JPH02178912A - Solid electrolytic capacitor and manufacture thereof - Google Patents

Solid electrolytic capacitor and manufacture thereof

Info

Publication number
JPH02178912A
JPH02178912A JP33328188A JP33328188A JPH02178912A JP H02178912 A JPH02178912 A JP H02178912A JP 33328188 A JP33328188 A JP 33328188A JP 33328188 A JP33328188 A JP 33328188A JP H02178912 A JPH02178912 A JP H02178912A
Authority
JP
Japan
Prior art keywords
foil
layer
conductive
anode
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33328188A
Other languages
Japanese (ja)
Other versions
JP2811700B2 (en
Inventor
Yoichi Aoshima
青島 洋一
Junji Ozaki
尾崎 潤二
Masayuki Taniguchi
雅幸 谷口
Noboru Toda
戸田 昇
Hisaki Tsujii
辻井 久己
Kenji Kawamura
賢二 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33328188A priority Critical patent/JP2811700B2/en
Publication of JPH02178912A publication Critical patent/JPH02178912A/en
Application granted granted Critical
Publication of JP2811700B2 publication Critical patent/JP2811700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To promote low impedance advancement in a high frequency region by forming a conductive resist layer at the specified part of an anode foil which is made by providing a valve metallic foil with a dielectric film, and forming a conductive polymer layer by the aqueous solution of electric polymeric monomer that the part of an anode foil, which is divided and isolated by a conductive resist layer, is dissolved by a supporting electrolyte. CONSTITUTION:A conductive resist layer 13, which is insoluble in water and soluble in organic solvent, is applied on the anode drawing-out part of an anode foil 11 that a valve metallic film is roughened and a dielectric film is provide by anode oxidation. The conductive resist layer 13 is never dissolved during electrolytic polymerization because the polymerization liquid is aqueous solution, and it effects the role of a power supply electrode and forms a conductive polymer layer 17 without making an electric bridge in the dielectric film. Hereby, it becomes suitable for impedance advancement in a high frequency region, and is cheep in manufacturing and easy to make, and the volumetric efficiency of capacity becomes favorable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高周波領域において低インピーダンス化に適し
、容量の体積効率のよい固体電解コンデンサおよびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid electrolytic capacitor that is suitable for lowering impedance in a high frequency region and has good volumetric efficiency of capacitance, and a method for manufacturing the same.

従来の技術 近年、電解コンデンサは電子機器のデジタル化にともな
って、高周波領域においてインピーダンスが低いものへ
の要求が高まっている。従来、高周波領域用のコンデン
サとしてはプラスチックフィルムコンデンサ、マイカコ
ンデンサ、積層セラミックコンデンサなどが用いられて
いる。またその他にアルミニウム乾式電解コンデンサや
アルミニウムまたはタンタル固体電解コンデンサなどが
ある。甘だ、アルミニウムやタンタル固体電解コンデン
サでは前記アルミニウム乾式電解コンデンサの特性改良
のため電解質の固体化がなされている。この同体電解質
の形成には硝酸マンガン液に陽極体を浸漬し2F50〜
350”C前後の高温炉中にて熱分解し、二酸化マンガ
ン層をつくる。また、近年ではγ、7,8.8−テトラ
シアノキノジメタン塩等の有機半導体を固体電解質とし
て用いた固体電解コンデンサが開発されている。更に、
固体電解質の高電導度化のためにピロール、チオン5ヘ エン、フラン等の重合性モノマーを電解重合させて導電
性高分子とし、これを固体電解質とする方法が提案され
ている。導電性高分子に関しては、その電導度がおよそ
1〜1005−cm のものを用いてコンデンサを試作
することが可能であり、固体のメリットを活かした高周
波領域で良好な周波数特性及び広範囲での温度特性を実
現することが可能となるものとして期待されている。特
開昭63−232413号公報によると粗面化された弁
金属板に陽極と陰極を区分するだめの絶縁物層を所定の
部分に設け、その後誘電体皮膜層、導電性高分子層、グ
ラファイト層及び銀ペイント層を順次形成している。−
1だ特開昭63−239917号公報によると前記陽極
と陰極を区分するための絶縁物層から陽極になる部分に
マスキングを施し、誘電体皮膜層、導電性高分子層、グ
ラフアイ1−層及び銀ペイント層を順次形成した後で前
記マスキングを除去する製造方法を示している。更に積
層手段として前記のようにして得られたコンデンサ素子
を陽極、陰極が互いに対応するように積み重6/<−7 ね、陰極は銀ペイントで陽極は溶接等で互いえ接合させ
る手段をとっている。
2. Description of the Related Art In recent years, with the digitalization of electronic devices, there has been an increasing demand for electrolytic capacitors with low impedance in the high frequency range. Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, and the like have been used as capacitors for high frequency regions. Other types include aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. Unfortunately, in aluminum and tantalum solid electrolytic capacitors, the electrolyte is solidified to improve the characteristics of the aluminum dry electrolytic capacitor. To form this isoelectrolyte, the anode body is immersed in manganese nitrate solution.
It is thermally decomposed in a high-temperature furnace at around 350"C to form a manganese dioxide layer. In addition, in recent years, solid electrolysis using organic semiconductors such as γ, 7, 8, 8-tetracyanoquinodimethane salt as a solid electrolyte has been developed. A capacitor has been developed.Furthermore,
In order to increase the conductivity of a solid electrolyte, a method has been proposed in which polymerizable monomers such as pyrrole, thione-5-heene, and furan are electrolytically polymerized to form a conductive polymer, and this is used as a solid electrolyte. Regarding conductive polymers, it is possible to prototype capacitors using conductive polymers with conductivity of approximately 1 to 1005-cm, and they have good frequency characteristics in the high frequency range and a wide temperature range that takes advantage of the advantages of solids. It is expected that it will be possible to realize these characteristics. According to Japanese Unexamined Patent Publication No. 63-232413, an insulating layer for separating an anode and a cathode is provided on a roughened valve metal plate at a predetermined portion, and then a dielectric film layer, a conductive polymer layer, and a graphite layer are applied. layer and silver paint layer are formed sequentially. −
According to Japanese Unexamined Patent Publication No. 63-239917, masking is applied to the part that will become the anode from the insulating layer for separating the anode and cathode, and a dielectric film layer, a conductive polymer layer, and a graphite layer are formed. and a manufacturing method in which the masking is removed after sequentially forming silver paint layers. Further, as a laminating means, the capacitor elements obtained as described above were stacked so that the anodes and cathodes corresponded to each other (6/<-7), and the cathodes were bonded to each other by silver paint and the anodes by welding or the like. ing.

発明が解決しようとする課題 しかしながら上記の従来の構成では、下記のような問題
点を有していた。
Problems to be Solved by the Invention However, the above conventional configuration has the following problems.

■ 誘電体皮膜を形成する前に弁金属板を所定の形状に
設定しているために有効な誘電体皮膜は得られにくくシ
ョートしやすかった。
■ Since the valve metal plate was set in a predetermined shape before forming the dielectric film, it was difficult to obtain an effective dielectric film and short-circuits were likely to occur.

■ 絶縁物層を設けた後頁にマスキングを実施している
ことで重複した製造方法になっているし、絶縁物層を設
けたことで容量の体積効率も低かった。
■ Masking was performed on the page after the insulating layer was provided, resulting in a redundant manufacturing method, and the provision of the insulating layer also resulted in a low volumetric efficiency of capacitance.

■ 積層手段の中で陽極を溶接等で互いを接合している
ことは一度に接合するには高い信頼性が得られにくいし
、また互いの接合を個別に回数を重ねていくにしても製
造工程が複雑となっていた。
■ It is difficult to obtain high reliability if the anodes are joined to each other by welding or the like in a laminated method, and it is difficult to obtain high reliability if the anodes are joined together at once, and even if the anodes are joined together several times individually, it is difficult to achieve high reliability. The process was complicated.

■ 電解重合により導電性高分子層を形成する際、弁金
属板から直接給電するため誘電体皮膜中に電気的ブリッ
ジができて、製品としてショート7 、 しやすかった。
■ When forming a conductive polymer layer by electrolytic polymerization, electrical bridges were created in the dielectric film because electricity was supplied directly from the valve metal plate, making it easy for products to short-circuit7.

本発明は上記従来の問題点を解決するもので、導電性高
分子を用いて高周波領域での低インピーダンス化に適し
、製造上安価で作り易く容量の体積効率のよい固体電解
コンデンサおよびその製造方法を提供することを目的と
するものである。
The present invention solves the above-mentioned conventional problems, and includes a solid electrolytic capacitor that uses a conductive polymer, is suitable for reducing impedance in a high frequency range, is inexpensive and easy to manufacture, and has good volumetric capacity efficiency, and a method for manufacturing the same. The purpose is to provide the following.

課題を解決するための手段 この課題を解決するために本発明の固体電解コンデンサ
およびその製造方法は、アルミニウム箔、タンタル箔、
ニオブ箔あるいはチタン箔である弁金属箔を粗面化し更
に陽極酸化によって誘電体皮膜を設けた陽極箔の所定部
分に導電性レジスト層を形成し、前記導電性レジスト層
により区分孤立化した前記陽極箔の部分を支持電解質が
溶解した電解重合性モノマーの水溶液による導電性高分
子層を形成して構成されておシ、かつ、弁金属箔を粗面
化し更に陽極酸化によって誘電体皮膜を設けた陽極箔を
帯状で片側に所定の間隔で複数の突起部を形作ったもの
、あるいは前記陽極箔を短冊状にして弁金属で作られた
支持板の片側に所定の間隔で溶接などで接続したものを
化成液にて切断部に誘電体皮膜を設ける工程と、前記突
起部あるいは短冊状陽極箔部表面上の陰極取出し部分全
体に有機または無機化合物からなる半導体を島状または
層状に均一に付着させる工程と、前記突起部あるいは短
冊状陽極箔部の所定部分に導電性レジスト層を形成させ
る工程と、前記導電性レジスト層により区分孤立化した
陰極取出し部分の表面に導電性高分子層を形成する工程
と、前記導電性高分子層表面に陰極数シ出しのだめのグ
ラファイト層および銀ペイント層を順次形成する工程と
、前記導電性レジスト層を有機溶媒にて溶解除去する工
程と、前記陽極箔の帯状の部分あるいは前記支持板を折
シ曲げて前記陰極取出し部分を積層化する工程と、前記
銀ペイント層に再度銀ペイント層を形成する工程と、前
記導電性高分子層が形成されていない前記突起部あるい
は短冊状陽極箔部の陽極取出し部分を残して切断する工
程と、前記陽極取出し部分と前記陰極取出し部分に各々
端子を取り付ける工程を有している。
Means for Solving the Problem In order to solve this problem, the solid electrolytic capacitor of the present invention and its manufacturing method utilize aluminum foil, tantalum foil,
A conductive resist layer is formed on a predetermined portion of the anode foil, which is made by roughening a valve metal foil such as niobium foil or titanium foil and further providing a dielectric film by anodizing, and the anode is isolated in sections by the conductive resist layer. The foil portion is composed of a conductive polymer layer formed from an aqueous solution of an electrolytically polymerizable monomer in which a supporting electrolyte is dissolved, and the valve metal foil is roughened and a dielectric film is further provided by anodizing. An anode foil in the form of a band with a plurality of protrusions formed on one side at predetermined intervals, or an anode foil in the form of a strip and connected to one side of a support plate made of valve metal at predetermined intervals by welding or the like. A step of providing a dielectric film on the cut portion using a chemical solution, and uniformly attaching a semiconductor made of an organic or inorganic compound in the form of an island or layer to the entire cathode extraction portion on the surface of the protrusion or strip-shaped anode foil portion. a step of forming a conductive resist layer on a predetermined portion of the protrusion or strip-shaped anode foil portion; and forming a conductive polymer layer on the surface of the cathode extraction portion sectioned and isolated by the conductive resist layer. a step of sequentially forming a graphite layer and a silver paint layer for exposing the cathode on the surface of the conductive polymer layer; a step of dissolving and removing the conductive resist layer with an organic solvent; a step of laminating the cathode extraction portion by bending the strip-shaped portion or the support plate; a step of forming a silver paint layer again on the silver paint layer; The method includes the steps of cutting the protrusion or strip-shaped anode foil portion leaving an anode extraction portion, and attaching terminals to the anode extraction portion and the cathode extraction portion, respectively.

作用 この構成並びに方法によって、水に不溶で有機溶媒に可
溶な導電性レジスト層を弁金属箔を粗面化し更に陽極酸
化によって誘電体皮膜を設けた陽極箔の陽極引出し部分
に塗布することで、電解重合中は重合液が水溶液のため
に導電性レジスト層は溶解することなく、給電電極の役
目を果たして誘電体皮膜中に電気的ブリッジを作ること
なく導電性高分子層を形成する。さらに前記有機溶媒に
可溶な導電性レジスト層を有機溶媒で除去することによ
って、陰極引出し電極である導電性高分子層を前記陽極
引出し部分と分離でき、製品としてショー1− Lにく
くすることができる。また、前記導電性レジスト層は有
機溶媒に可溶なために製造工程として簡単に除去処理す
ることができる。他に、陽極引出し部分で折り曲げを行
うことで溶接などの信頼性を問うことなく製品の信頼性
を高めることができる。
Effect: With this configuration and method, a conductive resist layer that is insoluble in water and soluble in organic solvents is coated on the anode lead-out portion of the anode foil, which has been roughened on the valve metal foil and further provided with a dielectric film by anodizing. During electrolytic polymerization, since the polymerization solution is an aqueous solution, the conductive resist layer does not dissolve and acts as a power supply electrode, forming a conductive polymer layer without creating electrical bridges in the dielectric film. Furthermore, by removing the conductive resist layer soluble in the organic solvent with an organic solvent, the conductive polymer layer, which is the cathode lead electrode, can be separated from the anode lead part, and the product can be made difficult to show 1-L. can. Furthermore, since the conductive resist layer is soluble in an organic solvent, it can be easily removed during the manufacturing process. In addition, by bending the anode lead-out portion, the reliability of the product can be increased without affecting the reliability of welding, etc.

実施例 以下本発明の一実施例について、図面を参照し107、
−ノ 々から説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.
-Explain from beginning to end.

