JPH02176453A - Data processing method in x-ray diffraction measurement - Google Patents

Data processing method in x-ray diffraction measurement

Info

Publication number
JPH02176453A
JPH02176453A JP33297888A JP33297888A JPH02176453A JP H02176453 A JPH02176453 A JP H02176453A JP 33297888 A JP33297888 A JP 33297888A JP 33297888 A JP33297888 A JP 33297888A JP H02176453 A JPH02176453 A JP H02176453A
Authority
JP
Japan
Prior art keywords
diffraction
width
peak
measured
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33297888A
Other languages
Japanese (ja)
Other versions
JP2639037B2 (en
Inventor
Teruo Oda
小田 輝穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33297888A priority Critical patent/JP2639037B2/en
Publication of JPH02176453A publication Critical patent/JPH02176453A/en
Application granted granted Critical
Publication of JP2639037B2 publication Critical patent/JP2639037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve measuring accuracy of the diameter of a crystal grain or lattice strain by determining a plurality of coefficients in the expression of relations with regard to the integrated widths of the peaks of diffraction angles and diffraction lines in an X-ray diffraction apparatus, and thereby comparing the integrated widths of a specimen to be measured and that of computation. CONSTITUTION:A standard specimen having the adequate diameter of a crystal grain without lattice strain is used, and an angle is scanned for an X-ray detector D. The intensity of the X rays with respect to a diffraction angle theta, i.e. the output of a rate meter R, is stored in a memory M. Integrated widths H1-H5 of about five peaks of the stored data are obtained and substituted into an expression H=a tan<2>theta+b tantheta+c. The expression is solved, and the coefficients (a), (b) and (c) are determined and stored in the memory M. A specimen to be measured is used, and the integrated widths H are computed for the diffraction peaks specified by the data from the meter R by the same way as the standard specimen. Then, the integrated width H0 of the standard specimen for the specified diffraction peak is computed by said expression. The result is compared with the width H, and the diameter of the grain and the lattice strain are computed. Therefore, the accuracy can be improved in comparison with the computation using a half value in a conventional method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線回折装置におけるデータ処理方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a data processing method in an X-ray diffraction apparatus.

(従来の技術) X線回折装置を用いて試料の結晶粒子径とか格子歪を測
定する場合、従来は一般に回折ピークの半値幅を求め、
これを標準試料における対応回折ピークの半値幅と比較
すると云う方法をとっている。しかし実測される回折X
線のピークの形はノイズ等の影響で理想的な形からは若
干ずれており、半値幅はこのピークの形の理想形からの
ずれをそのま\含んだものとなり、結晶粒子の径の測定
値に誤差として現われる。
(Prior art) When measuring the crystal grain size or lattice strain of a sample using an X-ray diffraction device, conventionally, the half-value width of the diffraction peak was generally determined
The method used is to compare this with the half-width of the corresponding diffraction peak in a standard sample. However, the actually measured diffraction
The shape of the peak of the line deviates slightly from the ideal shape due to the influence of noise, etc., and the half-width includes the deviation of this peak shape from the ideal shape, and is used to measure the diameter of crystal grains. This appears as an error in the value.

(発明が解決しようとする課題) 本発明はX線回折装置において試料の結晶粒子の径とか
格子歪を測定する場合におけるデータ処理の方法を改善
して測定精度を高めようとするものである。
(Problems to be Solved by the Invention) The present invention aims to improve the data processing method when measuring the diameter of crystal grains or lattice strain of a sample in an X-ray diffraction apparatus, thereby increasing measurement accuracy.

(課題を解決するための手段) X線回折装置において回折角θと回折ピークの積分幅と
の関係関数を複数の係数を含む式で表わし、この式に、
標準試料を用いて実測された複数の回折線ピークの積分
幅を代入して上記係数を決定し、被測定試料における任
意の回折線ピークの回折角に対して上記係数を決定され
た関数を用いて算出された積分幅を以ってその回折線ピ
ークに対する標準試料の回折線ピークの積分幅として、
実測試料のその回折線ピークの積分幅を比較するように
した。
(Means for Solving the Problem) In an X-ray diffraction device, the relationship function between the diffraction angle θ and the integral width of the diffraction peak is expressed by a formula including a plurality of coefficients, and in this formula,
Determine the above coefficient by substituting the integral width of multiple diffraction line peaks actually measured using a standard sample, and use the determined function of the above coefficient for the diffraction angle of any diffraction line peak in the sample to be measured. Using the integral width calculated as the integral width of the diffraction line peak of the standard sample for that diffraction line peak,
The integral widths of the diffraction line peaks of the measured samples were compared.

