JPH02176404A - Curvature-radius measuring device - Google Patents

Curvature-radius measuring device

Info

Publication number
JPH02176404A
JPH02176404A JP32534288A JP32534288A JPH02176404A JP H02176404 A JPH02176404 A JP H02176404A JP 32534288 A JP32534288 A JP 32534288A JP 32534288 A JP32534288 A JP 32534288A JP H02176404 A JPH02176404 A JP H02176404A
Authority
JP
Japan
Prior art keywords
curvature
measured
radius
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32534288A
Other languages
Japanese (ja)
Inventor
Hideki Kobayashi
小林 英喜
Seiji Yoshikawa
好川 清治
Hiroshi Inoue
寛 井上
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32534288A priority Critical patent/JPH02176404A/en
Publication of JPH02176404A publication Critical patent/JPH02176404A/en
Pending legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PURPOSE:To make it possible to measure a curvature even for a material to be measured having a partial spherical body readily and accurately by bringing a material to be measured into contact with the main body of a measuring part, wherein a conical recess part is formed at the upper part, from the upper side, and inserting a dial gage from the lower side. CONSTITUTION:A conical recess part 1b having the angle of 60 degrees is formed at an upper end part 1b of a main body 1 of a measuring part. A dial gate 2 as a length measuring means is arranged in a lower measuring hole 1d through a lower end part 1c. When the diameter of a curvature is measured, at first a reference spherical body whose curvature is known is inserted. The distance from a conical imaginary top to the spherical body is measured with the gage 2. Then, a material to be measured is inserted into the recess part 1b, and the distance from the imaginary top is measured with the gage 2 by the same way. The radius of the curvature of the material to be measured is obtained by a specified computing equation from the difference between said distances. Therefore, the curvature of a rod shaped body whose tip has the spherical shape even if it is not the spherical body can be readily measured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、球体や円柱体、あるいは一部が部分的な球
体や円柱体によって形成されている構造体の曲率半径a
lJ定器に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) This invention relates to a radius of curvature a of a structure formed by a sphere, a cylinder, or a partial sphere or cylinder.
Regarding lJ constant.

(従来の技術) 球体や円柱体の曲率半径を求める方法としては、ノギス
や外側マイクロメータのような被測定物を平行な2つの
1ill定面で挟み込むことにより被測定物の外形の測
定を行うal定器によって、測定しようとする球体や円
柱体の仮想原点を挟み込んで直径をn1定し、得られた
直径の値から曲率半径を求める、直径法が一般的に用い
られている。また、このような平行な2つの測定面をH
する11P1定器を用いた直径法の測定位置が仮想原点
よりずれやすいという欠点を解消するために、11か1
定面の一方を直角に隣接する2つの平面で構成した測定
器を用いて、同様に曲率半径を求めることも行われてい
る。
(Prior art) As a method for determining the radius of curvature of a sphere or cylinder, the outer shape of the object is measured by sandwiching the object, such as a caliper or an outer micrometer, between two parallel 1ill constant surfaces. A diameter method is generally used in which the diameter of a sphere or cylinder to be measured is determined by n1 using an al determiner, and the radius of curvature is determined from the obtained diameter value. Also, such two parallel measurement surfaces are
In order to eliminate the drawback that the measurement position of the diameter method using the 11P1 measuring device tends to deviate from the virtual origin, the 11 or 1
The radius of curvature has also been similarly determined using a measuring device in which one of the fixed surfaces is composed of two planes adjacent at right angles.

しかし、これら直径法は完全な球体や円柱体のの曲率半
径を求める場合には有効な方法であるが、棒状体の一端
部が半球体で構成されているような構造体や、板状体の
一端部が半円柱体で構成されているような構造体など、
球体や円柱体の一部によって曲面が形成されている構造
体の曲率半径を求めようとした場合、仮想原点を挟み込
むことができないため、測定することができない。
However, these diameter methods are effective for determining the radius of curvature of a perfect sphere or cylinder, but they cannot be used for structures where one end of a rod is made up of a hemisphere or for plates. Structures such as one end of which is made up of a semi-cylindrical body, etc.
When trying to find the radius of curvature of a structure whose curved surface is formed by part of a sphere or cylinder, it is impossible to measure the radius of curvature because the virtual origin cannot be sandwiched between the structures.

そこで、以下に示すようなll?3定方法が使用されて
いる。
Therefore, ll? as shown below? A ternary method is used.

■ 触針などによって被測定物の表面を複数回トレース
することによって、球面や円柱面の形状を測定し、この
ill定値を演算することによって円の計算式から曲率
半径を求める方法(以下、トレース法と呼ぶ。)。
■ A method of measuring the shape of a spherical or cylindrical surface by tracing the surface of the object to be measured multiple times with a stylus, etc., and calculating the radius of curvature from a circle calculation formula by calculating this ill constant value (hereinafter referred to as tracing). ).

■ プローブなどによって披71$1定物表面の複数箇
所の座標を求め、この座標値を演算することによって円
の計算式から曲率半径を求める方法(以下、プローブ法
と呼ぶ。)。
■ A method of determining the coordinates of multiple locations on the surface of a constant object using a probe, etc., and calculating the radius of curvature from a circle calculation formula by calculating these coordinate values (hereinafter referred to as the probe method).

(発明が解決しようとする課題) しかしながら、上述したようなトレース法やプローブ法
を用いたとしても、不完全な球面や円柱面の場合には、
部分的な円や球の測定から完全な円や球として一旦計算
し、この計算値より曲率半径を求めるため、僅かな測定
誤差が拡大され得られる曲率半径に誤差が生じやすいと
いう問題があった。特にプローブ法の場合には、複数点
の座標から計算によって曲率半径を求めるため、−点で
もi’llj定に誤差が生じていると、i’l11定精
度が大幅に低下してしまう。また、被測定物表面の表面
粗さが大きいような場合には、特にトレース法における
測定値に誤差が生じやすく、測定精度が大幅に低下して
しまう。
(Problem to be Solved by the Invention) However, even if the above-mentioned tracing method or probe method is used, in the case of an imperfect spherical or cylindrical surface,
Since a complete circle or sphere is calculated from the measurement of a partial circle or sphere, and the radius of curvature is determined from this calculated value, there is a problem that slight measurement errors are amplified and errors tend to occur in the radius of curvature obtained. . In particular, in the case of the probe method, the radius of curvature is calculated from the coordinates of a plurality of points, so if an error occurs in the i'llj constant even at the - point, the i'll11 constant accuracy will drop significantly. Furthermore, when the surface of the object to be measured has a large surface roughness, errors are likely to occur particularly in the measurement values obtained by the tracing method, resulting in a significant decrease in measurement accuracy.

また、被測定物の球形状や円形状の一部にゆがみが生じ
ているような場合には、平均的な球形状や円形状として
計算されてしまうため、部分的に実体とは合わなくなっ
てしまう。このように平均化して曲率半径を求めるため
、当然ながらゆがみのある球や円の部分的な曲率半径を
求めることはできない。
In addition, if there is some distortion in the spherical or circular shape of the object to be measured, the calculation will be performed as an average spherical or circular shape, so some parts may not match the actual shape. Put it away. Since the radius of curvature is determined by averaging in this way, it is of course impossible to determine the partial radius of curvature of a distorted sphere or circle.

さらに、トレース法やプローブ法を適用した曲率半径測
定装置は、演算機能を必要とするとともに11−1定部
の構成も複雑であるため、装置自体が高価であるという
難点や、その操作も複雑であるためにall定コストが
高いというような難点もある。
Furthermore, curvature radius measurement devices that apply the trace method or probe method require calculation functions and have a complicated configuration of the 11-1 constant part, so the device itself is expensive and its operation is complicated. Therefore, there are also drawbacks such as high fixed costs for all.

この発明は、このような従来技術の課題に対処するため
になされたもので、球体や円柱体の一部によって曲面が
形成されているような構造体の曲面部においても、容品
にかつ精度よく曲率半径を求めることができ、かつ部分
的にゆがみが生じているような球面や円柱面における各
部の曲率半径をも測定可能な曲率半径#1定器を提供す
ることを目的としている。
This invention was made to address the problems of the prior art, and it is possible to improve the quality and precision even in the curved surface of a structure where the curved surface is formed by a part of a sphere or cylinder. It is an object of the present invention to provide a radius of curvature #1 determiner that can accurately determine the radius of curvature and can also measure the radius of curvature of each part of a partially distorted spherical or cylindrical surface.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) すなわちこの発明の曲率半径n1定器は、測定部本体と
、この測定部本体の一端部に設けられ内面が測定面とな
る所定の角度を有する円錐状またはV溝状の凹部と、こ
の凹部にその頂部方向から連通ずるように前記測定部本
体の他端部から穿設された測定孔と、前記凹部に当接配
置された被測定物に接触することにより曲率半径を計a
−1する計測手段とを具備することを特徴としている。
(Means for Solving the Problem) That is, the radius of curvature n1 determiner of the present invention includes a measuring section main body, and a conical or V shape having a predetermined angle, the inner surface of which is provided at one end of the measuring section main body and whose inner surface becomes the measuring surface. By contacting a groove-shaped recess, a measurement hole bored from the other end of the measurement unit main body so as to communicate with the recess from the top direction, and an object to be measured placed in contact with the recess. Measure the radius of curvature a
-1 measuring means.

(作 用) この発明の曲率半径測定器においては、たとえばまず曲
率半径既知の基準球体や基準円柱体を測定部本体錐状ま
たはV溝状凹部に当接配置し、長さ計測手段によって基
準球体の先端位置の円錐状またはV溝状凹部の仮想頂点
からの距離を測定する。次いで、同様に被all定物の
曲面を円錐状またはV溝状凹部に当接配置し、曲面先端
位置の円錐状またはV溝状凹部の仮想頂点からの距離を
all定する。そして、これらの仮想頂点からの距離の
差から被4−1定物の曲面の曲率半径を求めることがで
きる。
(Function) In the curvature radius measuring device of the present invention, for example, first, a reference sphere or a reference cylindrical body with a known radius of curvature is placed in contact with the conical or V-groove recess of the measuring part body, and the length measuring means is used to measure the reference sphere or the reference cylinder. Measure the distance from the virtual apex of the conical or V-groove-shaped recess at the tip position. Next, all the curved surfaces of the objects to be measured are placed in contact with the conical or V-groove recesses, and the distances of the tip positions of the curved surfaces from the virtual apex of the conical or V-groove recesses are determined. Then, the radius of curvature of the curved surface of the object 4-1 can be determined from the difference in distance from these virtual vertices.

よって、被測定物の曲面が円錐状またはV溝状凹部に当
接し面として固定されるものであれば、部分的な球体や
円柱体であっても正確に曲率半径の測定が可能である。
Therefore, as long as the curved surface of the object to be measured comes into contact with the conical or V-groove recess and is fixed as a surface, it is possible to accurately measure the radius of curvature of even a partially spherical or cylindrical object.

また、被測定物の曲面が部分的に曲率半径が異なる場合
 は、仮想頂点からの距離の差の変化として計ハ1でき
る。
Furthermore, if the curved surface of the object to be measured has partially different radii of curvature, it can be calculated as a change in the difference in distance from the virtual vertex.

(実施例) 次に、この発明の曲率半径測定器の実施例を図面を参照
して説明する。
(Example) Next, an example of the curvature radius measuring device of the present invention will be described with reference to the drawings.

第1図は、この発明の一実施例の球体用の曲率半径測定
器を示す図である。同図において、1はたとえば超硬合
金やセラミックス部材などの耐摩耗性に優れた部材によ
って形成された円筒状の測定部本体である。このΔP1
定部本部本体1方の端部1aには、その面に対して所定
の角度を有する円錐状凹部1bが穿設されており、この
円錐状凹部1bの内面が測定面となる。また、測定部本
体1内には、他方の端部1cから円錐状凹部1bにその
頂部方向から連通する測定孔1dが形成されており、こ
の測定孔1dの円錐状凹部1bとの連通部は円錐状凹部
1bと逆円錐形状とされている。
FIG. 1 is a diagram showing a radius of curvature measuring device for a sphere according to an embodiment of the present invention. In the figure, reference numeral 1 denotes a cylindrical measuring section body made of a material with excellent wear resistance, such as cemented carbide or ceramic material. This ΔP1
A conical recess 1b having a predetermined angle with respect to the surface thereof is bored in one end 1a of the main body 1, and the inner surface of this conical recess 1b serves as a measurement surface. In addition, a measurement hole 1d is formed in the measurement section main body 1, and the measurement hole 1d communicates from the other end 1c to the conical recess 1b from the top direction. It has an inverted conical shape with the conical recess 1b.

a1定部本体1の測定孔1dには、測定部本体1の他方
の端部1c側から長さ計測手段としてたとえばダイヤル
ゲージ2が配置されており、このダイヤルゲージ2のス
ピンドル2aの先端に設けられた測定子2bが円錐状凹
部1b内に到達するように、スリーブ2Cが測定孔ld
内に挿入され、測定部本体1側面に設けられた捩子溝1
eに捩子込まれた固定用捩子3によって固定されている
For example, a dial gauge 2 is arranged as a length measuring means in the measurement hole 1d of the a1 fixed part main body 1 from the other end 1c side of the measuring part main body 1. The sleeve 2C is inserted into the measurement hole ld so that the measured probe 2b reaches the inside of the conical recess 1b.
A screw groove 1 inserted into the measuring section main body 1 and provided on the side surface of the measuring section main body 1
It is fixed by a fixing screw 3 screwed into e.

このダイヤルゲージ2は通常のダイヤルゲージであり、
測定子2bを被測定体に当接させてスピンドル2aのス
トロークを指針2dにより、て計測するもので、回転可
能な目盛板2eによって零合わせが可能とされている。
This dial gauge 2 is a normal dial gauge,
The stroke of the spindle 2a is measured with a pointer 2d by bringing the measuring stylus 2b into contact with the object to be measured, and zeroing is possible with a rotatable scale plate 2e.

また、11−1定部本体1の外周には、円錐状凹部1b
に挿入配置され曲率半径の測定が行われる被測定物5の
測定範囲を設定するサポート4が、円錐状凹部1bが形
成されているΔ−1定部本体1の一端部1aより突設す
るように配置されており、このサポート4も図示を省略
した固定捩子によって測定部本体1に固定されている。
Further, on the outer periphery of the constant part main body 1 of 11-1, a conical recess 1b is provided.
A support 4 for setting the measurement range of the object to be measured 5 whose radius of curvature is to be measured is arranged to protrude from one end 1a of the Δ-1 fixed part main body 1 in which the conical recess 1b is formed. The support 4 is also fixed to the measuring section main body 1 by a fixing screw (not shown).

なお、このサポート4は直接曲率半径の測定に関与する
ものではなく、単に曲率半径の測定を行う場合には不必
要である。
Note that this support 4 is not directly involved in measuring the radius of curvature, and is unnecessary when simply measuring the radius of curvature.

次に、上記構成を有するこの実施例の曲率半径測定器の
測定原理について第2図を参照して説明する。
Next, the measurement principle of the radius of curvature measuring device of this embodiment having the above-mentioned configuration will be explained with reference to FIG.

同図において、6は曲率半径が既知の基準体となる球体
で、7は被31定物である球体であり、これらはそれぞ
れ測定部本体1錐状凹部1bの内面によって接触固定さ
れている。また、球体6の半径を「1、被測定球体7の
半径をrl、円錐状凹部1bの頂部角度をθとし、円錐
状凹部1bの想定頂点0から基準球体6表面までの頂部
角度θの2等分線上の距離をβ1、同じく被測定球体7
表面までの距離を12とする。
In the figure, 6 is a sphere serving as a reference body with a known radius of curvature, and 7 is a sphere serving as a fixed object 31, and these are each fixed in contact with the inner surface of the conical recess 1b of the measuring section main body 1. In addition, the radius of the sphere 6 is 1, the radius of the measured sphere 7 is rl, the top angle of the conical recess 1b is θ, and the top angle θ from the assumed apex 0 of the conical recess 1b to the surface of the reference sphere 6 is 2. The distance on the equal dividing line is β1, and the measured sphere 7
Let the distance to the surface be 12.

ここで、円錐状凹部1bの想定頂点Oから被測定球体7
の中心02までの距離11は、膳1−「2 sin (θ/2) で表せるから、J22は 112− +H−rl−rl−rz sln (θ/2) となる。そして、求めようとする被測定球体7の曲率半
径「2は、rlと12との比率からrl:!z−r2:
    rl−rzsln (θ/2) 「2 ′ rl ″ 「2 ・ β2 「2 sin (θ/2) 「2 「2 ・ (2 「2  (1−sin (θ12)) sin (θ/2) sin (θ/2) ここで、ぶ1−J2z−Δβとおくと、sin (θ/
2) また、11は同様に β1−rl sin (θ/2) で表されるから 「1 ! (以下余白) (以下余白) rl    −rl   −Δ! sin (θ/2) そして、「1、θは既知であり、Δkが4−1定部本体
1内に挿入固定されたダイヤルゲージ2による実測値と
なるため、「2が求まる。また、円錐状凹部1bの頂部
角度θを60″とすると、となるため、 r2=12椰J2+−八β となり、被測定球体7の半径r2の値を八βの実測値か
らl:lの目盛りとして直読することができ、より測定
時間を短縮することが可能となる。
Here, from the assumed apex O of the conical recess 1b to the measured sphere 7
Since the distance 11 to the center 02 of can be expressed as 1-2 sin (θ/2), J22 becomes 112- +H-rl-rl-rz sln (θ/2). The radius of curvature "2" of the measured sphere 7 is determined from the ratio of rl and 12 as rl:!z-r2:
rl-rzsln (θ/2) "2 'rl""2 ・ β2 "2 sin (θ/2) "2 "2 ・ (2 "2 (1-sin (θ12)) sin (θ/2) sin ( θ/2) Here, if we set bu1-J2z-Δβ, sin (θ/
2) Also, since 11 is similarly expressed as β1-rl sin (θ/2), “1! Since θ is known and Δk is the actual value measured by the dial gauge 2 inserted and fixed in the 4-1 fixed part main body 1, ``2'' can be obtained. Then, r2 = 12 J2 + - 8β, and the value of the radius r2 of the sphere to be measured 7 can be directly read from the actual measured value of 8β as a scale of l:l, further shortening the measurement time. becomes possible.

実際の測定にあたっては、上述した説明のように、基準
球体6の曲率半径r1が被測定球体7の曲率半径「2よ
り大きいとすると、第2図では省略したダイヤルゲージ
2としてスピンドル2aの短縮工程によって指針2dが
目盛板28のマイナス側に移動するものを使用するとと
もに、基準球体6を円錐状凹部1bに挿入固定し、ダイ
ヤルゲージ2のΔ−1定子2bが基準球体6に接した位
置を基準球体6の半径「1の値となるように目盛板2e
を設定することによって、被a−1定球体7を円錐状凹
部1bに挿入固定した際に、ダイヤルゲージ2の指針2
dが指す値を直接被71−1定球体7の曲率半径「2の
値として直読可能となる。
In actual measurement, as explained above, if the radius of curvature r1 of the reference sphere 6 is larger than the radius of curvature "2" of the sphere to be measured 7, then the dial gauge 2, which is omitted in FIG. The pointer 2d is moved to the minus side of the scale plate 28 by the movement of the dial gauge 2, and the reference sphere 6 is inserted and fixed into the conical recess 1b, and the position where the Δ-1 constant 2b of the dial gauge 2 touches the reference sphere 6 is determined. Adjust the scale plate 2e so that the radius of the reference sphere 6 becomes a value of 1.
By setting , when the target a-1 fixed sphere 7 is inserted and fixed into the conical recess 1b, the pointer 2 of the dial gauge 2
The value indicated by d can be directly read as the value of 2, which is the radius of curvature of the fixed sphere 7 of the subject 71-1.

次に、上記構成の曲率半径測定器による測定方法につい
て説明する。なお、この例では被J1定物5として棒状
体の長手方向一端部が半球面で構成されている構造体を
用いて説明する。
Next, a measurement method using the curvature radius measuring instrument having the above configuration will be explained. In this example, a structure in which one end of a rod-like body in the longitudinal direction is formed into a hemispherical surface will be used as the object J1 fixed object 5.

まず、第3図(イ)に示すように、測定部本体1の円錐
状凹部1bに基準球体6をセットし、基準球体6が円錐
状凹部1bの内面によって接触固定されるように若干の
圧力を加え(図中矢印Aで示す)、ダイヤルゲージ2の
測定子2bの位置を設定し、この状態におけるダイヤル
ゲージ2の指針2dが指す値が基準球体6の曲率半径「
1の値となるように目盛板2eを設定する。
First, as shown in FIG. 3(a), set the reference sphere 6 in the conical recess 1b of the measuring section main body 1, and apply some pressure so that the reference sphere 6 is fixed in contact with the inner surface of the conical recess 1b. (indicated by arrow A in the figure), and set the position of the measuring tip 2b of the dial gauge 2. In this state, the value pointed by the pointer 2d of the dial gauge 2 is the radius of curvature of the reference sphere 6.
The scale plate 2e is set so that the value is 1.

次に、基準球体6を取除いた後・、被a−1定物5の球
面部分5aを同様に円錐状凹部1にセットし、上述した
測定原理にしたがってダイヤルゲージ2の指針2dから
被aFJ定物5の球面部分5aの曲率半径r2を測定す
る。
Next, after removing the reference sphere 6, the spherical part 5a of the object a-1 fixed object 5 is similarly set in the conical recess 1, and the pointer 2d of the dial gauge 2 is The radius of curvature r2 of the spherical portion 5a of the fixed object 5 is measured.

また、被測定物5の球面部分5aが円錐状凹部1bの内
面に当接されている状態を維持しつつ、被測定物5を移
動させることにより、球面部分5aの微小部分における
曲率半径「2の値を求めることができ、たとえば球面部
分5aの加工精度などを判定することができる。
Furthermore, by moving the object to be measured 5 while maintaining the state in which the spherical portion 5a of the object to be measured 5 is in contact with the inner surface of the conical recess 1b, the radius of curvature of the minute portion of the spherical portion 5a is “2”. The value of can be determined, and for example, the machining accuracy of the spherical portion 5a can be determined.

さらに、たとえば披ill定物5の球面部分5aにおけ
る曲率半径の寸法精度の許容範囲が限定されている場合
には、サポート4の高さを予めそれに合せて設定してお
くことにより、容易に測定範囲を限定することが可能と
なり、たとえば品質保証のための測定などの際に、保証
範囲を容易に規定することができる。
Furthermore, for example, if the tolerance range of the dimensional accuracy of the radius of curvature of the spherical part 5a of the fixed object 5 is limited, the height of the support 4 can be set in advance in accordance with the dimensional accuracy to facilitate measurement. It becomes possible to limit the range, and the guaranteed range can be easily defined when, for example, measurements are made for quality assurance.

そして、このような方法により、実際に一端部が半球面
で構成されている被all定物5の球面部分5aの曲率
半径の11−1定を行ったところ、1個あたり約0.5
分という短時間で測定を行うことができたのに対し、従
来のトレース法では約30分〜60分(作業者の熟練度
によって測定時間が大幅に異なる)、プローブ法では5
分〜10分と測定時間がかかり、曲率半径の測定時間を
大幅に短縮することができた。また、従来のトレース法
やプローブ法ではハ1定結果に基づいて理論味として曲
率半径を求めてしまうため、球面の微小部分における曲
率半径を求めることができなかったのに対して、この実
施例の曲率半径D1定器によれば、被測定物5の円錐状
凹部1bに対する当接位置を変化させて複数回測定する
ことによって、球面の異形状態を判定することも可能で
あった。そして、測定精度もダイヤルゲージ2の測定誤
差内におさめることができるため、高精度のΔ−1定が
実現できる。
Using this method, the 11-1 constant of the radius of curvature of the spherical portion 5a of the all constant object 5 whose one end is a hemispherical surface was found to be approximately 0.5 per piece.
While it was possible to perform measurements in a short time of 1 minute, the conventional tracing method took about 30 to 60 minutes (measurement time varies greatly depending on the skill level of the operator), and the probe method took about 5 minutes.
The measurement time was 10 minutes to 10 minutes, and the time required to measure the radius of curvature could be significantly shortened. In addition, in the conventional tracing method and probe method, the radius of curvature is determined theoretically based on the constant result, so it was not possible to determine the radius of curvature in a minute part of the spherical surface. According to the radius of curvature D1 determiner, it was also possible to determine the irregularly shaped state of the spherical surface by changing the abutment position of the object 5 against the conical recess 1b and performing measurements multiple times. Since the measurement accuracy can also be kept within the measurement error of the dial gauge 2, a highly accurate Δ-1 constant can be achieved.

このように、この実施例の球体用曲率半径ΔP1定器に
よれば、部分的な球体で曲面が構成されているような被
測定物においても短時間で正確に曲率半径の測定ができ
、かつ球面の異形状態の判定も可能である。
As described above, according to the radius of curvature ΔP1 determiner for spheres of this embodiment, the radius of curvature can be measured accurately in a short period of time even for objects to be measured whose curved surfaces are made up of partial spheres, and It is also possible to determine the abnormal shape of a spherical surface.

また、第4図に示すように、円錐状凹部1bの内面にこ
の円錐形状を3等分する位置それぞれにスリット状凸部
11を設けたa11定本体1を用いてもよい。
Alternatively, as shown in FIG. 4, an a11 constant body 1 may be used in which the inner surface of a conical recess 1b is provided with slit-like protrusions 11 at positions dividing the conical shape into three equal parts.

このように、円錐状凹部1bにスリット状凸部11を設
けることによって、被測定物5の測定球面が測定面と平
行方向に異形である場合に、スリット状凸部11に対す
る接触位置が変化し、その変化を被測定物5の曲率半径
「2の変化として読取ることができ、より正確に被測定
物5の球面の判定を行うことが可能となる。
As described above, by providing the slit-like protrusion 11 in the conical recess 1b, the contact position with respect to the slit-like protrusion 11 changes when the measurement spherical surface of the object to be measured 5 has an irregular shape in the direction parallel to the measurement surface. , the change can be read as a change in the radius of curvature of the object 5 to be measured ``2'', making it possible to more accurately determine the spherical surface of the object 5 to be measured.

次に、この発明の他の実施例について説明する。Next, other embodiments of the invention will be described.

第5図は、この発明の他の実施例の円柱体用曲率半径測
定器のΔ−1定部本体21を示す図である。
FIG. 5 is a diagram showing a Δ-1 constant part main body 21 of a curvature radius measuring device for a cylindrical body according to another embodiment of the present invention.

この測定部本体21には、その一端i?j21aに対し
て所定の角度を有するV溝21bが形成されており、こ
のV溝21bの内面が測定面となる。そして、前述の実
施例と同様にV溝21bにその頂部方向から連通する測
定孔21dが他方の端部21cより形成されている。
This measuring section main body 21 has one end i? A V-groove 21b having a predetermined angle with respect to j21a is formed, and the inner surface of this V-groove 21b serves as a measurement surface. As in the previous embodiment, a measurement hole 21d communicating from the top of the V-groove 21b is formed at the other end 21c.

そして、a−1定孔21dに前述の実施例と同様に、図
示を省略した、たとえばダイヤルゲージを固定すること
によって円柱体用の曲率半径−11定器が構成される。
Similarly to the above embodiment, a dial gauge (not shown), for example, is fixed to the a-1 fixed hole 21d, thereby constructing a radius of curvature -11 for a cylindrical body.

この実施例の曲率半径測定器によれば、円柱体や板状体
の一端部が部分的な円柱面で構成された構造体などの曲
面の曲率半径を求めることができる。なお、測定原理は
前述の実施例と同様であり、また測定は前述の実施例に
準じてV溝21bの長平方向に沿わせて被aか1定物の
円柱面を当接配置することにより行うことができる。
According to the radius of curvature measuring device of this embodiment, it is possible to determine the radius of curvature of a curved surface such as a structure in which one end of a cylindrical body or a plate-like body is constituted by a partial cylindrical surface. The measurement principle is the same as that of the above-mentioned embodiment, and the measurement is carried out by placing the cylindrical surface of the object a or 1 in contact with the longitudinal direction of the V-groove 21b. It can be carried out.

なお、上述した各実施例においては、長さ計測手段とし
てダイヤルゲージを用いた例について説明したが、この
発明はこれに限定されるものではなく、測定条件などに
応じて各種のものを使用することが可能である。
In addition, in each of the above-mentioned embodiments, an example was explained in which a dial gauge was used as a length measuring means, but the present invention is not limited to this, and various types may be used depending on the measurement conditions etc. Is possible.

[発明の効果] 以上説明したように、この発明の曲率半径測定器によれ
ば、たとえば部分的な球体や円柱体で球面や円柱面が構
成されているような披71−1定物においても、短時間
で正確に曲率半径の7t−1定かでき、かつ曲面の異形
状態の判定も可能である。また、基準体との比較による
n1定となるため、測定精度も維持できる。
[Effects of the Invention] As explained above, according to the curvature radius measuring device of the present invention, it is possible to measure the radius of curvature even in the case of a 71-1 constant object, for example, where a spherical surface or cylindrical surface is composed of partial spheres or cylinders. , it is possible to accurately determine the radius of curvature of 7t-1 in a short time, and it is also possible to determine the irregular shape of the curved surface. Furthermore, since the n1 constant is obtained by comparison with the reference body, measurement accuracy can also be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の曲率半径n1定器を示す
図、第2図はその測定原理を示す図、第3図は第1図の
曲率半径υ1定器の使用状態を説明するための図、第4
図は第1図に示す曲率半径測定器における円錐状凹部の
変形例を示す図、第5図はこの発明の他の実施例の要部
を示す図である。 1.21・・・・・・測定部本体、1b・・・・・・円
錐状凹部、ld、21d・・・・・・測定孔、2・・・
・・・ダイヤルゲージ、2b・・・・・・測定子、5・
・・・−・被測定物、6・・・・・・基準球体、11・
・・・・・スリット状凸部、21b・・・・・・V溝状
凹部。 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図
FIG. 1 is a diagram showing a radius of curvature n1 determiner according to an embodiment of the present invention, FIG. 2 is a diagram showing its measurement principle, and FIG. 3 is an explanation of how the radius of curvature υ1 determiner shown in FIG. 1 is used. Figure for, 4th
This figure shows a modification of the conical recess in the radius of curvature measuring device shown in FIG. 1, and FIG. 5 shows the main part of another embodiment of the invention. 1.21...Measurement part body, 1b...Conical recess, ld, 21d...Measurement hole, 2...
...Dial gauge, 2b...Measuring head, 5.
...-Object to be measured, 6...Reference sphere, 11.
...Slit-shaped convex part, 21b... V-groove-shaped concave part. Applicant Toshiba Corporation Patent Attorney Sasa Suyama - Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)測定部本体と、この測定部本体の一端部に設けら
れ内面が測定面となる所定の角度を有する円錐状または
V溝状の凹部と、この凹部にその頂部方向から連通する
ように前記測定部本体の他端部から穿設された測定孔と
、前記凹部に当接配置された被測定物に接触することに
より曲率半径を計測する計測手段とを具備することを特
徴とする曲率半径測定器。
(1) A measuring part main body, a conical or V-groove recessed part provided at one end of the measuring part main body and having a predetermined angle whose inner surface becomes the measuring surface, and a concave part that communicates with this recessed part from the top direction. A curvature characterized by comprising: a measurement hole drilled from the other end of the measurement unit main body; and a measurement means for measuring a radius of curvature by contacting an object to be measured that is placed in contact with the recess. Radius measuring instrument.
(2)前記円錐状またはV溝状の凹部の角度が、60°
であることを特徴とする請求項1記載の曲率半径測定器
(2) The angle of the conical or V-groove recess is 60°.
The radius of curvature measuring instrument according to claim 1, characterized in that:
JP32534288A 1988-12-23 1988-12-23 Curvature-radius measuring device Pending JPH02176404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32534288A JPH02176404A (en) 1988-12-23 1988-12-23 Curvature-radius measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32534288A JPH02176404A (en) 1988-12-23 1988-12-23 Curvature-radius measuring device

Publications (1)

Publication Number Publication Date
JPH02176404A true JPH02176404A (en) 1990-07-09

Family

ID=18175738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32534288A Pending JPH02176404A (en) 1988-12-23 1988-12-23 Curvature-radius measuring device

Country Status (1)

Country Link
JP (1) JPH02176404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162598A (en) * 2013-03-18 2013-06-19 常向东 Method and device for measuring curvature radius

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48521U (en) * 1971-06-01 1973-01-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48521U (en) * 1971-06-01 1973-01-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162598A (en) * 2013-03-18 2013-06-19 常向东 Method and device for measuring curvature radius
CN103162598B (en) * 2013-03-18 2015-09-09 常向东 A kind of measuring method of radius-of-curvature and measurement mechanism

Similar Documents

Publication Publication Date Title
JP3005681B1 (en) CMM calibration gauge and CMM calibration method
US6513253B2 (en) Method for evaluating measurement error in coordinate measuring machine and gauge for coordinate measuring machine
US5671541A (en) Accuracy verification devices for coordinate measuring machines
US20160138911A1 (en) Calibration of a contact probe
US5134781A (en) Geometric simulator for coordinate measuring machine
GB2288463A (en) Measuring conical threads
JPH0296609A (en) Inspecting method and machining method for v-shaped groove
JP2022030750A (en) Calibration method
US4150490A (en) Relative displacement measurement apparatus
JPH02176404A (en) Curvature-radius measuring device
CN108253915B (en) Calibration method
CN108061503A (en) A kind of method that conical part outer diameter is detected on JD25-C horizontal metroscopes
JP7201208B2 (en) Calibration gauge and calibration method
CN109724497B (en) Method for online detecting radius value of inner sphere
US3606686A (en) Angular deviation gauge
US2677191A (en) Apparatus for measuring radii
US4574488A (en) Gundrill diameter gage and method
JP2014048108A (en) Chamfer dimension measuring apparatus
US3315365A (en) Anvils for comparator gages
KR970003085Y1 (en) Angle measuring apparatus
US12018938B2 (en) Surface finish stylus
SU238170A1 (en) METHOD FOR DETERMINING SURFACE PARAMETERS
RU14284U1 (en) DEVICE FOR MONITORING HOLE DIAMETER
US20210025686A1 (en) Surface finish stylus
JPS6256801A (en) Measuring instrument for pitch distance of curved conductor