JPH02175900A - Method for decreasing ferric ion in iron-based plating solution - Google Patents

Method for decreasing ferric ion in iron-based plating solution

Info

Publication number
JPH02175900A
JPH02175900A JP32916688A JP32916688A JPH02175900A JP H02175900 A JPH02175900 A JP H02175900A JP 32916688 A JP32916688 A JP 32916688A JP 32916688 A JP32916688 A JP 32916688A JP H02175900 A JPH02175900 A JP H02175900A
Authority
JP
Japan
Prior art keywords
iron
based plating
plating solution
ions
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32916688A
Other languages
Japanese (ja)
Inventor
Yukimi Miwa
三輪 幸美
Shigeo Matsubara
茂雄 松原
Takafumi Nakamura
尚文 中村
Ichiu Takagi
高木 一宇
Yoshitaka Nakagawa
中川 善隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP32916688A priority Critical patent/JPH02175900A/en
Publication of JPH02175900A publication Critical patent/JPH02175900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To reduce Fe<3+> to Fe<2+> and to improve the performance of an iron- based plating soln. by connecting the soluble anode of Fe or a metal baser than Fe and the insoluble cathode of a metal nobler than Fe with a conductor in an Fe-based plating soln. contg. Fe<3+> ion, and allowing the plating soln. close to the cathode to flow rapidly. CONSTITUTION:An iron-based plating soln. 2 contg. 1-30g/l of Fe<3+> ion and consisting essentially of Fe<2+> ion is charged into a vessel 1. A soluble anode 3 of Fe or a metal baser than Fe and an insoluble cathode 4 of a metal nobler than Fe such as Pt are dipped in the soln., both electrodes 3 and 4 are connected with a conductor 5 of a Cu wire, etc., an agitator 7 such as a magnetic stirrer is arranged close to the cathode 4 to agitate the soln. 2 to increase the flow velocity of the soln. in the vicinity of the cathode 4, hence Fe<3+> is reduced to Fe<2+> to decrease the amt. of Fe<3+> ion, and the performance of the Fe-based plating soln. is restored.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解槽に不溶性陽極を使用する鉄系電気めっ
き工程においてその鉄系めつき液中に生成するFe3+
イオンをFe′*イオンに還元させて再び鉄系めつき装
置の電解槽内に戻して使用するのに好適な鉄系めつき液
の3価の鉄イオン低減方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to Fe3+ generated in the iron-based plating solution in the iron-based electroplating process using an insoluble anode in the electrolytic bath.
The present invention relates to a method for reducing trivalent iron ions in an iron-based plating solution suitable for reducing ions to Fe'* ions and returning the ions to an electrolytic cell of an iron-based plating apparatus for use.

〔従来の技術〕[Conventional technology]

近年、工業的な鉄系電気めっきは陽極に不溶性陽極を使
用する方法が主流をなしているが、このめっき方法の最
大の欠点は、その鉄系めつき液中のFe”イオンが外部
空気により酸化される他に陽極で発生する02ガスや陽
極での電解酸化によってFe3+イオンに酸化されて鉄
系めつき液中のFe”″イオンが増加してくることと、
陰極でのFe1イオンの一部がFe”イオンに還元され
る現象が生じる際に余分な電力が消費されて陰極の電流
効率が低くなることである。
In recent years, the mainstream of industrial iron-based electroplating has been to use an insoluble anode as an anode. However, the biggest drawback of this plating method is that Fe" ions in the iron-based plating solution are exposed to external air. In addition to being oxidized, 02 gas generated at the anode and electrolytic oxidation at the anode are oxidized to Fe3+ ions, and Fe"" ions in the iron-based plating solution increase.
When a portion of the Fe1 ions at the cathode are reduced to Fe'' ions, excess power is consumed and the current efficiency of the cathode is reduced.

一般にFe3”イオンは微量存在していても水酸化物と
なって沈殿し易い性質を有しているために。
Generally, even if Fe3'' ions are present in trace amounts, they tend to become hydroxides and precipitate.

水酸化物となると容易にめっき皮膜中に取り込まれて皮
膜の延性を極端に低下させるので、従来より次のような
Fe34イオンをFe”イオンに還元する方法が提案さ
れている。
Since hydroxides are easily incorporated into the plating film and extremely reduce the ductility of the film, the following method of reducing Fe34 ions to Fe'' ions has been proposed.

1、電解槽をイオン交換膜で陽極室とlla極室とに仕
切り、陽極室内には電導液を又陰極室内には鉄系めつき
液をそれぞれ流しながら電解還元を行う方法。
1. A method in which the electrolytic cell is divided into an anode chamber and an lla electrode chamber by an ion exchange membrane, and electrolytic reduction is carried out while flowing a conductive liquid into the anode chamber and an iron-based plating solution into the cathode chamber.

2、還元反応槽内に金属粒子を投入し、鉄系めつき液を
その還元反応槽内に通して金属粒子で還元させる方法。
2. A method in which metal particles are introduced into a reduction reaction tank, and an iron-based plating solution is passed through the reduction reaction tank to be reduced by the metal particles.

しかしながら、随者の方法は電解還元にめっき電力の1
.5〜2.5倍の余分な電力を必要とするために処理費
用が高価となり、しかも陽極室内に電導液を通さなけれ
ばならないためにその′管理が非常に煩雑であるという
欠点があった。
However, the method of the follower uses only 1 plating power for electrolytic reduction.
.. The processing cost is high because 5 to 2.5 times more power is required, and the conductive liquid must be passed through the anode chamber, making its management very complicated.

一方、後者の方法は次の(1)式に示す金属粒子による
Fe3°イオンのFe” ”イオンへの還元反応の他に
、(2)式に示す金属粒子と鉄系めっき液の酸との反応
も起る。
On the other hand, in the latter method, in addition to the reduction reaction of Fe3° ions to Fe'' ions by metal particles as shown in equation (1) below, the reaction between metal particles and the acid in the iron-based plating solution as shown in equation (2) is performed. A reaction also occurs.

Me + nFe  −Ma  +nFe”−(1)M
e  +  n H”  =  Me”  + −H,
↑−−−−−−−−(2)但し、MeはFe、Znなど
の還元用金属このため、金属粒子の表面では水素ガスが
発生し、Feイオン含有溶液のpHを変動させるという
欠点が生じるばかりか、水素ガスの発生によって動部的
に溶液のρ11が上昇し金属粒子の表面に水酸化物皮膜
が生成するので次第に金属粒子の表面の鉄系めつき液と
の有効接触面積が減少してFe3”イオンのFe28イ
オンへの還元速度が低下してしまうという欠点があった
。そしてこのような欠点は単なる鉄系めつき液の撹拌で
は金属粒子の表面に生成した水酸化物皮膜が除去出来な
いために解決出来ない欠点であった。
Me + nFe - Ma + nFe" - (1) M
e + n H" = Me" + -H,
↑---------(2) However, since Me is a reducing metal such as Fe or Zn, it has the disadvantage that hydrogen gas is generated on the surface of the metal particles and changes the pH of the Fe ion-containing solution. Not only does this occur, but the ρ11 of the solution dynamically increases due to the generation of hydrogen gas, and a hydroxide film is formed on the surface of the metal particles, so the effective contact area of the surface of the metal particles with the iron-based plating solution gradually decreases. This has the disadvantage that the rate of reduction of Fe3'' ions to Fe28 ions decreases.This disadvantage is that simply stirring the iron-based plating solution causes the hydroxide film formed on the surface of the metal particles to deteriorate. This was a drawback that could not be solved because it could not be removed.

そこで上記(2)式の反応を抑制する方法として、金属
粒子の表面積を小さくすることが考えられるが、上記(
1)式の反応速度も遅くなる欠点がある。
Therefore, as a method of suppressing the reaction of the above equation (2), it is possible to reduce the surface area of the metal particles, but the above (
There is a drawback that the reaction rate of formula 1) is also slow.

また、還元反応促進剤の添加や白金等の不溶性金属と共
に金属粒子を投入して上記(1)式の反応を優先的に起
させて還元効率を高める方法も考えられるが、還元反応
促進剤の添加は還元費用の増大を招き、白金等の不溶性
金属と共に金属粒子を投入することはそれぞれの金属が
混合するために取扱いが煩雑となる欠点がある。
Alternatively, it is possible to increase the reduction efficiency by adding a reduction reaction accelerator or by introducing metal particles together with an insoluble metal such as platinum to preferentially cause the reaction of formula (1) above. Addition increases the cost of reduction, and adding metal particles together with insoluble metals such as platinum has the disadvantage that handling becomes complicated because the respective metals are mixed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の課題は、上記従来技術の欠点を解消し、電解槽
に不溶性陽極を使用する鉄系電気めっき工程においてそ
の鉄系めつき液中に生成するFe) +イオンを安価且
つ容易にFe2°イオンに還元させて再び鉄系めつき装
置の電解槽内に戻して使用するのに好適な鉄系めつき液
の3価の鉄イオン低減方法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to inexpensively and easily convert Fe2°+ ions generated in the iron-based plating solution in the iron-based electroplating process using an insoluble anode in the electrolytic bath. It is an object of the present invention to provide a method for reducing trivalent iron ions in an iron-based plating solution, which is suitable for reducing the iron-based plating solution to ions and returning it to an electrolytic cell of an iron-based plating apparatus for use.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記課題を解決すべく種々実験検討した結
果、鉄又は鉄より卑な鉄系めつきの成分となる可溶性金
属と鉄より貴な不溶性金属とを電導体によって接続して
可溶性金属側をアノード。
As a result of various experimental studies to solve the above problems, the present inventors have found that iron or a soluble metal that is a component of iron-based plating that is baser than iron and an insoluble metal that is nobler than iron are connected by a conductor, and the soluble metal side the anode.

不溶性金属側をカソードとさせる容器中に鉄系めつき液
を4 (と、それぞれ次式に示すようにアノード側の可
溶性金属はFeイオンの存在する鉄系めつき液中に金属
イオンとなって溶解すると共に、不溶性金属より成るカ
ソード側ではFe’ ”イオンがFe” ”イオンに還
元される反応に着目した。
An iron-based plating solution is placed in a container with the insoluble metal side serving as the cathode.As shown in the following equations, the soluble metal on the anode side becomes metal ions in the iron-based plating solution containing Fe ions. We focused on the reaction in which Fe' ions are reduced to Fe' ions on the cathode side, which is made of an insoluble metal, while being dissolved.

アノード側 Me −n e  + Me”−(3)カ
ソード側 Fe5th+  e −+ Fe”= = 
・・・(4)全体    Me+nFe”→Me”+n
Fc”i5)但し、 Meは鉄又は鉄より卑な可溶性金
属ここで(5)式はカソード反応である(4)式により
律速されており、この(4)式の反応はカソード近傍の
Fe”イオンの拡散速度に律速されている。
Anode side Me −ne + Me”− (3) Cathode side Fe5th+ e −+ Fe”= =
...(4) Overall Me+nFe”→Me”+n
Fc"i5) However, Me is iron or a soluble metal less base than iron. Equation (5) is a cathode reaction. The rate is determined by equation (4), and the reaction of this equation (4) is Fe" near the cathode. The rate is determined by the rate of ion diffusion.

そこで少なくともこのカソードの不溶性金属近傍へのF
e”イオンの供給速度を、スターシー等により強く撹拌
するか又はポンプ等で鉄系めつき液を循環させて撹拌し
たり、カソードの不溶性金属に機械的振動を与えるか又
はカソードの不溶性金属に回転等の運動を与えたりする
ような方法により高めることによって(5)式の反応を
促進させれば、鉄系電気めっき工程においてその鉄系め
つき液中に生成するFe3”イオンを安価且つ容易にF
e”イオンに還元させて再び鉄系めつき装置の電解槽内
に戻して使用するのに好適な鉄系めつき液の3価の鉄イ
オン低減方法として有効であることを究明して本発明を
完成したのである。
Therefore, at least F to the vicinity of the insoluble metal of the cathode
e" The supply rate of ions can be increased by stirring strongly with a Starcy device, stirring the iron-based plating solution by circulating it with a pump, etc., applying mechanical vibration to the insoluble metal of the cathode, or If the reaction of equation (5) is promoted by applying motion such as rotation, Fe3" ions generated in the iron-based plating solution in the iron-based electroplating process can be easily and cheaply removed. to F
The present invention was developed based on the discovery that it is effective as a method for reducing trivalent iron ions in an iron-based plating solution, which is suitable for reducing to e'' ions and returning them to the electrolytic cell of an iron-based plating device. was completed.

このように少なくともカソードの不溶性金属近傍へのF
e3”イオンの供給速度を大きくする理由は。
In this way, F at least near the insoluble metal of the cathode
What is the reason for increasing the supply rate of e3'' ions?

(3)式の反応は瞬時に起るが、(5)式の反応におい
てFe3+イオンの供給が追い着かないので、Fe3゛
イオンからFe1イオンへの還元反応が非常に遅くなっ
て工業的に実施不可能であるからである。
The reaction of equation (3) occurs instantaneously, but since the supply of Fe3+ ions cannot keep up with the reaction of equation (5), the reduction reaction from Fe3' ions to Fe1 ions becomes extremely slow and cannot be carried out industrially. Because it is impossible.

そして、このような方法で鉄系電気めっき液中のFe’
 ”イオンをFe2+イオンに還元させるに際し、本発
明者らはFe3”イオン濃度が1〜30 g / Qで
なければならないことを多数の実験結果より確認したの
である。これは、鉄系電気めっき液中のFe3”イオン
濃度が1g/l未満であると、可溶性金属から成るアノ
ードと不溶性金属から成るカソードとを接続している電
導体を流れる電流値が小さく、その結果上記(3)式の
反応が進まず且つ鉄系めつき液の流速を撹拌等によって
高めたことによる空気酸化でFe”イオンの増加が起る
ためにFe3”イオンの低下が期待できないためである
。また鉄系電気めっき液中のFe3°イオン濃度が30
g/lを超えるようなことは通常の鉄系電気めっき時に
発生するようなことが無く、仮にこのようなFeff”
イオン濃度が高い鉄系めっき液を使用すると、陰極でF
e3+イオンの一部がFe” ’イオンに還元される現
象が生じて余分な電力が消費されて陰極の電流効率が低
くなって工業的に鉄系めっきを実施できないばかりでな
く、Fe’ +イオンに基づく水酸化物が生じてその水
酸化物がめつき皮膜中に取り込まれて皮膜の延性を極端
に低下させることになって好ましくないからである。
Then, using this method, Fe' in the iron-based electroplating solution was
The present inventors have confirmed from numerous experimental results that when reducing ions to Fe2+ ions, the Fe3 ion concentration must be 1 to 30 g/Q. This is because when the Fe3'' ion concentration in the iron-based electroplating solution is less than 1 g/l, the current flowing through the conductor connecting the anode made of a soluble metal and the cathode made of an insoluble metal is small; As a result, the reaction in equation (3) above does not proceed and a decrease in Fe3'' ions cannot be expected because Fe'' ions increase due to air oxidation caused by increasing the flow rate of the iron-based plating solution by stirring etc. Also, the Fe3° ion concentration in the iron-based electroplating solution is 30
g/l does not occur during normal iron-based electroplating, and even if such
When using iron-based plating solution with high ion concentration, F at the cathode
A phenomenon occurs in which some of the e3+ ions are reduced to Fe'' ions, which consumes extra power and lowers the current efficiency of the cathode, making it impossible to carry out industrial iron plating. This is because hydroxides based on the above are produced and incorporated into the plating film, resulting in an extreme decrease in the ductility of the film, which is undesirable.

〔実施例〕〔Example〕

実施例及び比較例1 第1図の本発明方法の実施に好適な装置の1実施例を示
す断面説明図に示すように、アノードとなる可溶性金属
3として鉄を、カソードとなる鉄より貴な不溶性金属4
として白金板を使用し、この可溶性金属3と不溶性金属
4とを銅線より成る電導体5によって接続すると共にそ
の電導体5の途中に電流計6を介装させた状態の容器1
を準備し、その容器1中の不溶性金属4の直下にマグネ
チツクスターラ−7を配置した。この容器1内に建浴直
後のFe’+イオン濃度が30gIQの塩化物系鉄系め
つき液2を投入し、マグネチツクスターラ−7を駆動さ
せて不溶性金属4近傍の鉄系めつき液1の流速を高めて
その鉄系めつき液中のF、34イオン濃度の経時的変化
を測定してその結果を第2図に、またその鉄系めつき液
中のFe’ ”イオン濃度に対する電流計6の測定値(
単位カソード面積当りに流れる電流値である電流密度)
を第3図に・印で示した。
Example and Comparative Example 1 As shown in the cross-sectional explanatory diagram of one example of the apparatus suitable for carrying out the method of the present invention in FIG. insoluble metal 4
The soluble metal 3 and the insoluble metal 4 are connected by a conductor 5 made of copper wire, and an ammeter 6 is interposed in the middle of the conductor 5.
A magnetic stirrer 7 was placed directly below the insoluble metal 4 in the container 1. A chloride-based iron-based plating solution 2 with an Fe'+ ion concentration of 30 gIQ is poured into the container 1 immediately after bath preparation, and the magnetic stirrer 7 is driven to remove the iron-based plating solution 1 near the insoluble metal 4. Figure 2 shows the results of measuring the changes over time in the concentration of F, 34 ions in the iron-based plating solution by increasing the flow rate of the iron-based plating solution. A total of 6 measured values (
(current density, which is the current value flowing per unit cathode area)
is shown in Figure 3 with a mark.

一方、比較例としてのマグネチツクスターラ−7を駆動
させない場合の鉄系めつき液中のFe3”イオン濃度の
経時的変化を測定してその結果を第4図に、またその鉄
系めつき液中のFe3+イオン濃度に対する電流計6の
測定値(電流密度)を第3図に0印で示した。
On the other hand, as a comparative example, we measured the change over time in the Fe3'' ion concentration in the iron-based plating solution when the magnetic stirrer 7 was not driven, and the results are shown in Figure 4. The measured value (current density) of the ammeter 6 with respect to the Fe3+ ion concentration in the sample is shown as a 0 mark in FIG.

その結果、マグネチツクスターラ−7を駆動させた本発
明方法の実施例の場合は第2図から明らかなようにFe
’ ”″イオン濃度が急j末に減少しており、電流密度
もマグネチツクスターラ−7を駆動させないと900分
経過してもFe”イオン濃度が僅か4g/l程度しか減
少しない比較例に比べて5倍程度高く、本発明方法が著
しい効果を発揮することが確認できた。
As a result, in the case of the embodiment of the method of the present invention in which the magnetic stirrer 7 was driven, as is clear from FIG.
Compared to the comparative example, the Fe ion concentration decreases rapidly and the current density decreases by only about 4 g/l even after 900 minutes without driving the magnetic stirrer 7. It was confirmed that the method of the present invention exerts a remarkable effect.

比較例2 上記実施例と同じ装置を使用してFe’ +イオン濃度
が0.8 g / Qの鉄系めつき液をマグネチツクス
ターラ−7を駆動させながら実験を行ってその鉄系めつ
き液中のFe’ ”イオン濃度の経時的変化を測定して
その結果を第5図に示した。
Comparative Example 2 Using the same equipment as in the above example, an experiment was conducted using an iron-based plating solution with an Fe' + ion concentration of 0.8 g/Q while driving the magnetic stirrer 7, and the iron-based plating was carried out. Changes in Fe''' ion concentration in the liquid over time were measured and the results are shown in FIG.

この第5図から明らかなように時間が経過してもFe’
+イオン濃度の低下は殆ど認められず、電流計6の測定
値(電流密度)は約0.04 A /d rrrと非常
に僅かではあるが電気が流れていることによるFe’+
イオンの減少は生じてはいるものの鉄系めつき液の撹拌
により空気酸化が促進されていることが確認できた。
As is clear from Fig. 5, Fe'
Almost no decrease in the + ion concentration was observed, and the measured value (current density) of the ammeter 6 was approximately 0.04 A/d rrr, which was a very small amount of Fe'+ due to the flow of electricity.
Although there was a decrease in ions, it was confirmed that air oxidation was promoted by stirring the iron-based plating solution.

〔発明の作用及び効果〕[Operation and effect of the invention]

以上詳述した如く本発明に係る鉄系めつき液の3価の鉄
イオン低減方法は、1〜30g/ffのFe’ ”イオ
ンを含む鉄系めつき液を、鉄又は鉄より卑な鉄系めつき
の成分となる可溶性金属と鉄より貴な不溶性金属とを電
導体によって接続して可溶性金属側をアノード、不溶性
金属側をカソードとさせる容器中に導き、該容器中の少
なくとも不溶性金属側近傍の前記鉄系めつき液の流速を
高めることによって鉄系めつき液中のFe3”イオンを
Fe” ”イオンに急速に還元させるという非常に簡単
な方法であり、従来の電解槽をイオン交換膜で陽極室と
陰極室とに仕切って陽極室内には電導液を又陰極室内に
は鉄系めつき液をそれぞれ流しながら電解還元を行う方
法のように電解還元を行うための電力を必要としないた
めに安価且つ容易に実施でき、鉄系めつき液中のFe3
”イオンのFe”+イオンへの還元が急速に生じるため
に工業的に実施し得る画期的な方法であり、またこの方
法により電解槽に不溶性陽極を使用する鉄系電気めっき
工程においてめっきに消費されたFe1イオンの補給に
も役立つのであり、その工業的価値の高いものである。
As detailed above, the method for reducing trivalent iron ions in an iron-based plating solution according to the present invention is to use an iron-based plating solution containing 1 to 30 g/ff of Fe''' ions to reduce iron or an iron less noble than iron. A soluble metal, which is a component of system plating, and an insoluble metal nobler than iron are connected by a conductor, and introduced into a container in which the soluble metal side is used as an anode and the insoluble metal side is used as a cathode, and at least near the insoluble metal side in the container. This is a very simple method that rapidly reduces Fe3" ions in the iron-based plating solution to Fe" ions by increasing the flow rate of the iron-based plating solution. This method does not require electricity to perform electrolytic reduction, unlike the method in which electrolytic reduction is performed by dividing the anode chamber and cathode chamber into an anode chamber and a cathode chamber, and flowing a conductive liquid in the anode chamber and an iron-based plating solution in the cathode chamber. Therefore, it is cheap and easy to implement, and Fe3 in iron-based plating solution is
This is an innovative method that can be implemented industrially because the reduction of "ions to Fe" + ions occurs rapidly, and this method also improves plating in the iron-based electroplating process that uses an insoluble anode in the electrolytic bath. It is also useful for replenishing consumed Fe1 ions, and has high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に好適な装置の1実施例を示
す断面説明図、第2図は本発明方法の実施例における鉄
系めつき液中のFe3 +イオン濃度の経時的変化を示
す図、第3図は本発明方法の実施例と不溶性金属側近傍
の鉄系めつき液の流速を高めない比較例1との鉄系めつ
き液中のFe3+イオン濃度に対する電流密度の関係を
示す図、第4図は不溶性金属側近傍の鉄系めつき液の流
速を高めない比較例1の鉄系めつき液中のFe3”イオ
ン濃度の経時的変化を示す図、第5図は比較例2におけ
る鉄系めつき液中のFe3”イオン濃度の経時的変化を
示す図である。 図面中 l・・・・容器 2・・・・鉄系めつき液 3・・・・可溶性金属 4・・・・不溶性金属 5・・・・電導体 6・・・・電流計 7・・・・マグネチツクスターラー 第1図 −6: 第2 図 Time (min) 第3 図 F♂+イ オフ#K(91息) 第 司 第 図 Time (min)
Fig. 1 is a cross-sectional explanatory diagram showing one embodiment of an apparatus suitable for carrying out the method of the present invention, and Fig. 2 shows the change over time of the Fe3+ ion concentration in the iron-based plating solution in an embodiment of the method of the present invention. Figure 3 shows the relationship between the current density and the Fe3+ ion concentration in the iron-based plating solution in Examples of the method of the present invention and Comparative Example 1 in which the flow rate of the iron-based plating solution near the insoluble metal side is not increased. Figure 4 is a diagram showing the change over time in the Fe3'' ion concentration in the iron-based plating solution of Comparative Example 1 in which the flow rate of the iron-based plating solution near the insoluble metal side is not increased, and Figure 5 is a comparison diagram. FIG. 3 is a diagram showing changes over time in the Fe3'' ion concentration in the iron-based plating solution in Example 2. In the drawing l...Container 2...Iron-based plating liquid 3...Soluble metal 4...Insoluble metal 5...Conductor 6...Ammeter 7...・Magnetic stirrer Fig. 1-6: Fig. 2 Time (min) Fig. 3 F♂+I Off #K (91 breaths) Fig. Time (min)

Claims (1)

【特許請求の範囲】 1 1〜30g/lのFe^3^+イオンを含む鉄系め
つき液を、鉄又は鉄より卑な鉄系めつきの成分となる可
溶性金属と鉄より貴な不溶性金属とを電導体によつて接
続して可溶性金属側をアノード、不溶性金属側をカソー
ドとさせる容器中に導き、該容器中の少なくとも不溶性
金属側近傍の前記鉄系めつき液の流速を高めることによ
つて鉄系めつき液中のFe^3^+イオンをFe^2^
+イオンに急速に還元させることを特徴とする鉄系めつ
き液の3価の鉄イオン低減方法。 2 容器中の少なくとも不溶性金属側近傍の鉄系めつき
液の流速を、強く撹拌するか又はポンプ等で循環させて
撹拌して高める請求項1に記載の鉄系めつき液の3価の
鉄イオン低減方法。 3 容器中の少なくとも不溶性金属側近傍の鉄系めつき
液の流速を、カソードの不溶性金属に機械的振動を与え
るか又はカソードの不溶性金属に回転等の運動を与えて
高める請求項1に記載の鉄系めつき液の3価の鉄イオン
低減方法。
[Claims] 1. An iron-based plating solution containing 1 to 30 g/l of Fe^3^+ ions is applied to iron or a soluble metal that is a component of iron-based plating that is baser than iron and an insoluble metal that is nobler than iron. and are connected by a conductor to introduce the iron-based plating solution into a container in which the soluble metal side is used as an anode and the insoluble metal side is used as a cathode, and the flow rate of the iron-based plating solution at least near the insoluble metal side in the container is increased. Therefore, the Fe^3^+ ions in the iron-based plating solution are replaced with Fe^2^
A method for reducing trivalent iron ions in an iron-based plating solution, which is characterized by rapid reduction to + ions. 2. The trivalent iron of the iron-based plating solution according to claim 1, wherein the flow rate of the iron-based plating solution at least near the insoluble metal side in the container is increased by stirring strongly or by circulating it with a pump or the like. Ion reduction method. 3. The method according to claim 1, wherein the flow velocity of the iron-based plating solution at least near the insoluble metal side in the container is increased by applying mechanical vibration to the insoluble metal of the cathode or by applying movement such as rotation to the insoluble metal of the cathode. A method for reducing trivalent iron ions in iron-based plating solutions.
JP32916688A 1988-12-28 1988-12-28 Method for decreasing ferric ion in iron-based plating solution Pending JPH02175900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32916688A JPH02175900A (en) 1988-12-28 1988-12-28 Method for decreasing ferric ion in iron-based plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32916688A JPH02175900A (en) 1988-12-28 1988-12-28 Method for decreasing ferric ion in iron-based plating solution

Publications (1)

Publication Number Publication Date
JPH02175900A true JPH02175900A (en) 1990-07-09

Family

ID=18218384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32916688A Pending JPH02175900A (en) 1988-12-28 1988-12-28 Method for decreasing ferric ion in iron-based plating solution

Country Status (1)

Country Link
JP (1) JPH02175900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4159C1 (en) * 2010-10-25 2012-10-31 Государственный Университет Молд0 Process for electrochemical regeneration of the oxidized iron plating electrolyte
MD4229C1 (en) * 2012-02-16 2013-12-31 Государственный Университет Молд0 Device and method for analytical control of the content of iron(III) ions in the iron plating electrolyte and plant for electrochemical regeneration of iron plating electrolyte with automatic control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4159C1 (en) * 2010-10-25 2012-10-31 Государственный Университет Молд0 Process for electrochemical regeneration of the oxidized iron plating electrolyte
MD4229C1 (en) * 2012-02-16 2013-12-31 Государственный Университет Молд0 Device and method for analytical control of the content of iron(III) ions in the iron plating electrolyte and plant for electrochemical regeneration of iron plating electrolyte with automatic control

Similar Documents

Publication Publication Date Title
JPH0864223A (en) Electrolyte for vanadium redox flow type battery
Djokić Cementation of copper on aluminum in alkaline solutions
Ved et al. Composition and corrosion behavior of iron-cobalt-tungsten
CN102639233B (en) Method for producing catalyst
CN114134531A (en) General method for preparing self-supporting layered metal hydroxide
KR100491178B1 (en) Electrolytic phosphate chemical treatment method
Shaikh et al. A cyclic voltammetric study of the influence of supporting electrolytes on the redox behaviour of Cu (II) in aqueous medium
US7520973B2 (en) Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method
JP2002069689A (en) Method for electroplating on powder
US20040217007A1 (en) Method for controlling the ferric ion content of a plating bath containing iron
JPH02175900A (en) Method for decreasing ferric ion in iron-based plating solution
JPH0250991B2 (en)
Popov et al. The shape of the polarization curve and diagnostic criteria for control of the metal electrodeposition process
JPH03202489A (en) Manganese and manganese alloy plating method
CN110129799A (en) Recycling method of tin stripping waste liquid based on sulfuric acid-ferric salt system
Lu et al. Anodic oxidation of copper cyanide on graphite anodes in alkaline solution
US2714089A (en) Electrodepositing iron
Jin et al. Effect of some amino acid chelating agents on the passivation of copper anodes in copper sulfate/sulfuric acid electrolyte
WO2021132400A1 (en) Cathode for producing electrolytic manganese dioxide
JPH1018073A (en) Electrolysis with addition of ultrasonic vibration
Tzeng Effects of additive agents on the kinetics of tin electrodeposition from an acidic solution of tin (II) sulfate
JP2975577B2 (en) Electrolytic treatment of electroless nickel plating wastewater
JPH0423000B2 (en)
TW546418B (en) Method of producing AuCuGa alloy coating using electrolysis, and alloys produced by such a method
CN104928724B (en) A kind of method of the electrolytic preparation dendroid fine copper powder in ethanedioic acid