(作用) 積分幅は測定出力が独立変数に対してピークを画くよう
な任意測定装置において、そのピークの面積をピーク高
さで割った値で、例えばピークが三角形を呈する場合積
分幅はピーク底辺の幅の1/2となり、半値と一致する
ものでピークの幅を表わす値である。この積分幅はピー
クを独立変数について積分しているので、独立変数の8
値に対応する測定出力の誤差は平均されることになり、
半値幅よりも、ピークを特徴づける幅の値として精度の
高いものである。従って回折X線の測定におけるデータ
処理において、従来用いられていた半値幅の代りに積分
幅を用いることで測定精度の向上が得られる。所でX線
回折装置で回折線の測定を行うと回折線のピーク幅は回
折現象の特性とX線回折装置の特性とにより回折角の関
数となっている。この関数はまた試料によっても異るが
、関数の基本形は一定していて、関数に含まれる係数が
装置および試料によって変化する。この関数形は一般に
積分幅をHとすると )(= (21tan  θ+btanθ十〇)と云う
形で充分な精度で近似でき、a、b、cが装置および試
料で決まる係数である。そこで標準の試料で幾つかの回
折線について積分幅を実測的に求め上式に代入すれば係
数a、b、cが決定できるから、任意の回折線に対する
標準試料の積分幅が上式から計算できる。この計算され
た積分幅と被測定試料の任意回折線の実測積分幅とを比
較することで結晶粒子の大きさとか格子歪が求められる
(Function) The integral width is the value obtained by dividing the area of the peak by the peak height in any measuring device in which the measured output has a peak with respect to the independent variable. For example, if the peak is triangular, the integral width is the value of the peak base. It is 1/2 of the width of the peak, which coincides with the half value, and is a value representing the width of the peak. This integral width integrates the peak with respect to the independent variable, so
The error in the measured output corresponding to the value will be averaged,
It is a more accurate width value that characterizes a peak than the half-width. Therefore, in data processing in the measurement of diffraction X-rays, measurement accuracy can be improved by using the integral width instead of the conventionally used half-width. When a diffraction line is measured using an X-ray diffraction device, the peak width of the diffraction line becomes a function of the diffraction angle due to the characteristics of the diffraction phenomenon and the characteristics of the X-ray diffraction device. This function also varies depending on the sample, but the basic form of the function is constant, and the coefficients included in the function vary depending on the device and sample. This function form can generally be approximated with sufficient accuracy in the form (= (21tan θ + btan θ 10), where the integral width is H), where a, b, and c are coefficients determined by the equipment and sample. By actually measuring the integral width for some diffraction lines and substituting it into the above formula, the coefficients a, b, and c can be determined, so the integral width of the standard sample for any diffraction line can be calculated from the above formula.This calculation By comparing the obtained integral width with the actually measured integral width of an arbitrary diffraction line of the sample to be measured, the size of crystal grains or lattice strain can be determined.

(実施例) 第1図は本発明を実施する装置の一例を示す。(Example) FIG. 1 shows an example of an apparatus for carrying out the invention.

この装置はX線回折装置であって、Gはゴニオメータ、
XはX線源、DはX線検出器でSは試料である。X線検
出器りの出力はレートメータRを介してデータ処理袋r
tc内のメモリMに取込まれる。
This device is an X-ray diffraction device, where G is a goniometer;
X is an X-ray source, D is an X-ray detector, and S is a sample. The output of the X-ray detector is sent to the data processing bag R via the rate meter R.
It is taken into memory M in tc.

第2図はデータ処理装置Cの動作を示すフローチャート
である。第1図の装置で試料Sを角度θ回転させるとX
線検出器りは連動して角度2θ回転する。データ処理装
置は図外のゴニオメータ駆動回路にパルス信号を送って
パルスモータを駆動せしめ試料Sを回転させ、回転角θ
は駆動回路に送ったパルスを計数して検出しており、こ
の角度のデータをメモリのアドレス指定データとしてレ
ートメータRの出力をメモリMに取込む。動作順序を第
2図によって説明すると、標準試料すなわち格子歪がな
く、適当な結晶粒子径の試料を用い、X線検出器りを角
度走査して、回折角θに対するX線強度すなわちレート
メータRの出力をメモリMに取込み(イ)、取込んだデ
ータについて予め指定した5個(5個とは限らない。成
る程度数は多い方がよい。)のピークの積分幅を求める
(口)。この積分幅の計算は指定されたピーク(回折角
で措定しても、一番内側の回折ピークから何番目と云う
指定でもよい〉のピーク中心高さを求め、半値幅を決め
、ピーク中心の回折角を中心に高角、低角両側に半値幅
の例えば5倍の角度範囲にわたって一つのピークのX線
強度を積分し、その積分値をピーク高さで割算して算出
する。次に指定された5つのピークについての積分幅を
Hl、H2,H3,H4,H5とするとき、これらの値
を H= (21tan”θ+btanθ+c )  −(
1)のHに代入して5個の方程式をつ(す、それを解い
て、係数a、b、cを決定しメモリMに格納(ハ)する
。この計算で未知数は3個で式は5個あるから、最小自
乗法によりa、b、cが決定される。最小自乗法の導入
により、個々のピークの実測積分幅の誤差が平均化され
、係数決定の精度が向上する。以上でl備動作が終り、
被測定試料がセットされるのを待ち、被測定試料がセッ
トされたら測定動作を開始する。測定動作は標準試料の
ときと同じで、試料の回転角θをアドレス指定データと
して回折X線強度のデータをメモリMに取込みく二)、
データ処理の動作に入る。データ処理は指定された回折
ピークについて積分幅を計算する(ホ)。この計算は前
記(ロ)のステップにおけると同様にして行われる。次
にその指定された回折ピークに対する標準試料の回折ピ
ークの積分幅を計算する(へ)。この計算は前記(1)
式のa、b、cに(ハ)のステップで決定された値を入
れ、被測定試料の指定した回折線ピークの回折角θを代
入してHを算出するものである。このようにして求めら
れた被測定試料の指定回折ピークの積分幅Hとそれに対
応する標準試料の回折ピークの積分幅Hoとを比較して
結晶粒子径或は格子歪を計算(ト)シて動作を終る。
FIG. 2 is a flowchart showing the operation of data processing device C. When the sample S is rotated by an angle θ using the apparatus shown in Figure 1,
The line detector rotates by an angle of 2θ in conjunction. The data processing device sends a pulse signal to a goniometer drive circuit (not shown) to drive the pulse motor, rotates the sample S, and rotates the sample S at a rotation angle of θ.
The pulses sent to the drive circuit are counted and detected, and the output of the rate meter R is taken into the memory M using this angle data as address designation data for the memory. The operating sequence is explained with reference to Fig. 2. Using a standard sample, that is, a sample with no lattice distortion and an appropriate crystal grain size, the X-ray detector is angularly scanned, and the X-ray intensity with respect to the diffraction angle θ, that is, the rate meter R is measured. The output of is taken into the memory M (a), and the integral width of 5 (not necessarily 5, it is better to have a larger number) peaks specified in advance for the taken data is determined (see). To calculate this integral width, find the peak center height of the specified peak (which can be specified by the diffraction angle or the specified number from the innermost diffraction peak), determine the half-width, and calculate the height of the peak center. Calculate by integrating the X-ray intensity of one peak over an angular range of, for example, five times the half width on both high and low angles around the diffraction angle, and dividing the integrated value by the peak height.Next, specify When the integral widths for the five peaks obtained are Hl, H2, H3, H4, and H5, these values are expressed as H= (21tan"θ+btanθ+c) - (
Substitute H in 1) to create five equations, solve them, determine coefficients a, b, and c, and store them in memory M (c). In this calculation, there are three unknowns, and the equation is Since there are 5, a, b, and c are determined by the least squares method. By introducing the least squares method, the errors in the measured integral widths of the individual peaks are averaged, improving the accuracy of coefficient determination. After the preparation operation is completed,
Wait until the sample to be measured is set, and once the sample to be measured is set, start the measurement operation. The measurement operation is the same as for the standard sample, and the diffraction X-ray intensity data is imported into the memory M using the rotation angle θ of the sample as addressing data.2)
Start data processing operation. Data processing calculates the integral width for the designated diffraction peak (e). This calculation is performed in the same manner as in step (b) above. Next, calculate the integral width of the diffraction peak of the standard sample with respect to the specified diffraction peak. This calculation is described in (1) above.
H is calculated by entering the values determined in step (c) into a, b, and c of the equation, and substituting the diffraction angle θ of the designated diffraction line peak of the sample to be measured. The crystal grain size or lattice strain is calculated by comparing the integral width H of the designated diffraction peak of the measured sample obtained in this way with the corresponding integral width Ho of the diffraction peak of the standard sample. Finish the action.

(発明の効果) 本発明によれば、従来半値幅から計算していた結晶粒子
径とか格子歪が積分幅を用いて計算できるようになった
ので、測定精度が一段と向上できるようになった。
(Effects of the Invention) According to the present invention, the crystal grain diameter and lattice strain, which were conventionally calculated from the half-width, can now be calculated using the integral width, making it possible to further improve measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する装置の一例のブロック図
、第2図は上記装置の動作のフローチャートである。 G・・・ゴニオメータ、X・・・X線源、D・・・X線
検出器、M・・・メモリ、C・・・データ処理装置。
FIG. 1 is a block diagram of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a flowchart of the operation of the apparatus. G: goniometer, X: X-ray source, D: X-ray detector, M: memory, C: data processing device.

Claims (1)

【特許請求の範囲】[Claims] X線回折装置において、回折角θと回折線ピークの積分
幅との間複数の係数を含む関係式に、標準試料を用いて
実測された複数の回折線ピークの積分幅を代入して上記
係数を決定し、被測定試料における任意の回折線ピーク
の積分幅と上記係数を決定された式により計算された同
回折線ピークに対する計算上の積分幅とを比較するよう
にしたことを特徴とするX線回折測定のデータ処理方法
In an X-ray diffractometer, the above coefficients are calculated by substituting the integral width of multiple diffraction line peaks actually measured using a standard sample into the relational expression that includes multiple coefficients between the diffraction angle θ and the integral width of the diffraction line peak. is determined, and the integral width of an arbitrary diffraction line peak in the sample to be measured is compared with the calculated integral width for the same diffraction line peak calculated by the formula in which the coefficient is determined. Data processing method for X-ray diffraction measurements.
JP33297888A 1988-12-27 1988-12-27 Data processing method for X-ray diffraction measurement Expired - Fee Related JP2639037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33297888A JP2639037B2 (en) 1988-12-27 1988-12-27 Data processing method for X-ray diffraction measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33297888A JP2639037B2 (en) 1988-12-27 1988-12-27 Data processing method for X-ray diffraction measurement

Publications (2)

Publication Number Publication Date
JPH02176453A true JPH02176453A (en) 1990-07-09
JP2639037B2 JP2639037B2 (en) 1997-08-06

Family

ID=18260949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33297888A Expired - Fee Related JP2639037B2 (en) 1988-12-27 1988-12-27 Data processing method for X-ray diffraction measurement

Country Status (1)

Country Link
JP (1) JP2639037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062311A (en) * 2014-05-23 2014-09-24 武汉钢铁(集团)公司 Method for measuring inverse pole figure by inclining and rotating test sample
JP2017134085A (en) * 2010-06-13 2017-08-03 株式会社明治 Method of determining solubility and hardness of solid milk, and method for producing solid milk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134085A (en) * 2010-06-13 2017-08-03 株式会社明治 Method of determining solubility and hardness of solid milk, and method for producing solid milk
CN104062311A (en) * 2014-05-23 2014-09-24 武汉钢铁(集团)公司 Method for measuring inverse pole figure by inclining and rotating test sample

Also Published As

Publication number Publication date
JP2639037B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
Rossmann et al. Oscillation photography of radiation-sensitive crystals using a synchrotron source
EP1540319B1 (en) Quantitative phase analysis of textured polycrystalline materials
JPH02176453A (en) Data processing method in x-ray diffraction measurement
CN104062311A (en) Method for measuring inverse pole figure by inclining and rotating test sample
JPH06317431A (en) Method for calibrating encoder
Brindley Long-spacing organics for calibrating long spacings of interstratified clay minerals
CN111551579B (en) Method for determining X-ray background intensity by blank correction
JP4115542B2 (en) Non-standard phase analysis by diffractogram
JP2912127B2 (en) X-ray fluorescence analysis method
JP2686222B2 (en) Method for obtaining correlation equation between fluorescent X-ray intensity and element content
JP3569734B2 (en) X-ray fluorescence analyzer
CN110243850A (en) The method of hydroxyapatite content in full spectrum refine measurement bata-tricalcium phosphate
JP2785848B2 (en) Measurement method for internal strain of crystal substrate
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JPS6170444A (en) Concentration analyzing method in electron ray micro-analysis instrument
Denne The ω/θ scan–an efficient X-ray monochromation technique
Straumanis Lattice parameters, expansion coefficients, and atomic and molecular weights
SU828041A1 (en) Method of measuring monocrystal lattice period
JP3552333B2 (en) X-ray diffraction analysis method
JP2896904B2 (en) Calibration curve creation method for fluorescent X-ray film thickness measurement
JP3367999B2 (en) X-ray quantitative analysis method and apparatus
JPH04194611A (en) Measuring method for film thickness by x-ray diffraction method
SU1682775A1 (en) Method of calibration of radio isotope devices for process monitoring
SU1744611A1 (en) Method of determination of curvature radius of atom planes in single crystal plates
JP2022187318A (en) Crystallinity degree measurement instrument, crystallinity degree measurement method, and program

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees