JPH02176123A - Air-fuel ratio control mechanism for fuel injection device - Google Patents
Air-fuel ratio control mechanism for fuel injection deviceInfo
- Publication number
- JPH02176123A JPH02176123A JP63330602A JP33060288A JPH02176123A JP H02176123 A JPH02176123 A JP H02176123A JP 63330602 A JP63330602 A JP 63330602A JP 33060288 A JP33060288 A JP 33060288A JP H02176123 A JPH02176123 A JP H02176123A
- Authority
- JP
- Japan
- Prior art keywords
- negative pressure
- fuel
- air
- opening
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 68
- 238000002347 injection Methods 0.000 title claims abstract description 11
- 239000007924 injection Substances 0.000 title claims abstract description 11
- 230000001133 acceleration Effects 0.000 abstract description 14
- 239000000203 mixture Substances 0.000 abstract description 9
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は圧力バランス式燃料噴射装置に関するものであ
って、特に減速時において混合気の空燃比を制御する機
構に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure-balanced fuel injection device, and more particularly to a mechanism for controlling the air-fuel ratio of an air-fuel mixture during deceleration.
従来、圧力バランス式燃料噴射装置として、例えば本件
出願人が実願昭62−169266号を以て出願したも
のがあり、この装置では、特に対策を講じない場合、減
速時にアフターバーンが発生する。即ち、第3図(A)
乃至(C)に示すように、加速状態からエンジンブレー
キをかけて減速させるとスロットルバルブはアイドル開
度になり(同図(A)参照)、−時的にマニホールドの
壁面に付着していた燃料が蒸発吸入され空燃比が濃(な
った後すぐに薄くなりシリンダ内での燃焼が不完全にな
って排気管内で爆発を起こす、アフターバーンが発生す
る(同図(C)参照)。Conventionally, there is a pressure-balanced fuel injection device, for example, one filed by the present applicant in Utility Model Application No. 169266/1985, in which afterburn occurs during deceleration unless special measures are taken. That is, FIG. 3(A)
As shown in (C), when the engine brake is applied to decelerate from an accelerated state, the throttle valve becomes idling (see (A) in the same figure), and the fuel that has adhered to the wall of the manifold is temporarily removed. is evaporated and inhaled, and the air-fuel ratio becomes rich (but then quickly becomes thinner), resulting in incomplete combustion in the cylinder and an explosion in the exhaust pipe, resulting in afterburn (see figure (C)).
アフターバーンは、混合気の空燃比を濃くしてシリンダ
内で燃焼可能にするか、薄くして燃焼しないようにすれ
ば防止できる。空燃比を薄くしてアフターバーンを防止
する手段は、本件出願人が実願昭63−83760号を
以て提案しており、これは減速時に基準圧を空気流量検
出室に導入し、圧力バランスを調整してバルブを閉弁さ
せ、燃料の吐出を停止させて完全に燃焼しないように空
燃比を薄くし、アフターバーンを防止するようになって
いる。Afterburn can be prevented by enriching the air-fuel ratio of the mixture so that it can burn inside the cylinder, or by making it leaner so that it does not burn. The applicant proposed a means to prevent afterburn by reducing the air-fuel ratio in U.S. Pat. The system closes the valve and stops the discharge of fuel, reducing the air-fuel ratio to prevent complete combustion and preventing afterburn.
しかし、このように空燃比を薄くする方法では、減速時
に燃料吐出量を絞るためにマニホールド壁面に付着して
いる燃料は蒸発してエンジンに吸入されてしまう。その
ためマニホールド壁面が乾いてしまい、減速状態からの
加速時に燃料が噴射されても、その何割かは壁面に付着
してエンジンに吸入されず、短時間の空燃比のリーン化
がスパイク状に発生するリーンスパイクを生じ、エンジ
ンのトルクが消滅した後、突然トルクが発生する等して
、加速時にショックが発生し易い。However, in this method of reducing the air-fuel ratio, the fuel adhering to the manifold wall surface is evaporated and sucked into the engine in order to reduce the amount of fuel discharged during deceleration. As a result, the manifold wall surface becomes dry, and even if fuel is injected during acceleration from deceleration, some of it sticks to the wall surface and is not inhaled by the engine, causing a short-term lean air-fuel ratio to occur in the form of a spike. After a lean spike occurs and the engine torque disappears, torque is suddenly generated, which tends to cause a shock during acceleration.
本発明はこのような問題点に鑑み、減速時に燃焼可能な
濃度の混合気をエンジンに供給することによって、アフ
ターバーンを防止すると共に、その後の加速をスムーズ
に行なうことのできる、燃料噴射装置の空燃比制御機構
を提供することを目とする。In view of these problems, the present invention provides a fuel injection device that prevents afterburn by supplying an air-fuel mixture with a combustible concentration to the engine during deceleration and enables smooth subsequent acceleration. The purpose is to provide an air-fuel ratio control mechanism.
本発明による燃料噴射装置の空燃比制御機構は、空気流
量に応じた負圧室と大気圧室との圧力差と、上流室と下
流室を連通ずるジェットの前後の燃圧差とをバランスさ
せるように燃料吐出量を制御する、圧力バランス式の燃
料噴射装置において、マニホールド負圧を負圧室に印加
させる通路と、この通路を通常閉鎖させていて減速時に
開放させる開閉制御手段とが備えられている。The air-fuel ratio control mechanism of the fuel injection device according to the present invention is designed to balance the pressure difference between the negative pressure chamber and the atmospheric pressure chamber depending on the air flow rate, and the fuel pressure difference before and after the jet that communicates the upstream chamber and the downstream chamber. A pressure-balanced fuel injection device that controls the amount of fuel discharged during deceleration is equipped with a passage for applying negative pressure to a negative pressure chamber in a manifold, and an opening/closing control means that normally closes this passage and opens it during deceleration. There is.
加速状態からエンジンブレーキをかけて減速させると、
スロットルバルブはアイドル開度に減じれ、空気流量は
減少するが、開閉制御手段が通路を開放するため、増大
したマニホールド負圧が負圧室に印加され、大気圧室と
の圧力差が増大して燃料吐出量も増加することとなり、
エンジンに供給される混合気の濃度が増大し、アフター
バーンを防止でき、又マニホールドの壁面に付着してい
る燃料も蒸発しない。If you apply engine braking to decelerate from an accelerated state,
The throttle valve is reduced to idle opening and the air flow rate is reduced, but since the opening/closing control means opens the passage, increased manifold negative pressure is applied to the negative pressure chamber, increasing the pressure difference with the atmospheric pressure chamber. As a result, the amount of fuel discharged also increases.
The concentration of the air-fuel mixture supplied to the engine increases, preventing afterburn, and also prevents fuel adhering to the walls of the manifold from evaporating.
以下、本発明の好適な一実施例を、第1図に示す燃料噴
射装置の空燃比制御機構の概略断面図に基ずいて説明す
る。Hereinafter, a preferred embodiment of the present invention will be described based on a schematic cross-sectional view of an air-fuel ratio control mechanism of a fuel injection device shown in FIG.
図中、lは吸気通路、2は吸気通路lにおけるベンチュ
リ部、3はベンチュリ部2の下流側に設けられ最小開度
状態で開口3a、3bが確保されるエアバルブ、4はエ
アバルブ3の更に下流側に配設されたスロットルバルブ
、5はスロー系燃料制御手段であり、メイン系燃料制御
手段は図では省略されている。6はエアバルブ下流側で
吸気通路1に連通していてスローゾーンにおいて開口3
aを流れる空気流量に応じた負圧をスロー系燃料制御手
段5に印加せしめるスロー負圧通路、7はこの負圧通路
6に設けられた絞りであり、スロー負圧通路6には、夫
々絞り8a、9aを介して通路8.9に導入されるマニ
ホールド負圧及びエアバルブ下流負圧が合成されて印加
されるようになっているが、これらの通路8,9はなく
てもよい。In the figure, l is an intake passage, 2 is a venturi part in the intake passage l, 3 is an air valve provided downstream of the venturi part 2 and has openings 3a and 3b in the minimum opening state, and 4 is further downstream of the air valve 3. A throttle valve 5 disposed on the side is a slow system fuel control means, and the main system fuel control means is omitted in the figure. 6 is connected to the intake passage 1 on the downstream side of the air valve, and the opening 3 is connected to the intake passage 1 in the slow zone.
a slow negative pressure passage that applies negative pressure to the slow system fuel control means 5 in accordance with the air flow rate flowing through a; Although the manifold negative pressure and the air valve downstream negative pressure introduced into the passages 8.9 through 8a and 9a are combined and applied, these passages 8 and 9 may not be provided.
スロー系燃料制御手段5において、10はスロー負圧通
路6と連通していてエアバルブ下流負圧が印加される負
圧室、11は負圧室10と大気圧が印加される大気圧室
12とを仕切る負圧ダイアフラム、13は燃料供給源か
ら燃料が送り込まれる上流室、14は燃料の吐出口14
aが形成された下流室、15は上流室13と下流室14
を仕切る燃料ダイアフラム、16は上流室13と下流室
14を連通ずる燃料計量用のジェット、17は両ダイア
フラム11.15を連結していて途中に吐出口14aを
開閉し得るバルブ17aが形成されている連結棒であっ
て、吸気通路1を流れる空気流量に応じた負圧が負圧室
lOに印加されると、大気圧室12との圧力差が生じて
、負圧ダイアフラム11が負圧室lO側へ変位し、これ
に応じてバルブ17a及び燃料ダイアフラム15も変位
して吐出口14aがら空気流量に応じた燃料流量が噴射
され、下流室14aの圧力が低下して両ダイアフラム1
1,15にかかる圧力がバランスするようになっている
。18は吸気通路lにおけるベンチュリ部2の上流側と
スロットルバルブ4の下流側とを絞り18aを介して連
通するブリードエア通路であって、絞り18aの下流側
で吐出口14aと連通していて吐出口14aから噴射さ
れた燃斜流量がこの通路18を通ってマニホールドに吐
出されるようになっている。以上の構成は上述の先行技
術と同様のものである。In the slow system fuel control means 5, 10 is a negative pressure chamber that communicates with the slow negative pressure passage 6 and to which air valve downstream negative pressure is applied, and 11 is a negative pressure chamber 10 and an atmospheric pressure chamber 12 to which atmospheric pressure is applied. 13 is an upstream chamber into which fuel is sent from the fuel supply source; 14 is a fuel discharge port 14;
15 is the upstream chamber 13 and the downstream chamber 14.
16 is a fuel metering jet that communicates the upstream chamber 13 and downstream chamber 14, 17 is a fuel metering jet that connects both diaphragms 11.15, and a valve 17a that can open and close the discharge port 14a is formed in the middle. When a negative pressure corresponding to the flow rate of air flowing through the intake passage 1 is applied to the negative pressure chamber 10, a pressure difference with the atmospheric pressure chamber 12 is generated, and the negative pressure diaphragm 11 is connected to the negative pressure chamber 10. The valve 17a and the fuel diaphragm 15 are also displaced accordingly, and a fuel flow rate corresponding to the air flow rate is injected from the discharge port 14a.
The pressures applied to nodes 1 and 15 are balanced. A bleed air passage 18 communicates the upstream side of the venturi portion 2 and the downstream side of the throttle valve 4 in the intake passage l via a throttle 18a, and communicates with the discharge port 14a on the downstream side of the throttle 18a. The fuel flow rate injected from the outlet 14a passes through this passage 18 and is discharged to the manifold. The above configuration is similar to the prior art described above.
19は負圧室10とスロットルバルブ下流側の吸気通路
1とを連通ずる負圧導入通路、20はこの通路19の途
中に設けられていてこの通路19の開閉を制御する開閉
制御手段であり、この手段20において、21はスロッ
トルバルブ下流側の吸気通路1に連通ずる第−室、22
はエアバルブ3とスロットルバルブ4との間で吸気通路
lに連通ずる第二室、23は両室21,22を仕切るダ
イアフラム、24はダイアフラム23に連結されていて
負圧導入通路19を開閉し得るバルブ、25はバルブ2
4の閉弁方向にダイアフラム23を弾圧するスプリング
であって、スロットルバルブ4がアイドル開度の状態で
590mmHg程度のマニホールド負圧が第−室21に
印加された場合に、バルブ24が開弁するように、スプ
リング25の弾力等を設定してお(ものとする。26は
負圧導入通路19において開閉制御手段20と負圧室1
0の間に配設されていて絞りとして機能するアジャスト
スクリューであって、このアジャストスクリュー26の
進退位置によって負圧室10へのマニホールド負圧の印
加量を調整して、減速時における空燃比の濃さを調整で
きるようになっており、通常の運転時には、進退位置を
調整した後固定されている。19 is a negative pressure introduction passage that communicates the negative pressure chamber 10 with the intake passage 1 on the downstream side of the throttle valve; 20 is an opening/closing control means provided in the middle of this passage 19 for controlling opening/closing of this passage 19; In this means 20, 21 is a third chamber communicating with the intake passage 1 on the downstream side of the throttle valve;
23 is a diaphragm that partitions both chambers 21 and 22; 24 is connected to the diaphragm 23 and can open and close the negative pressure introduction passage 19; valve, 25 is valve 2
The valve 24 is a spring that presses the diaphragm 23 in the valve closing direction of the valve 4, and the valve 24 opens when a manifold negative pressure of about 590 mmHg is applied to the first chamber 21 when the throttle valve 4 is at an idle opening. The elasticity of the spring 25 is set as shown in FIG.
0 and functions as a throttle, and adjusts the amount of manifold negative pressure applied to the negative pressure chamber 10 depending on the forward/backward position of this adjustment screw 26, thereby adjusting the air-fuel ratio during deceleration. The darkness can be adjusted, and during normal driving, it remains fixed after adjusting the forward and backward positions.
本実施例は以上のように構成されており、次にその作用
を説明する。The present embodiment is constructed as described above, and its operation will be explained next.
加速状態では、スロットルバルブ開度に応じて吸気通路
1のマニホールドに所要の空気流量が送りこまれており
、負圧導入通路19は開閉制御手段20によって閉鎖さ
れているが、エンジンブレーキをかけて車両を減速させ
ると、スロットルバルブ4はアイドル開度まで閉じられ
、マニホールド負圧が増大して開閉制御手段20の第−
室21へ590mmHgを越える負圧が印加される。す
ると、第二室22へ印加されるエアバルブ下流負圧も減
少しているから、スプリング25の弾力に抗してダイア
フラム23が第−室21側へ変位し、バルブ24が開弁
してマニホールド負圧が負圧室10に印加される。スロ
ー系燃料制御手段5では、エアバルブ下流負圧の減少に
よってバルブ17aが吐出口14aを閉鎖させる方向に
移動するが、負圧室10の負圧がマニホールド負圧の導
入によって再び増大すると、負圧ダイアフラム11が負
圧室10側へ変位し、バルブ17aと吐出口14aとの
開口面積が増大して吸気通路lへ吐出される燃料流量が
増大して、第2図に示すように安定的に濃混合気がエン
ジンに供給され、アフターバーンは防止される。又、マ
ニホールド壁面に付着した燃料が蒸発して壁面が乾くこ
とはないから、その後、加速に転じた場合、リーンスパ
イクが発生することなくスムーズな加速が可能になる。In the acceleration state, the required air flow rate is sent to the manifold of the intake passage 1 according to the opening degree of the throttle valve, and the negative pressure introduction passage 19 is closed by the opening/closing control means 20. When the throttle valve 4 is decelerated, the throttle valve 4 is closed to the idle opening degree, the manifold negative pressure increases, and the opening/closing control means 20
A negative pressure exceeding 590 mmHg is applied to the chamber 21. Then, since the negative pressure downstream of the air valve applied to the second chamber 22 has also decreased, the diaphragm 23 is displaced toward the second chamber 21 against the elasticity of the spring 25, and the valve 24 is opened to release the manifold negative pressure. Pressure is applied to negative pressure chamber 10 . In the slow system fuel control means 5, the valve 17a moves in the direction of closing the discharge port 14a due to the decrease in the negative pressure downstream of the air valve, but when the negative pressure in the negative pressure chamber 10 increases again due to the introduction of manifold negative pressure, the negative pressure The diaphragm 11 is displaced toward the negative pressure chamber 10, the opening area of the valve 17a and the discharge port 14a increases, and the flow rate of fuel discharged into the intake passage l increases, stably as shown in FIG. A rich mixture is supplied to the engine and afterburn is prevented. In addition, since the fuel adhering to the manifold wall does not evaporate and the wall surface dries, smooth acceleration is possible without lean spikes when acceleration is subsequently started.
尚、加速に転じるとマニホールド負圧が減少して開閉制
御手段20は負圧印加通路19を閉鎖せしめ、スロー系
燃料制御手段5は通常の作動状態に戻る。When acceleration starts, the manifold negative pressure decreases, the opening/closing control means 20 closes the negative pressure application passage 19, and the slow system fuel control means 5 returns to its normal operating state.
又、アイドリング時のマニホールド負圧は通常500〜
560mmHg程度であるから、減速時以外に開閉制御
手段20が開放されることはない。Also, the manifold negative pressure during idling is usually 500~
Since it is about 560 mmHg, the opening/closing control means 20 will not be opened except during deceleration.
以上のように本実施例によれば、減速時のアフターバー
ンを防止できると共に、減速後の加速時にリーンスパイ
クが発生することな(スムーズな加速を実現できる。As described above, according to the present embodiment, afterburn during deceleration can be prevented, and lean spikes do not occur during acceleration after deceleration (smooth acceleration can be achieved).
尚、開閉制御手段としてソレノイドバルブを用い、マニ
ホールド負圧を検知して電気的に負圧導入通路19を開
閉制御するようにしてもよい。Note that a solenoid valve may be used as the opening/closing control means to detect the manifold negative pressure and electrically control the opening/closing of the negative pressure introducing passage 19.
又、負圧導入通路19の絞りとして機能するアジャスト
スクリュー26は、リニアソレノイド等を用いて電気的
に作動制御できるようにして、エンジン回転数やスロッ
トル開度に応じて進退させ、減速時の空燃比を自動的に
調整できるようにしてもよい。In addition, the adjustment screw 26, which functions as a throttle for the negative pressure introduction passage 19, can be electrically controlled using a linear solenoid or the like, so that it can be moved forward or backward according to the engine speed and throttle opening, thereby reducing the airflow during deceleration. The fuel ratio may be automatically adjusted.
上述の如(本発明に係わる燃料噴射装置の空燃比制御機
構によれば、減速時に開閉制御手段によって負圧導入通
路を開放させ、マニホールド負圧を負圧室に印加するよ
うにしたから、減速時におけるアフターバーンを防止で
きると共に、減速後の加速時にリーンスパイクを発生す
ることな(スムーズな加速を実現できる。As described above (according to the air-fuel ratio control mechanism of the fuel injection device according to the present invention), the opening/closing control means opens the negative pressure introduction passage during deceleration and applies the manifold negative pressure to the negative pressure chamber. In addition to preventing afterburn during acceleration, lean spikes do not occur during acceleration after deceleration (smooth acceleration can be achieved).
第1図は本発明による燃料噴射装置の空燃比制御機構の
一実施例を示す概略断面図、第2図は減速時等における
混合気の空燃比を示す図、第3図(A)乃至(C)は従
来装置に関するものであって、(A)はスロットルバル
ブ開度、(B)はエンジン回転数、(C)は混合気の空
燃比を示す図である。
3@+11111エアバルブ、4@@66スロツトルバ
ルブ、5・・・・スロー系燃料制御手段、lO・・・・
負圧室、11・・・・負圧ダイアフラム、12・・・・
大気圧室、13・・・・上流室、14・・φ・下流室、
15会・・嗜燃料ダイアフラム、16・・・・ジェット
、19・・・・負圧導入通路、20・・・・開閉制御手
段。
1F1図FIG. 1 is a schematic sectional view showing an embodiment of the air-fuel ratio control mechanism of a fuel injection device according to the present invention, FIG. 2 is a diagram showing the air-fuel ratio of the air-fuel mixture during deceleration, etc., and FIGS. C) relates to a conventional device, in which (A) shows the throttle valve opening, (B) shows the engine speed, and (C) shows the air-fuel ratio of the air-fuel mixture. 3@+11111 air valve, 4@@66 throttle valve, 5... Slow system fuel control means, lO...
Negative pressure chamber, 11... Negative pressure diaphragm, 12...
Atmospheric pressure chamber, 13...upstream chamber, 14...φ/downstream chamber,
15... Fuel diaphragm, 16... Jet, 19... Negative pressure introduction passage, 20... Opening/closing control means. 1F1 diagram
Claims (1)
の圧力差と、ジェットの前後の室の燃圧差とをバランス
させるように燃料吐出量を制御して、混合気の空燃比を
一定に維持せしめるようにした圧力バランス式の燃料噴
射装置において、マニホールド負圧を前記負圧室に印加
せしめる通路と、該通路を通常閉鎖せしめていて減速時
に開放せしめる開閉制御手段と、が備えられていること
を特徴とする空燃比制御機構。The fuel discharge amount is controlled to balance the pressure difference between the negative pressure chamber and the atmospheric pressure chamber, to which negative pressure is applied depending on the air flow rate, and the fuel pressure difference between the chambers before and after the jet. A pressure-balanced fuel injection device that maintains a constant fuel ratio includes a passage for applying manifold negative pressure to the negative pressure chamber, and an opening/closing control means that normally closes the passage and opens it during deceleration. An air-fuel ratio control mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63330602A JPH02176123A (en) | 1988-12-27 | 1988-12-27 | Air-fuel ratio control mechanism for fuel injection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63330602A JPH02176123A (en) | 1988-12-27 | 1988-12-27 | Air-fuel ratio control mechanism for fuel injection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02176123A true JPH02176123A (en) | 1990-07-09 |
Family
ID=18234491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63330602A Pending JPH02176123A (en) | 1988-12-27 | 1988-12-27 | Air-fuel ratio control mechanism for fuel injection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02176123A (en) |
-
1988
- 1988-12-27 JP JP63330602A patent/JPH02176123A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01147150A (en) | Variable venturi carburetor | |
JPH02277919A (en) | Suction device of multi-cylinder engine | |
JPS58101238A (en) | Suction device for engine associated with supercharger | |
JPH02176123A (en) | Air-fuel ratio control mechanism for fuel injection device | |
JPH0458033A (en) | Air intake system for engine | |
JPH02176124A (en) | Air-fuel ratio control mechanism for fuel injection device | |
JPS6228674Y2 (en) | ||
JPS6111478Y2 (en) | ||
JPS6011667A (en) | Oxygen rich air feeder | |
JP2530101Y2 (en) | Engine stall prevention device for deceleration of outboard motor with supercharger | |
JP3269338B2 (en) | Fuel supply device | |
JPH029948A (en) | Fuel injection device for engine | |
JPS6019971Y2 (en) | engine intake system | |
JPH03962A (en) | Fuel cut device | |
JPH0444836Y2 (en) | ||
JPS60162026A (en) | Air-to-fuel ratio control device of internal-combustion engine | |
JPH0294370U (en) | ||
JPS64587B2 (en) | ||
JPS59188055A (en) | Engine control device | |
JPS59556A (en) | Carburetor with starter | |
JPS5893950A (en) | Air intake control device at the time of deceleration | |
JPH024969U (en) | ||
JPS6233420B2 (en) | ||
JPS61178546A (en) | Electronically controlled carburetor | |
JPH03956A (en) | Fuel cut device |