第2図および第3図は本発明の一実施例における固体電
解コンデンサを構成するコンデンサ素子箔の構成を示す
もので、第2図は帯状で片側に所定の間隔で複数の突起
部を形作ったコンデンサ素子箔を示し、第3図は陽極箔
を短冊状にして弁金属で作られた支持板の片側に所定の
間隔で溶接などで接続したコンデンサ素子箔を示す。第
1図において、11はアルミ箔を粗面化し更に誘電体皮
膜を設けた陽極箔、12は半導体層に覆われた突起部、
13は導電性レジスト層である。第3図において、14
はアルミニウム製の支持板、12は半導体層に覆われた
短冊状のアルミ陽極箔、13は導電性レジスト層、15
は陽極箔と支持板の溶接部を示す。
Figures 2 and 3 show the structure of a capacitor element foil constituting a solid electrolytic capacitor in an embodiment of the present invention. Figure 2 shows a strip-shaped capacitor element foil with a plurality of protrusions formed at predetermined intervals on one side. FIG. 3 shows a capacitor element foil in which an anode foil is formed into a strip and connected to one side of a support plate made of valve metal at predetermined intervals by welding or the like. In FIG. 1, 11 is an anode foil made of roughened aluminum foil and further provided with a dielectric film, 12 is a protrusion covered with a semiconductor layer,
13 is a conductive resist layer. In Figure 3, 14
12 is a strip-shaped aluminum anode foil covered with a semiconductor layer; 13 is a conductive resist layer; 15 is an aluminum support plate;
indicates the weld between the anode foil and the support plate.

前記コンデンサ素子となる弁金属箔はアルミニウム、タ
ンタル、チタン、ニオブなどであればよく、本実施例で
はアルミニウムを用いる。コンデンサ素子箔の形状は導
電性高分子層を形成する部分が前記導電性高分子層を形
成する前工程において前記導電性高分子層が接触する箇
所に誘電体皮膜が損なわれることなくあればよく、本実
施例では第2図の形状を用いる。
The valve metal foil serving as the capacitor element may be made of aluminum, tantalum, titanium, niobium, etc., and aluminum is used in this embodiment. The shape of the capacitor element foil may be such that the portion where the conductive polymer layer is formed does not damage the dielectric film at the portion where the conductive polymer layer comes into contact in a step before forming the conductive polymer layer. In this embodiment, the shape shown in FIG. 2 is used.

第4図は第2図の突起部12を陰極引出しのために前記
導電性高分子層にグラファイト層および銀ペイント層を
順次形成した状態を拡大した図で、第4図(a)はその
平面図、第4図(b)は第4図(a)ノAA線断面図を
示すものである。第4図において、11はアルミ箔を粗
面化し更に誘電体皮膜を設けた陽極箔、16は半導体層
、13は導電性レジスト層、17は導電性高分子層、1
8はグラファイト層、19は銀ペイント層を示す。
FIG. 4 is an enlarged view of the protrusion 12 in FIG. 2 in which a graphite layer and a silver paint layer are sequentially formed on the conductive polymer layer for cathode extraction, and FIG. 4(a) is a plan view thereof. 4(b) shows a sectional view taken along the line AA of FIG. 4(a). In FIG. 4, 11 is an anode foil made of roughened aluminum foil and further provided with a dielectric film, 16 is a semiconductor layer, 13 is a conductive resist layer, 17 is a conductive polymer layer, 1
8 represents a graphite layer, and 19 represents a silver paint layer.

以上のように構成された固体電解コンデンサ素子につい
て、以下その製造方法を説明する。
A method of manufacturing the solid electrolytic capacitor element configured as described above will be described below.

まずアルミエツチド化成箔を第2図の形状に金型で打ち
抜き、公知の化成処理法にて打ち抜きで損なわれた誘電
体皮膜を修復する。次に突起部120表面に硝酸マンガ
ンを付着させ熱分解して二酸化マンガンとする。なお、
本実施例では有機または無機化合物から々る半導体を島
状または層状に均一に付着させる手段として硝酸マンガ
ンの熱分解という手段を用いたが、これに限定されるも
のでは々く、例えば水に溶けにくいオレイン酸の類の半
導体物質を用いても可能である。要は半導体物質を誘電
体皮膜表面に薄く均一に付着しておればよい。
First, aluminum etched chemically formed foil is punched out with a die into the shape shown in FIG. 2, and the dielectric film damaged by the punching is repaired by a known chemical conversion treatment method. Next, manganese nitrate is attached to the surface of the projection 120 and thermally decomposed to produce manganese dioxide. In addition,
In this example, thermal decomposition of manganese nitrate was used as a means to uniformly adhere semiconductors made of organic or inorganic compounds in the form of islands or layers. It is also possible to use semiconductor materials such as oleic acid, which is difficult to achieve. In short, it is sufficient that the semiconductor material is thinly and uniformly adhered to the surface of the dielectric film.

次に導電性レジスト層13の形成は各突起部12が区分
孤立化するように行う。本実施例では水に不溶で有機溶
媒に可溶な導電性物質としてカーボン導電性塗料を用い
たが、これに限定されるものではなく、例えば銀糸の導
電性塗料であってもよく、あるいは7.γ、8,8−テ
トラシアノキノジメタン等をアクセプターとする電荷移
動錯体、あるいは溶媒可溶性の導電性高分子のような有
機半導体であってもよい。要は水に不溶で有機溶媒に可
溶な導電性を備えた給電材料であればよい。
Next, the conductive resist layer 13 is formed so that each protrusion 12 is isolated. In this example, a carbon conductive paint was used as the conductive substance that is insoluble in water and soluble in an organic solvent, but the present invention is not limited to this, and for example, a conductive paint made of silver thread may be used. .. It may be a charge transfer complex having γ, 8,8-tetracyanoquinodimethane or the like as an acceptor, or an organic semiconductor such as a solvent-soluble conductive polymer. In short, any electrically conductive power supply material that is insoluble in water and soluble in organic solvents may be used.

次に各突起部12を支持電解質が溶解した電解重合性モ
ノマーの水溶液に浸漬し、導電性レジスト層13を給電
電極として正極とし、支持電解質13へ−7 が溶解した電解重合性モノマーの水溶液を負極として所
定の直流電圧を供給する。第4図の導電性高分子層17
が半導体層16を介して陽極箔11に形成される。本実
施例では支持電解質としてトリイソプロピルナフタレン
スルフォネートのナトリウム塩を、電解重合性モノマー
としてビロールを用いたが、これに限定されるものでは
なく、例えば支持電解質としてポリビニルスルフオネ−
1・のナトリウム塩を、電解重合性モノマーとしてチオ
フェンを用いても可能である。要は電解重合用の水溶液
で電気化学的に導電性高分子層が形成されればよい。
Next, each protrusion 12 is immersed in an aqueous solution of an electrolytically polymerizable monomer in which a supporting electrolyte is dissolved, the conductive resist layer 13 is used as a positive electrode as a power supply electrode, and an aqueous solution of an electrolytically polymerizable monomer in which -7 is dissolved is immersed in the supporting electrolyte 13. A predetermined DC voltage is supplied as a negative electrode. Conductive polymer layer 17 in FIG.
is formed on the anode foil 11 via the semiconductor layer 16. In this example, the sodium salt of triisopropylnaphthalene sulfonate was used as the supporting electrolyte, and virol was used as the electrolytically polymerizable monomer, but the invention is not limited thereto.
It is also possible to use the sodium salt of 1. using thiophene as an electrolytically polymerizable monomer. The point is that the conductive polymer layer can be electrochemically formed using an aqueous solution for electrolytic polymerization.

前記導電性高分子層1アの上にグラファイト層18およ
び銀ペイント層19を形成するには、グラファイトの溶
液中に陽極箔11の導電性高分子層17を形成した部分
を浸漬した後硬化させてグラファイト層18を形成した
後、さらに銀ペイント溶液中に浸漬した後硬化させて銀
ペイント層19を形成する。
To form the graphite layer 18 and the silver paint layer 19 on the conductive polymer layer 1a, the portion of the anode foil 11 on which the conductive polymer layer 17 is formed is immersed in a graphite solution, and then cured. After forming the graphite layer 18, it is further immersed in a silver paint solution and then hardened to form a silver paint layer 19.

次に導電性レジスト層を有機溶媒で溶解除去す14 l
\−ノ る。本実施例では半導体層16であるカーボン導電性塗
料をジメチルホルムアミドで取り除いたが、有機溶媒は
これに限定されるものではない。捷だ除去時に超音波洗
浄を併用してもよい。なおこの工程は陽極箔11を折9
曲げた後実施してもよいことは言うまでもない。
Next, remove the conductive resist layer by dissolving it with an organic solvent.
\-Noru. In this example, the carbon conductive paint that is the semiconductor layer 16 was removed using dimethylformamide, but the organic solvent is not limited to this. Ultrasonic cleaning may also be used when removing the scum. Note that in this step, the anode foil 11 is folded 9 times.
Needless to say, this may be carried out after bending.

次に第4図(?L)のB−Bの部分で交互に折り曲げを
行い所定の枚数を突起部12が互いに重なるように積み
重ねる。第5図は導電性レジスト層が付いて4枚積層し
た状態を示す側面図である。第5図において、11はア
ルミ箔を粗面化し更に誘電体皮膜を設けた陽極箔、13
は導電性レジスト層、19は銀ペイント層を示す。導電
性レジスト層13を有機溶媒で溶解除去した後、銀ペイ
ント層19の部分を銀ペイント溶液中に浸漬した後硬化
させる。次に陽極箔11を陽極引出しに必要な部分だけ
残して第5図のC−Cの部分で切断する。
Next, the sheets are alternately bent along the line B-B in FIG. 4 (?L), and a predetermined number of sheets are stacked so that the protrusions 12 overlap each other. FIG. 5 is a side view showing a state in which four conductive resist layers are laminated. In Fig. 5, 11 is an anode foil made of roughened aluminum foil and further provided with a dielectric film;
19 indicates a conductive resist layer, and 19 indicates a silver paint layer. After the conductive resist layer 13 is dissolved and removed using an organic solvent, the silver paint layer 19 is immersed in a silver paint solution and then cured. Next, the anode foil 11 is cut along the line CC in FIG. 5, leaving only the part necessary for drawing out the anode.

第1図は本発明の一実施例における固体電解コンデンサ
の構成を示すもので、第1図(a)はその上面図、第1
図(′b)はその平面図を示す。第1図にお15 ノ、
−2 いて、11はアルミ箔を粗面化し更に誘電体皮膜を設け
た陽極箔、19は銀ペイント層、20は陽極リード、2
1は陰極リード、22は外装を示す。
FIG. 1 shows the configuration of a solid electrolytic capacitor in one embodiment of the present invention, and FIG. 1(a) is a top view thereof, and FIG.
Figure ('b) shows its plan view. 15 in Figure 1,
-2, 11 is an anode foil made of roughened aluminum foil and further provided with a dielectric film, 19 is a silver paint layer, 20 is an anode lead, 2
1 is a cathode lead, and 22 is an exterior.

以」二のように構成された固体電解コンデンサについて
、第6図にインピーダンスの周波数特性を示す。第6図
は定格16v、定格容量1oμF寸法6.5厘x 6.
Orran X 4.Ommの本発明の一実施例につい
て10Mflz程度までのインピーダンスを示したもの
で、IMllz以上まで理想特性にほとんど近づいてい
ることが判る。
FIG. 6 shows the impedance frequency characteristics of the solid electrolytic capacitor constructed as described below. Figure 6 shows a rated capacity of 16V and a rated capacity of 1oμF, dimensions of 6.5cm x 6.
Orran X 4. This shows the impedance up to about 10 Mflz for one embodiment of the present invention of Omm, and it can be seen that the impedance is almost close to ideal characteristics up to IMllz or higher.

発明の効果 以上のように本発明は導電性高分子を用いて高周波領域
での低インピーダンス化に適し、製造」二安価で作り易
く容量“の体積効率のよい優れた固体電解コンデンサお
よびその製造方法を実現できるものである。
Effects of the Invention As described above, the present invention provides an excellent solid electrolytic capacitor that uses a conductive polymer, is suitable for lowering impedance in a high frequency range, is inexpensive, easy to manufacture, and has high capacity and volume efficiency, and a method for manufacturing the same. It is possible to realize this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における固体電解コンデンサ
の構成を示す図で、第1図(a)はその上面図、第1図
(′b)はその平面図、第2図は本発明の一実施例にお
ける固体電解コンデンサの帯状で片側に所定の間隔で複
数の突起部を形作ったコンデンサ素子箔の正面図、第3
図は陽極箔を短冊状にして弁金属で作られた支持板の片
側に所定の間隔で溶接々どで接続したコンデンサ素子箔
の正面図、第4図は第2図の突起部を陰極引出しのため
に前記導電性高分子層にグラファイト層および銀ペイン
ト層を順次形成した状態を拡大した図で、第4図(&)
はその平面図、第4図(′b)は第3図(a)(7) 
A −A線断面図、第5図は導電性レジスト層が付いて
4枚積層した状態を示す側面図、第6図は本発明の一実
施例についてインピーダンスの周波数特性図である。 11・・・・・・アルミ箔を粗面化し更に誘電体皮膜を
設けた陽極箔、12・・・・・・半導体層に覆われた突
起部、13−・・・導電性レジスト層、14 甲・アル
ミニウム製の支持板、15−・・陽極箔と支持板の溶接
部、16・・・・・半導体層、17・・・・・・導電性
高分子層、18・・・・グラフアイl−層、19・・・
・・銀ペインl−層、2o・・ ・・陽極リード、21
 ・・・・・陰極リード、1了/、 22・・・・・外装。 代理人の氏名 弁理士 粟 野 重 孝 はが1名(b
) 区 綜
FIG. 1 is a diagram showing the configuration of a solid electrolytic capacitor in an embodiment of the present invention, FIG. 1(a) is its top view, FIG. 1('b) is its top view, and FIG. 2 is the present invention. 3 is a front view of a strip-shaped capacitor element foil having a plurality of protrusions formed at predetermined intervals on one side of a solid electrolytic capacitor in one embodiment; FIG.
The figure is a front view of a capacitor element foil in which strips of anode foil are connected by welding at predetermined intervals to one side of a support plate made of valve metal. This is an enlarged view of the state in which a graphite layer and a silver paint layer are sequentially formed on the conductive polymer layer.
is its plan view, and Fig. 4 ('b) is Fig. 3 (a) (7).
FIG. 5 is a side view showing a state in which four conductive resist layers are laminated, and FIG. 6 is an impedance frequency characteristic diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 11--Anode foil made by roughening aluminum foil and further providing a dielectric film, 12--Protrusion covered with semiconductor layer, 13--Conductive resist layer, 14 A: Aluminum support plate, 15--Welded part of anode foil and support plate, 16--Semiconductor layer, 17--Conductive polymer layer, 18--Graphai l-layer, 19...
...Silver pane l-layer, 2o...Anode lead, 21
...Cathode lead, 1/22... Exterior. Name of agent: Patent attorney Shigetaka Awano (1 person)
) ward

Claims (6)

【特許請求の範囲】[Claims] (1)弁金属箔を粗面化し更に陽極酸化によって誘電体
皮膜を設けた陽極箔の所定部分に導電性レジスト層を形
成し、前記導電性レジスト層により区分孤立化した前記
陽極箔の部分を支持電解質が溶解した電解重合性モノマ
ーの水溶液による導電性高分子層を形成した固体電解コ
ンデンサ。
(1) A conductive resist layer is formed on a predetermined portion of the anode foil, which is made by roughening the valve metal foil and is further provided with a dielectric film by anodizing, and the portions of the anode foil that are sectioned and isolated by the conductive resist layer are A solid electrolytic capacitor with a conductive polymer layer formed from an aqueous solution of electrolytically polymerizable monomers in which a supporting electrolyte is dissolved.
(2)導電性レジスト層として水に不溶で有機溶媒に可
溶なカーボン或は銀を含んだ導電性塗料、7,7,8,
8−テトラシアノキノジメタン等をアクセプターとする
電荷移動錯体、あるいは溶媒可溶性の導電性高分子を用
いた請求項1記載の固体電解コンデンサ。
(2) Conductive paint containing carbon or silver that is insoluble in water and soluble in organic solvents as a conductive resist layer, 7, 7, 8,
2. The solid electrolytic capacitor according to claim 1, wherein a charge transfer complex having 8-tetracyanoquinodimethane or the like as an acceptor or a solvent-soluble conductive polymer is used.
(3)導電性高分子層がポリビニルスルフォネート、ド
デシルベンゼンスルフォネート、トリイソプロピルナフ
タレンスルフォート、イソプロピルリン酸エステルある
いはn−ブチルリン酸エステルのナトリウム塩の1つま
たは2つから成る支持電解質として重合されたものであ
る請求項1記載の固体電解コンデンサ。
(3) As a supporting electrolyte in which the conductive polymer layer is composed of one or two of the sodium salts of polyvinyl sulfonate, dodecylbenzene sulfonate, triisopropylnaphthalene sulfate, isopropyl phosphate, or n-butyl phosphate. The solid electrolytic capacitor according to claim 1, which is a polymerized solid electrolytic capacitor.
(4)導電性高分子層がピロール、チオフェンまたはフ
ランをモノマーとして重合されたものである請求項1記
載の固体電解コンデンサ。
(4) The solid electrolytic capacitor according to claim 1, wherein the conductive polymer layer is polymerized using pyrrole, thiophene, or furan as a monomer.
(5)弁金属箔としてアルミニウム箔、タンタル箔、ニ
オブ箔あるいはチタン箔を用いたものである請求項1記
載の固体電解コンデンサ。
(5) The solid electrolytic capacitor according to claim 1, wherein aluminum foil, tantalum foil, niobium foil or titanium foil is used as the valve metal foil.
(6)弁金属箔を粗面化し更に陽極酸化によって誘電体
皮膜を設けた陽極箔を帯状で片側に所定の間隔で複数の
突起部を形作ったもの、あるいは前記陽極箔を短冊状に
して弁金属で作られた支持板の片側に所定の間隔で溶接
などで接続したものを化成液にて切断部に誘電体皮膜を
設ける工程と、前記突起部あるいは短冊状陽極箔部表面
上の陰極取出し部分全体に有機または無機化合物からな
る半導体を島状または層状に均一に付着させる工程と、
前記突起部あるいは短冊状陽極箔部の所定部分に導電性
レジスト層を形成させる工程と、前記導電性レジスト層
により区分孤立化した陰極取出し部分の表面に導電性高
分子層を形成する工程と、前記導電性高分子層表面に陰
極取り出しのためのグラファイト層および銀ペイント層
を順次形成する工程と、前記導電性レジスト層を有機溶
媒にて溶解除去する工程と、前記陽極箔の帯状の部分あ
るいは前記支持板を折り曲げて前記陰極取出し部分を積
層化する工程と、前記銀ペイント層に再度銀ペイント層
を形成する工程と、前記導電性高分子層が形成されてい
ない前記突起部あるいは短冊状陽極箔部の陽極取出し部
分を残して切断する工程と、前記陽極取出し部分と前記
陰極取出し部分に各々端子を取り付ける工程とを少なく
とも有する固体電解コンデンサの製造方法。
(6) A valve metal foil with a roughened surface and a dielectric film formed by anodizing the anode foil, which is shaped like a belt and has a plurality of protrusions formed at a predetermined interval on one side, or the anode foil is shaped into a strip to form a valve. A step of applying a dielectric film to the cut portion of a support plate made of metal, connected by welding or the like at a predetermined interval using a chemical solution, and taking out the cathode on the surface of the protrusion or strip-shaped anode foil portion. A step of uniformly attaching a semiconductor made of an organic or inorganic compound to the entire part in the form of islands or layers;
a step of forming a conductive resist layer on a predetermined portion of the protrusion or the strip-shaped anode foil portion; a step of forming a conductive polymer layer on the surface of the cathode extraction portion sectioned and isolated by the conductive resist layer; a step of sequentially forming a graphite layer and a silver paint layer for taking out the cathode on the surface of the conductive polymer layer; a step of dissolving and removing the conductive resist layer with an organic solvent; a step of bending the support plate to laminate the cathode extraction portion; a step of forming a silver paint layer again on the silver paint layer; and a step of forming the protrusion or strip-shaped anode on which the conductive polymer layer is not formed. A method for manufacturing a solid electrolytic capacitor, which includes at least the steps of: cutting a foil portion leaving an anode extraction portion; and attaching terminals to the anode extraction portion and the cathode extraction portion, respectively.
JP33328188A 1988-12-29 1988-12-29 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP2811700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33328188A JP2811700B2 (en) 1988-12-29 1988-12-29 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33328188A JP2811700B2 (en) 1988-12-29 1988-12-29 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH02178912A true JPH02178912A (en) 1990-07-11
JP2811700B2 JP2811700B2 (en) 1998-10-15

Family

ID=18264345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33328188A Expired - Fee Related JP2811700B2 (en) 1988-12-29 1988-12-29 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2811700B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030328A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacutring solid electrolytic capacitor
EP1030327A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
WO2012040292A2 (en) 2010-09-21 2012-03-29 Jeffrey Poltorak Solid electrolytic capacitor and method of manufacturing a solid electrolytic capacitor
US9583273B2 (en) 2010-09-21 2017-02-28 Kemet Electronics Corporation Solid electrolytic capacitor and method of manufacturing a solid electrolytic capacitor
US9959979B2 (en) 2013-02-19 2018-05-01 Kemet Electronics Corporation Low ESR capacitor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030328A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacutring solid electrolytic capacitor
EP1030327A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
EP1030328A3 (en) * 1999-02-17 2005-01-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacutring solid electrolytic capacitor
EP1030327A3 (en) * 1999-02-17 2005-01-26 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
WO2012040292A2 (en) 2010-09-21 2012-03-29 Jeffrey Poltorak Solid electrolytic capacitor and method of manufacturing a solid electrolytic capacitor
US9583273B2 (en) 2010-09-21 2017-02-28 Kemet Electronics Corporation Solid electrolytic capacitor and method of manufacturing a solid electrolytic capacitor
US9847179B2 (en) 2010-09-21 2017-12-19 Kemet Electronics Corporation Solid electrolytic capacitor and method of manufacturing a solid electrolytic capacitor
US9959979B2 (en) 2013-02-19 2018-05-01 Kemet Electronics Corporation Low ESR capacitor

Also Published As

Publication number Publication date
JP2811700B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
JP3663952B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003086459A (en) Solid electrolytic capacitor
JPH02178912A (en) Solid electrolytic capacitor and manufacture thereof
JP2005191466A (en) Capacitor
JPH06124858A (en) Capacitor and its manufacture
JPH10163072A (en) Layered solid capacitor
JPH0614465Y2 (en) Solid electrolytic capacitor
JPH08273983A (en) Aluminum solid capacitor
JPH0936003A (en) Laminated solid condenser and manufacture thereof
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP4026819B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor and capacitor by the method
JPH03276712A (en) Solid-state electrolytic capacitor
JPH09312240A (en) Layered solid-state chip capacitor
JP2745612B2 (en) Method for manufacturing solid electrolytic capacitor
JP2924310B2 (en) Manufacturing method of capacitor
JP2730192B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH05326343A (en) Monolithic solid electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JPS61163630A (en) Manufacture of solid electrolytic capacitor
JP2969703B2 (en) Solid electrolytic capacitors
JPH0536267Y2 (en)
JP2870805B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2940017B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees