JPH03956A - Fuel cut device - Google Patents

Fuel cut device

Info

Publication number
JPH03956A
JPH03956A JP13553089A JP13553089A JPH03956A JP H03956 A JPH03956 A JP H03956A JP 13553089 A JP13553089 A JP 13553089A JP 13553089 A JP13553089 A JP 13553089A JP H03956 A JPH03956 A JP H03956A
Authority
JP
Japan
Prior art keywords
negative pressure
chamber
port
switch
fuel cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13553089A
Other languages
Japanese (ja)
Inventor
Hideyuki Hane
羽根 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP13553089A priority Critical patent/JPH03956A/en
Publication of JPH03956A publication Critical patent/JPH03956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve responsibility in detecting acceleration and deceleration by constituting the negative pressure switch of a fuel cut system to be differential pressure type, and so controlling the system as to apply minimum negative pressure to one chamber of the switch when a throttle valve is open, and slightly deeper negative pressure than the aforesaid minimum negative pressure at the time of deceleration. CONSTITUTION:A fuel cut device 10 fitted to a slow fuel system comprising a slow fuel passage 8 having a solenoid valve 32, outputs a fuel cut signal from a fuel cut control circuit 31 to a solenoid valve 32 when an engine decelerates with a negative pressure switch 13 turned on, and when an engine speed is equal to or more than the predetermined value. In this case, the first negative pressure port 11 for reducing negative pressure according to an increase in the opening of a throttle valve and the second negative pressure port 12 for contrarily increasing the negative pressure are provided, and the second negative pressure port 12 is made continuous to the chamber 13b of the negative pressure switch 13. Also, the chamber 13c of the negative pressure switch 13 is applied with the shallow minimum negative pressure of the first negative pressure port 11 when a throttle valve is open, and with negative pressure slightly deeper than the minimum negative pressure during deceleration, via a working negative pressure control device 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両用エンジンにおいて減速時の燃費、エミ
ッション対策として燃料供給を停止する燃料カット装置
に関し、詳しくは、燃料カットとそのリカバリーの応答
性向上対策に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel cut device that stops fuel supply in a vehicle engine as a measure against fuel consumption and emissions during deceleration. Regarding sexual improvement measures.

〔従来の技術〕[Conventional technology]

一般にキャブレータ付エンジンの燃料カット装置では、
キャブレータのスロー燃料系にソレノイド弁が取付けら
れ、減速時にソレノイド弁を閉弁して燃料を一時的にカ
ットする。そして所定のエンジン回転数または加速時に
、ソレノイド弁を開弁じて元の燃料供給にリカバリーす
るように制御される。
In general, fuel cut devices for engines with carburetors,
A solenoid valve is installed in the slow fuel system of the carburetor, and during deceleration, the solenoid valve is closed to temporarily cut off fuel. Then, at a predetermined engine speed or acceleration, the solenoid valve is opened to restore the original fuel supply.

ここで、上記加減速の検出には負圧スイッチが設けられ
、スロットル弁の変化に伴う吸入負圧で負圧スイッチを
オン・オフしている。このため、負圧スイッチによる加
減速の検出精度が直接的に燃料カットまたはそのリカバ
リーの応答性に影響することになり、この点で負圧スイ
ッチの設定値を小さくし、この状態で加減速を確実かつ
迅速に検出することが必要になる。また負圧は高地にお
いて変化するため、負圧スイッチの動作も変わるおそれ
があるが、高度補償を不要に構成することが望まれる。
Here, a negative pressure switch is provided to detect the acceleration/deceleration, and the negative pressure switch is turned on and off by the suction negative pressure accompanying the change in the throttle valve. Therefore, the detection accuracy of acceleration/deceleration by the negative pressure switch directly affects the responsiveness of fuel cut or its recovery.In this point, the setting value of the negative pressure switch is reduced, and acceleration/deceleration is performed in this state. It is necessary to detect it reliably and quickly. Furthermore, since the negative pressure changes at high altitudes, the operation of the negative pressure switch may also change, but it is desirable to configure the system so that altitude compensation is not required.

従来、この種の燃料カット装置に関しては、例えば特開
昭57−119149号公報の先行技術がある。ここで
、急減速時にスロットル弁下流の負圧を圧力スイッチに
直ちに導入して開き、ソレノイド弁によりスロー燃料通
路を遮断して燃料カットする。次いで、負圧遅延弁によ
り一定時間遅延して負圧を圧力スイッチの他の室に導入
して閉じ、スロー燃料の供給を再開することが示されて
いる。
Conventionally, regarding this type of fuel cut device, there is a prior art, for example, disclosed in Japanese Patent Laid-Open No. 119149/1983. Here, during sudden deceleration, negative pressure downstream of the throttle valve is immediately introduced into the pressure switch and opened, and the solenoid valve shuts off the slow fuel passage to cut off fuel. Next, the negative pressure delay valve is shown to introduce negative pressure into the other chamber of the pressure switch after a certain time delay and close it, thereby restarting the slow fuel supply.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記先行技術のものにあっては、減速直後の
一定時間だけ燃料カットする方式であるから、連続降板
では燃料カット状態が続かず、燃費、エミッション等の
効果を充分に発揮し得ない。
By the way, in the prior art described above, since the fuel is cut only for a certain period of time immediately after deceleration, the fuel cut state does not continue during continuous descent, and the effects on fuel efficiency, emissions, etc. cannot be fully exerted.

また、圧力スイッチはスロットル弁の下流の吸入負圧の
みで動作する構成であるから、スプリングの設定値は大
きくする必要があって、応答性が悪く、高地用として高
度補償が必要になる。
Furthermore, since the pressure switch is configured to operate only with suction negative pressure downstream of the throttle valve, the set value of the spring needs to be large, resulting in poor response and requiring altitude compensation for use at high altitudes.

本発明は、かかる点に鑑みてなされたもので、その目的
とするところは、負、圧スイッチによる加減速検出に伴
う燃料カットとりカバリ−の応答性とを向上し、高度補
償を不要にすることが可能な燃料カット装置を提供する
ことにある。
The present invention has been made in view of the above points, and its purpose is to improve the responsiveness of fuel cut and recovery accompanying acceleration/deceleration detection using a negative pressure switch, and to eliminate the need for altitude compensation. The object of the present invention is to provide a fuel cut device that can perform the following steps.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の燃料カント装置は、
キャブレークのスロットル弁開度の増大に応じて負圧を
減少する第1の負圧ポートと、逆に負圧を増大する第2
の負圧ポートとを有し、上記第2の負圧ポートを差圧式
負圧スイッチの一方の室に連通し、上記負圧スイッチの
他方の室に上記スロットル弁が開いた条件では上記第1
の負圧ポートの浅い最小負圧を、減速時には上記最小負
圧より少し深い所定の負圧を選択的に付与するものであ
る。
In order to achieve the above object, the fuel cant device of the present invention includes:
A first negative pressure port that reduces negative pressure in accordance with an increase in the throttle valve opening of the carburetor brake, and a second negative pressure port that increases negative pressure conversely.
and a negative pressure port, the second negative pressure port is connected to one chamber of the differential pressure type negative pressure switch, and under the condition that the throttle valve is opened to the other chamber of the negative pressure switch, the second negative pressure port is connected to the first chamber.
A shallow minimum negative pressure is selectively applied to the negative pressure port, and a predetermined negative pressure slightly deeper than the minimum negative pressure is selectively applied during deceleration.

〔作   用〕[For production]

上記構成に基づき、燃料カット系の差圧式負圧スイッチ
の接点オフ側にはスロットル弁の開閉に伴う第2の負圧
ポートの負圧が作用しており、減速時には負圧スイッチ
の接点オン側に作用する所定の負圧との差圧で減速を検
出して燃料カットする。また、加速時には負圧スイッチ
の接点オン側に作用する第1の負圧ポートの最小負圧と
の差圧で加速を検出し、応答よくリカバリーするように
なる。
Based on the above configuration, the negative pressure of the second negative pressure port is applied to the contact OFF side of the differential pressure type negative pressure switch in the fuel cut system when the throttle valve opens and closes, and the negative pressure switch contact ON side during deceleration. The fuel is cut by detecting deceleration based on the pressure difference between the predetermined negative pressure and the predetermined negative pressure applied to the engine. Further, during acceleration, acceleration is detected based on the differential pressure between the minimum negative pressure of the first negative pressure port that acts on the contact ON side of the negative pressure switch, and recovery is performed with good response.

〔実 施 例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図において、符号lはキャブレータであり、混合気
通路2のベンチュリ3の下流にスロットル弁4が設けら
れ、ベンチュリ3にはメイン燃料通路6からのメインノ
ズル5が開口する。またスロットル弁4の全開位置付近
には、スローポート7a。
In FIG. 1, reference numeral 1 denotes a carburetor, and a throttle valve 4 is provided downstream of a venturi 3 in the air-fuel mixture passage 2, and a main nozzle 5 from a main fuel passage 6 opens in the venturi 3. Further, near the fully open position of the throttle valve 4, there is a slow port 7a.

アイドルポート7bがスロー燃料通路8と連通して開口
しており、かかるキャブレータlが吸気マニホールド9
を介してエンジン本体側に連通ずる。
The idle port 7b is open and communicates with the slow fuel passage 8, and the carburetor l is connected to the intake manifold 9.
It communicates with the engine body through.

そしてスロー燃料系には燃料カット装置IOが設けられ
、スロットル弁4下流の吸気系には作動負圧制御装置2
0が設けられている。
A fuel cut device IO is provided in the slow fuel system, and an operating negative pressure control device 2 is provided in the intake system downstream of the throttle valve 4.
0 is set.

燃料カット装置10は、混合気通路2においてスロット
ル弁4が全開ではその下流になる位置に、所定の開度以
上ではその上流になる位置に第1の負圧ポート11を有
し、更にスロットル弁4が全閉ではその上流で所定の開
度以上ではその下流になる位・置に第2の負圧ポート1
2を有する。ここで第1の負圧ポート11の負圧Paは
、第2図(a)のようにスロットル弁4全閉で大きく、
スロットル開度の増大に応じて急激に減少する。第2の
負圧ポート■2の負圧PCは、スロットル弁4全閑で大
気圧と等しく、スロットル開度の増大に応じて急激に立
上り、所定スロットル開度以上では負圧ポート21.負
圧ポート22の負圧Pb、Pcと同じ特性になるもので
あり、第1の負圧ポート11.第2の負圧ポート12の
負圧Pa、Pfは相互に逆特性に設定されている。
The fuel cut device 10 has a first negative pressure port 11 in the mixture passage 2 at a position downstream of the throttle valve 4 when the throttle valve 4 is fully opened, and at a position upstream of the throttle valve 4 when the opening is a predetermined opening or more. 4 is fully closed, the second negative pressure port 1 is located upstream, and when the opening is over a predetermined degree, the second negative pressure port 1 is located downstream.
It has 2. Here, the negative pressure Pa of the first negative pressure port 11 is large when the throttle valve 4 is fully closed, as shown in FIG. 2(a).
It decreases rapidly as the throttle opening increases. The negative pressure PC at the second negative pressure port 2 is equal to the atmospheric pressure when the throttle valve 4 is fully open, and rises rapidly as the throttle opening increases, and when the throttle opening exceeds a predetermined throttle opening, the negative pressure PC at the second negative pressure port 21. It has the same characteristics as the negative pressure Pb and Pc of the negative pressure port 22, and has the same characteristics as the negative pressure Pb and Pc of the negative pressure port 11. The negative pressures Pa and Pf of the second negative pressure port 12 are set to have opposite characteristics.

負圧スイッチ13は、ダイヤフラム13aで区画された
一方の室13b 、他方の室13cを有し、一方の室1
3bにダイヤフラム13aで動作する接点13dが設け
られ、他方の室13cでリターンスプリング13eが付
勢している。そして一方の室13bが通路14により第
2の負圧ポート12に連通し、他方の室13cが第1の
チェック弁15を有する通路16により第1の負圧ポー
ト11に連通して差圧式に構成される。第1のチェック
弁15は、他方の室13cの方の負圧が深い場合に開く
ものであり、このためスロットル弁4が開いて第1の負
圧ポート11の負圧が低下すると他方の室13Gの負圧
をリークし、第1の負圧ポート11の負圧Paの最小値
Pamにリセットする。
The negative pressure switch 13 has one chamber 13b and the other chamber 13c partitioned by a diaphragm 13a.
A contact 13d operated by the diaphragm 13a is provided in the chamber 3b, and a return spring 13e is biased in the other chamber 13c. One chamber 13b communicates with the second negative pressure port 12 through a passage 14, and the other chamber 13c communicates with the first negative pressure port 11 through a passage 16 having a first check valve 15, thereby creating a differential pressure system. configured. The first check valve 15 opens when the negative pressure in the other chamber 13c is deep. Therefore, when the throttle valve 4 opens and the negative pressure in the first negative pressure port 11 decreases, the other chamber 13c opens. 13G of negative pressure is leaked, and the negative pressure Pa of the first negative pressure port 11 is reset to the minimum value Pam.

一方、負圧応動弁25は、負圧ポート21に通路23を
介して連通する負圧室25cと、オリフィス25eを有
するダイヤフラム25aで区画された負圧室25bと、
負圧ポート22に通路24を介して連通する負圧室25
dと、弁体25gの入口側に更にオリフィス25hを有
する作動負圧設定室251とを有し、ダイヤフラム25
aには負圧室25cに設けられたスプリング25jが付
勢されると共に弁体25gが固着されていて、ポート2
5rを開閉する。そして負圧応動弁25の弁体25gが
減速直後に開くと、作動負圧設定室25iの大気圧は、
オリフィス25hによって負圧Pb、Pcより浅く、負
圧Pamより深い負圧Pdを生じるようになっている。
On the other hand, the negative pressure responsive valve 25 includes a negative pressure chamber 25c communicating with the negative pressure port 21 via the passage 23, and a negative pressure chamber 25b partitioned by a diaphragm 25a having an orifice 25e.
Negative pressure chamber 25 communicating with negative pressure port 22 via passage 24
d, and an operating negative pressure setting chamber 251 further having an orifice 25h on the inlet side of the valve body 25g, and the diaphragm 25
A spring 25j provided in a negative pressure chamber 25c is biased and a valve body 25g is fixed to port 2.
Open and close 5r. When the valve body 25g of the negative pressure responsive valve 25 opens immediately after deceleration, the atmospheric pressure in the operating negative pressure setting chamber 25i becomes
The orifice 25h generates a negative pressure Pd that is shallower than the negative pressures Pb and Pc and deeper than the negative pressure Pam.

この作動負圧設定室251は、第2のチェック弁17を
有する通路18により負圧スイッチ13の他方の室13
cに連通し、第2のチェック弁17は、作動負圧設定室
251の負圧が深い場合に開くものである。そこで減速
直後に、負圧応動弁25が開いて負圧Pdを発生すると
、他方の室13cを負圧Pdに定めてリセットする。
This operating negative pressure setting chamber 251 is connected to the other chamber 13 of the negative pressure switch 13 by a passage 18 having a second check valve 17.
The second check valve 17 opens when the negative pressure in the operating negative pressure setting chamber 251 is deep. Therefore, immediately after deceleration, when the negative pressure responsive valve 25 opens and generates negative pressure Pd, the other chamber 13c is set to negative pressure Pd and reset.

更に、負圧スイッチ13.エンジン回転数センサ3゜の
信号は、燃料カット制御回路31に入力して処理される
。またスロー燃料通路8にはソレノイド弁32が設けら
れ、少なくとも減速時の所定のエンジン回転数以上では
、燃料カット制御回路31の出力信号でソレノイド弁3
2を閉じるようになっている。
Furthermore, a negative pressure switch 13. The signal from the engine rotation speed sensor 3° is input to a fuel cut control circuit 31 and processed. Further, a solenoid valve 32 is provided in the slow fuel passage 8, and at least at a predetermined engine speed or higher during deceleration, an output signal from the fuel cut control circuit 31 is used to control the solenoid valve 32.
2 is closed.

次いで、かかるtM成の燃料カット装置の作用について
述べる。
Next, the operation of the tM fuel cut device will be described.

先ず、スロットル弁4が所定開度で定常運転しながら走
行する場合は、負圧室25cと25dとの負圧が等しい
ので負圧応動弁25が閉じて作動負圧設定室25+は大
気圧になり、第2のチェック弁17を閉じている。この
とき第1の負圧ポート11の負圧Paは、第2図(a)
の特性により最小値Pamであり、第1のチェック弁1
5も閉じていて、負圧スイッチ13の他方の室13cの
負圧Peは第3図(b)のように最小値Pamと等しい
値に封じ込められている。また第2の負圧ポート12の
負圧Prは、スロットル開度に応じて最小値Pamより
大きい値であり、これが負圧スイッチ13の一方の室1
3bに作用してlPam1<lPf’lの関係になり、
負圧スイッチ13の接点13dをオフする。
First, when driving with the throttle valve 4 in steady operation with a predetermined opening degree, the negative pressures in the negative pressure chambers 25c and 25d are equal, so the negative pressure responsive valve 25 closes and the operating negative pressure setting chamber 25+ becomes atmospheric pressure. , and the second check valve 17 is closed. At this time, the negative pressure Pa of the first negative pressure port 11 is as shown in FIG.
is the minimum value Pam due to the characteristics of the first check valve 1
5 is also closed, and the negative pressure Pe in the other chamber 13c of the negative pressure switch 13 is confined to a value equal to the minimum value Pam as shown in FIG. 3(b). Further, the negative pressure Pr of the second negative pressure port 12 is a value larger than the minimum value Pam depending on the throttle opening, and this is a value that is larger than the minimum value Pam of the negative pressure switch 13
3b, resulting in the relationship lPam1<lPf'l,
The contact 13d of the negative pressure switch 13 is turned off.

そこで、上述の定常走行から第3図の時点t1でアクセ
ル開放により減速すると、スロットル弁4が閉じるのに
伴ない負圧ポート21.22の負圧Pb、Pcが第3図
(b)のように急増し、所定の時点t2で負圧応動弁2
5の負圧室25bと25cとの間にオリフィス25によ
って所定の遅延時間だけ差圧が生じ、負圧応動弁25の
ポート25rを開いて負圧室25dの負圧が作動負圧設
定室251にリークして、所定の負圧Pdを生じるため
、第2のチェック弁17が開いて負圧スイッチ13の他
方の室13cの負圧Peは最小値Pamより深い負圧に
なる。そこで第2の負圧ポート12の負圧Prは、第3
図(b)のように第2図(a)の特性に基づいて一旦深
くなった後に急激に浅くなり、lPd  l>lP「 
Iの関係になった時間t3で第3図(C)のように負圧
スイッチ13がオンして減速を検出する。このときエン
ジン回転数が設定値以上の場合は、燃料カット制御回路
31からソレノイド弁32に燃料カット信号が出力して
閉じ、これ以降は第3図(d)のようにスロー系の燃料
がカットされるためにアフタバーンが防止される。
Therefore, when the steady running described above is decelerated by releasing the accelerator at time t1 in Fig. 3, as the throttle valve 4 closes, the negative pressures Pb and Pc in the negative pressure ports 21 and 22 increase as shown in Fig. 3(b). suddenly increases, and at a predetermined time t2, the negative pressure responsive valve 2
A pressure difference is generated between the negative pressure chambers 25b and 25c of No. 5 by the orifice 25 for a predetermined delay time, and the port 25r of the negative pressure response valve 25 is opened and the negative pressure of the negative pressure chamber 25d is activated.The negative pressure setting chamber 251 In order to generate a predetermined negative pressure Pd, the second check valve 17 opens and the negative pressure Pe in the other chamber 13c of the negative pressure switch 13 becomes a negative pressure deeper than the minimum value Pam. Therefore, the negative pressure Pr of the second negative pressure port 12 is
As shown in Fig. 2(b), based on the characteristics of Fig. 2(a), it becomes deep once and then suddenly becomes shallow, and lPd l>lP''
At time t3 when the relationship I is reached, the negative pressure switch 13 is turned on as shown in FIG. 3(C) to detect deceleration. At this time, if the engine speed is higher than the set value, a fuel cut signal is output from the fuel cut control circuit 31 to the solenoid valve 32 to close it, and from then on, the slow system fuel is cut off as shown in Figure 3(d). afterburn is prevented.

上記減速を検出した以降は、第2の負圧ポート12の負
圧P「が大気圧になって負圧スイッチ13の他方の室1
3cには負圧Pdが封じ込められるため、lPd  l
>lPf  lの関係が継続して負圧スイッチ13はオ
ンの状態に保持される。
After the deceleration is detected, the negative pressure P' in the second negative pressure port 12 becomes atmospheric pressure, and the negative pressure P' in the other chamber 1 of the negative pressure switch 13
Since negative pressure Pd is confined in 3c, lPd l
>lPf l continues, and the negative pressure switch 13 is kept in the on state.

次いで、時点t4てアクセル踏込みにより加速する場合
について述べると、第3図(b)のように第1の負圧ポ
ーhLlの負圧Paは、急激に減じて最小値PaII+
になり、このため第1のチェック弁15が開くことによ
り負圧スイッチ13の他方の室13cの負圧PeもPd
から最小値Pamに浅くなる。
Next, to describe the case where acceleration is performed by pressing the accelerator at time t4, the negative pressure Pa of the first negative pressure port hLl rapidly decreases to the minimum value PaII+, as shown in FIG. 3(b).
Therefore, when the first check valve 15 opens, the negative pressure Pe in the other chamber 13c of the negative pressure switch 13 also becomes Pd.
It becomes shallow from the minimum value Pam.

方、第2の負圧ポート12の負圧Pdは逆に急激に増大
し、IPaIIIl < l Pf lの関係の時点t
5て第3図(C)のように負圧スイッチ13はオフして
加速を検出する。そこで第3図(d)のように時点t5
以降において、燃料カット制御回路31からソレノイド
弁32にリカバリー信号が出力されて開き、スロー系の
燃料カットがリカバリーされるのである。
On the other hand, the negative pressure Pd of the second negative pressure port 12 increases rapidly, and at the time t of the relationship IPaIIIl < l Pf l.
5, the negative pressure switch 13 is turned off and acceleration is detected as shown in FIG. 3(C). Therefore, as shown in FIG. 3(d), time t5
Thereafter, a recovery signal is output from the fuel cut control circuit 31 to the solenoid valve 32 to open it, and the slow system fuel cut is recovered.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、燃料カット系
の負圧スイッチが差圧式に構成され、差圧設定値が小さ
く設定されるので、加減速検出の応答性が向上する。
As described above, according to the present invention, the negative pressure switch of the fuel cut system is configured to be a differential pressure type, and the differential pressure setting value is set small, so that the responsiveness of acceleration/deceleration detection is improved.

また、特に加速の検出による燃料カットのりカバリ−の
応答性が向上することで、燃料が迅速に供給されて運転
性がよくなり、燃料の出遅れに伴うショック等も低減す
る。
In addition, by improving the responsiveness of the fuel cut-off fuel recovery based on acceleration detection in particular, fuel is quickly supplied, improving drivability and reducing shocks caused by delays in fuel supply.

さらに、差圧式負圧スイッチであり、高度による吸入負
圧の変化に対して相対圧力は一定であるため、高度補償
が不要になる。
Furthermore, since it is a differential pressure type negative pressure switch, the relative pressure is constant even when the suction negative pressure changes due to altitude, so altitude compensation is not required.

さらにまた、スロットル弁の逆特性のポート負圧、負圧
応動弁の大気導入に伴う負圧を用いて差圧動作する構成
であるから、構造が簡素化する。
Furthermore, since the configuration is such that the differential pressure operation is performed using the port negative pressure of the throttle valve with reverse characteristics and the negative pressure associated with the introduction of atmospheric air from the negative pressure responsive valve, the structure is simplified.

そして、減速時には負圧応動弁の大気導入に伴う負正に
より差圧設定値を太き目に定めるので、減速の検出を迅
速化してその検出状態を保持し得る。
During deceleration, the differential pressure set value is determined to be large based on the negative and positive values associated with the introduction of atmospheric air into the negative pressure responsive valve, so that deceleration can be detected quickly and the detected state can be maintained.

そしてまた、加速時にはスロットル弁のポート負圧によ
り差圧設定値を小さ目に定めるので、加速の検出を同様
に迅速化し、その検出状態を保持し得る。
Furthermore, during acceleration, the differential pressure set value is set to a small value by the port negative pressure of the throttle valve, so acceleration can be similarly detected quickly and the detected state can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料カット装置の実施例を示す構成図
、 第2図(a)はスロットル開度に対する各負圧特性図、
第2図(b)は負圧応動弁開閉時の各部の負圧特性図、 第3図は減速および再加速時の作用を示す特性図である
FIG. 1 is a configuration diagram showing an embodiment of the fuel cut device of the present invention, FIG. 2(a) is a graph of negative pressure characteristics with respect to throttle opening,
FIG. 2(b) is a negative pressure characteristic diagram of each part when opening and closing the negative pressure responsive valve, and FIG. 3 is a characteristic diagram showing the action during deceleration and re-acceleration.

Claims (2)

【特許請求の範囲】[Claims] (1)キャブレータのスロットル弁開度の増大に応じて
負圧を減少する第1の負圧ポートと、逆に負圧を増大す
る第2の負圧ポートとを有し、 上記第2の負圧ポートを差圧式負圧スイッチの一方の室
に連通し、 上記負圧スイッチの他方の室に上記スロットル弁が開い
た条件では上記第1の負圧ポートの浅い最小負圧を、減
速時には上記最小負圧より少し深い所定の負圧を選択的
に付与することを特徴とする燃料カット装置。
(1) It has a first negative pressure port that reduces negative pressure in accordance with an increase in the throttle valve opening of the carburetor, and a second negative pressure port that increases the negative pressure, and The pressure port is connected to one chamber of the differential pressure type negative pressure switch, and under the condition that the throttle valve is opened to the other chamber of the negative pressure switch, the shallow minimum negative pressure of the first negative pressure port is applied, and during deceleration, the shallow minimum negative pressure is applied to the other chamber of the negative pressure switch. A fuel cut device that selectively applies a predetermined negative pressure that is slightly deeper than the minimum negative pressure.
(2)上記負圧スイッチの作動負圧を設定する負圧応動
弁を有し、 上記負圧応動弁に形成された作動負圧設定室を、第2の
チェック弁を介して上記負圧スイッチの他方の室に連通
すると共に、上記第1の負圧ポートを第1のチェック弁
を介して連通したことを特徴とする請求項(1)記載の
燃料カット装置。
(2) A negative pressure responsive valve is provided to set the operating negative pressure of the negative pressure switch, and the operating negative pressure setting chamber formed in the negative pressure responsive valve is connected to the negative pressure switch via a second check valve. 2. The fuel cut device according to claim 1, wherein the first negative pressure port is connected to the other chamber of the first negative pressure port through a first check valve.
JP13553089A 1989-05-27 1989-05-27 Fuel cut device Pending JPH03956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13553089A JPH03956A (en) 1989-05-27 1989-05-27 Fuel cut device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13553089A JPH03956A (en) 1989-05-27 1989-05-27 Fuel cut device

Publications (1)

Publication Number Publication Date
JPH03956A true JPH03956A (en) 1991-01-07

Family

ID=15153926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13553089A Pending JPH03956A (en) 1989-05-27 1989-05-27 Fuel cut device

Country Status (1)

Country Link
JP (1) JPH03956A (en)

Similar Documents

Publication Publication Date Title
US4051823A (en) Internal combustion engine
US4445474A (en) Air intake system for supercharged automobile engine
US4071006A (en) Exhaust gas recirculating system
JPH03956A (en) Fuel cut device
US2993484A (en) Deceleration fuel cutoff control for internal combustion engines
JPS6157465B2 (en)
JPH03962A (en) Fuel cut device
US4541384A (en) System for controlling the air-fuel ratio supplied to an engine
JPS59188055A (en) Engine control device
JPS6018610Y2 (en) Internal combustion engine exhaust gas recirculation control device
JPH03957A (en) Fuel cut device
JPS5924842Y2 (en) Combustion control device for internal combustion engine
JPS5911749B2 (en) Automotive engine ignition timing control method and device
JPS597568Y2 (en) Internal combustion engine exhaust gas recirculation control device
GB2062097A (en) Internal combustion engine exhaust gas recirculation control system
JPS5827097Y2 (en) Vacuum ignition timing adjustment device
JPS6147979B2 (en)
JPS6224053Y2 (en)
JP2530101Y2 (en) Engine stall prevention device for deceleration of outboard motor with supercharger
JPS6027793Y2 (en) Air governor for internal combustion engines
JPH03958A (en) Fuel cut device
JPS5833954B2 (en) valve device
JPS6053654A (en) Supply device of secondary intake air in internal- combustion engine
JPS5817334B2 (en) Atsuriyoku Houtou Bensouchi
JPS5836191B2 (en) Vacuum advance angle control device for gasoline engine with air governor