeding gutter through the slit below the grain feeding gutter; a light source made of infrared light, a light amount measuring section including a reflected light amount measuring section and a transmitted light amount measuring section on the upper part of the grain feeding gutter in association with the slit of the grain feeding gutter, and calculating the measured values of each of the measuring sections. In the rice grain quality discriminating device, which is equipped with a calculation control unit that processes and distinguishes rice grains into multiple grades, light is irradiated onto the rice grains that are sequentially conveyed by the grain feeding gutter, and the linear image sensor of the optical distance measuring unit is used to control the conveyance of rice grains. Scan linearly in a direction perpendicular to the direction, average amount of transmitted light, average reflected light amount, light amount of the brightest point, light amount of the darkest point, light amount of the difference between the brightest point and the darkest point, the average amount of transmitted light, or The area of the area that is brighter by a certain amount or more than the average amount of reflected light, the area of the area that is darker than the average transmitted light amount or the average reflected light amount by a certain amount or more, the overall shadow area, and the ellipse shape are measured and calculated, and these measured and calculated values are calculated. A method for determining the quality of rice grains, characterized in that the quality of the sample is determined based on the analysis results by performing an analysis for each determination category that is the basis of quality determination by appropriately combining the following.
(2)、演算制御部は、反射光量計測部と透過光量計測
部のそれぞれの信号の経時変化を、それぞれデジタル処
理し、該デジタル処理した値により米粒品位の複数品位
判別を行うものである。請求項(1)記載の米粒品位判
別方法。
(2) The arithmetic control unit digitally processes the temporal changes in the signals of the reflected light amount measuring unit and the transmitted light amount measuring unit, respectively, and discriminates multiple rice grain grades based on the digitally processed values. The rice grain quality determination method according to claim (1).
JP33520488A 1988-12-29 1988-12-29 Rice grain quality determination method Expired - Fee Related JP2729391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33520488A JP2729391B2 (en) 1988-12-29 1988-12-29 Rice grain quality determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33520488A JP2729391B2 (en) 1988-12-29 1988-12-29 Rice grain quality determination method

Publications (2)

Publication Number Publication Date
JPH02179452A true JPH02179452A (en) 1990-07-12
JP2729391B2 JP2729391B2 (en) 1998-03-18

Family

ID=18285925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33520488A Expired - Fee Related JP2729391B2 (en) 1988-12-29 1988-12-29 Rice grain quality determination method

Country Status (1)

Country Link
JP (1) JP2729391B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682386A (en) * 1991-01-14 1994-03-22 Toei Denshi Kogyo Kk Defect detection device for painted sheet
JP3015871U (en) * 1995-03-16 1995-09-12 株式会社安西総合研究所 Sorter
JPH0880475A (en) * 1994-05-14 1996-03-26 Maschimpex Gmbh Automatic sorting device for sorting small-size product according to form and color in pharmaceutical industry, confectionery industry,etc.
WO2002040967A1 (en) * 2000-11-17 2002-05-23 Foss Tecator Ab A method and device for recording images of grains from cereals to detect cracking
WO2024018771A1 (en) * 2022-07-19 2024-01-25 日立造船株式会社 Sorting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682386A (en) * 1991-01-14 1994-03-22 Toei Denshi Kogyo Kk Defect detection device for painted sheet
JPH0880475A (en) * 1994-05-14 1996-03-26 Maschimpex Gmbh Automatic sorting device for sorting small-size product according to form and color in pharmaceutical industry, confectionery industry,etc.
JP3015871U (en) * 1995-03-16 1995-09-12 株式会社安西総合研究所 Sorter
WO2002040967A1 (en) * 2000-11-17 2002-05-23 Foss Tecator Ab A method and device for recording images of grains from cereals to detect cracking
US6888954B2 (en) 2000-11-17 2005-05-03 Foss Analytical Ab Device and method for recording images
WO2024018771A1 (en) * 2022-07-19 2024-01-25 日立造船株式会社 Sorting device

Also Published As

Publication number Publication date
JP2729391B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
KR960011097B1 (en) Apparatus for evaluating the grade of rice grains
US5245188A (en) Apparatus for evaluating the grade of rice grains
US5779058A (en) Color sorting apparatus for grains
US8228493B2 (en) Carrying device and appearance inspection device for test objects
US8154593B2 (en) Appearance inspection device
US5986230A (en) Method and apparatus for sorting product
US5335790A (en) Method and device for separating pieces of wood
US5903341A (en) Produce grading and sorting system and method
US5865990A (en) Method and apparatus for sorting grain
EP0658262B1 (en) Method and device for automatic evaluation of cereal grains and other granular products
JPS61107139A (en) Apparatus for measuring grade of grain of rice
CN116329130A (en) On-line detection and separation equipment and method for internal and external quality of grains
JPH02179452A (en) Method for judging quality of rice grain
JP2000180369A (en) Method and apparatus for measurement of appearance quality of grain
JP2000180369A5 (en)
US6570177B1 (en) System, apparatus, and method for detecting defects in particles
JPH07104284B2 (en) Rice grain quality judgment method
JP2769823B2 (en) Rice Grain Classifier
JP2769819B2 (en) Rice Grain Classifier
JP2642107B2 (en) Automatic grading method and device for fruits and vegetables
CN111842204A (en) Full-automatic wild vegetable finished product inspection system
KR20160059623A (en) sorting method for grains
JP2815633B2 (en) Rice Grain Classifier
JPH10160676A (en) Rice grain inspection device
JP3180841B2 (en) Rice Grain Classifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees