JPH02174594A - Motor control method - Google Patents

Motor control method

Info

Publication number
JPH02174594A
JPH02174594A JP63328600A JP32860088A JPH02174594A JP H02174594 A JPH02174594 A JP H02174594A JP 63328600 A JP63328600 A JP 63328600A JP 32860088 A JP32860088 A JP 32860088A JP H02174594 A JPH02174594 A JP H02174594A
Authority
JP
Japan
Prior art keywords
frequency power
motor
variable frequency
power supply
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63328600A
Other languages
Japanese (ja)
Inventor
Shinji Takada
高田 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63328600A priority Critical patent/JPH02174594A/en
Publication of JPH02174594A publication Critical patent/JPH02174594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To conduct a stable change-over of the operation of a motor by issuing a connection command in advance before the number of revolutions of the motor corresponds to the maximum output frequency of a variable-frequency power supply. CONSTITUTION:When a contactor 16 is first turned OFF to stop a feed at the time of a change-over of the operation of a motor 17 by a commercial power supply 11 to that by a variable-frequency power supply 14, the number of revolutions of the motor 17 lowers gradually. The lowering of the number of revolutions is monitored, the time for the number of revolutions to become the number corresponding to the maximum output frequency of the variable- frequency power supply 14 is forecast, and the closing command of a switch 15 is issued from a change-over control circuit 19 at the time by the operating period of time of the switch 15 before the time. When the switch 15 is closed and the variable-frequency power supply 14 is connected with the motor 17, the number of revolutions of the motor 17 corresponds to the maximum output frequency of the variable-frequency power supply 14 so that the change-over is conducted smoothly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電動機を商用電源と可変周波数電源とに切換
え接続して運転する電動機制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a motor control method for operating an electric motor by switching the connection between a commercial power source and a variable frequency power source.

〔従来の技術〕[Conventional technology]

第4図は例えば特公昭56−36675号公報に示され
た従来の電動機制御方法を適用する回路構成図、第5図
はその電動機制御方法による回転数とトルクの関係を示
す説明図である。
FIG. 4 is a circuit configuration diagram to which a conventional motor control method disclosed in, for example, Japanese Patent Publication No. 56-36675 is applied, and FIG. 5 is an explanatory diagram showing the relationship between rotational speed and torque according to the motor control method.

第4図において、11は商用電源、12と]−3は入力
しゃ断器、14は可変周波数電源、15は可変周波数電
源の出力で電動機17を運転する場合に投入する接触器
、16は商用電源11で電動機17を運転する場合に投
入する接触器、18は回転数指令発生器、19は切替制
御回路である。
In FIG. 4, 11 is a commercial power source, 12 and ]-3 are input circuit breakers, 14 is a variable frequency power source, 15 is a contactor that is turned on when operating the motor 17 with the output of the variable frequency power source, and 16 is a commercial power source. 11 is a contactor that is turned on when operating the electric motor 17, 18 is a rotation speed command generator, and 19 is a switching control circuit.

また、第5図において、τ。は負荷トルク、τ1とて、
はそれぞれ回転数50%、40%における発生可能トル
ク、Δτ、と4τ、はそれぞれ回転数50%、40%に
おける発生可能トルクと負荷トルクτ。の差を示す。
Also, in FIG. 5, τ. is the load torque, τ1,
are the generateable torque at 50% and 40% rotation speed, respectively, and Δτ and 4τ are the generateable torque and load torque τ at 50% and 40% rotation speed, respectively. shows the difference between

次に動作について説明する。第4図では、入力しゃ断器
13と接触器16が閉のとき、電動機17は商用電源1
1で運転され、入力しゃ断器12と接触器15が閉のと
き電動機17は可変周波数電源14で運転される。
Next, the operation will be explained. In FIG. 4, when the input breaker 13 and the contactor 16 are closed, the motor 17 is connected to the commercial power source 1.
1, and when the input breaker 12 and contactor 15 are closed, the motor 17 is operated with the variable frequency power supply 14.

接触器15.16の閉選択は、回転数指令発生器18か
らの指令信号が一定以下か以上かによって切替制御回路
19を介して決定され、一定以下の時は接触器15閉、
一定以上のときは接触器16閉となる。
The selection of closing the contactors 15 and 16 is determined via the switching control circuit 19 depending on whether the command signal from the rotation speed command generator 18 is below a certain level or above a certain level, and when it is below a certain level, the contactor 15 is closed;
When it is above a certain level, the contactor 16 is closed.

なお、接触器15閉のとき、回転数指令発生器18から
の指令信号は可変周波数電源14に与えられて、所定周
波数の出力電圧を電動機17に与える。
Note that when the contactor 15 is closed, a command signal from the rotation speed command generator 18 is given to the variable frequency power supply 14, and an output voltage of a predetermined frequency is given to the electric motor 17.

このように構成すれば、電動機17の負荷がファンやポ
ンプの時には、負荷トルクは回転数nの2乗に比例し、
必要電力KWは回転数nの3乗に比例するので、電動機
17の容量KWに比較して、可変周波数電源14の容量
は大幅に節約できるとともに、省エネルギ効果も大きな
値髪得ることが可能である。
With this configuration, when the load on the electric motor 17 is a fan or pump, the load torque is proportional to the square of the rotation speed n,
Since the required electric power KW is proportional to the cube of the rotation speed n, the capacity of the variable frequency power supply 14 can be significantly saved compared to the capacity KW of the electric motor 17, and it is also possible to obtain a large energy saving effect. be.

例えば回転数nの50%までを可変周波数電源14で運
転するとすれば、その容量は電動機17の容量を100
%とすれば、0.53=12.5%でよいことになる。
For example, if the variable frequency power supply 14 is operated up to 50% of the rotation speed n, its capacity will be 100% the capacity of the electric motor 17.
%, 0.53=12.5% is sufficient.

第5図は50%回転数までを可変周波数電源14で運転
する時の発生トルクと負荷トルクの関係を説明する図で
ある。可変周波数電源14は50%速度までを使用範囲
にしているので、過電流保護のために、電流形の電源時
は、その限界値(50%速度ベースの125%として以
下説明する)で電流制限し、電圧形の電源時は、その限
界値125%で過電流保護を作動させる必要があり、い
ずれにしても可変周波数電源14の最大出力電流は、そ
の限界値125%である(実際は時限特性をもたせてい
るが、説明を簡単にするために無視する)。
FIG. 5 is a diagram illustrating the relationship between generated torque and load torque when the variable frequency power supply 14 is operated up to 50% rotation speed. The variable frequency power supply 14 is used up to 50% speed, so for overcurrent protection, when using a current type power supply, the current is limited at its limit value (described below as 125% of the 50% speed base). However, when using a voltage type power supply, it is necessary to activate the overcurrent protection at 125% of the limit value, and in any case, the maximum output current of the variable frequency power supply 14 is 125% of the limit value (actually due to the time-limited characteristic). (which will be ignored for the sake of brevity).

第5図によれば、最大出力電流が125%程度であるか
ら、50%速度での発生トルクτ1と負荷トルクの差乙
τ、は10〜15%程度のトルクしかなく、可変周波数
電源14の出力電流のリップルや出力電圧の変動などに
より発生トルクτ1は負荷トルクで。と同程度しか発生
しない場合が生じたり、50%速度時点を検出して接触
器15を投入するとき、接触器16の動作時間の間に電
動機17の回転数は低下し、その回転数差回復するため
に最大出力電流以上の電流が必要となる場合がある。
According to FIG. 5, since the maximum output current is about 125%, the difference between the generated torque τ1 and the load torque at 50% speed, τ, is only about 10 to 15%. Due to output current ripples, output voltage fluctuations, etc., the generated torque τ1 is the load torque. When the contactor 15 is turned on after detecting the 50% speed point, the rotational speed of the motor 17 decreases during the operating time of the contactor 16, and the rotational speed difference recovers. In some cases, a current greater than the maximum output current may be required to achieve this.

そこで、可変周波数電源14の最高回転数50%より低
い値(以下、40%として説明する)で可変周波数電源
14を電動機17に接続すれば、可変周波数電源14の
最大出力電流は50%速度の時と同じであり、負荷トル
クτ。は小となるので、発生可能トルクτ2と負荷トル
クτ。との差4τ、は乙τ、より十分大となり、可変周
波数電源14への切換運転が安定に行われる。
Therefore, if the variable frequency power source 14 is connected to the motor 17 at a value lower than the maximum rotation speed of 50% of the variable frequency power source 14 (hereinafter explained as 40%), the maximum output current of the variable frequency power source 14 will be 50% of the speed. The same as when the load torque τ. is small, so the generable torque τ2 and the load torque τ. The difference 4τ between the two is sufficiently larger than the difference 4τ, and the switching operation to the variable frequency power supply 14 is performed stably.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の電動機制御方法は以上のように行なわれているの
で、40%の回転数まで負荷が低減するまで、商用電源
で運転する必要があり、40%〜50%の回転数域での
省エネルギ効果を犠牲にしなければならないという問題
点があった。
Since the conventional motor control method is performed as described above, it is necessary to operate on commercial power until the load is reduced to 40% of the rotation speed, and energy saving is achieved in the rotation speed range of 40% to 50%. There was a problem in that the effectiveness had to be sacrificed.

この発明は上記のような問題点を解消するためになされ
たもので、商用電源から可変周波数電源に安定して切換
することができるとともに、可変周波数電源の最高回転
数近傍(以上の例では50%回転数近傍)で可変周波数
電源に切換ができる電動機制御方法を得ることを目的と
する。
This invention was made to solve the above-mentioned problems, and it is possible to stably switch from a commercial power source to a variable frequency power source, and it is also possible to stably switch from a commercial power source to a variable frequency power source. The purpose of this invention is to obtain a motor control method that can switch to a variable frequency power source at a speed close to % rotation speed).

〔課題を解決するための手段〕[Means to solve the problem]

請求項1の発明に係る電動機制御方法は、可変周波数電
源の最高回転数に電動機の回転数がなる時点で可変周波
数電源を接続するように、先行して接続指令を出すよう
にしたものである。
The motor control method according to the invention of claim 1 is such that a connection command is issued in advance so as to connect the variable frequency power source when the rotational speed of the motor reaches the maximum rotational speed of the variable frequency power source. .

請求項2の発明に係る電動機制御方法は、商用電源に代
えて可変周波数電源を電動機に接続するとき、この可変
周波数電源への回転数指令発生器からの指令信号と電動
機からの回転数信号との差が所定値以上の間は、電動機
回転数に所定値を加えた値の回転数指令値を可変周波数
電源に与えるようにし、可変周波数電源を投入する時期
を可変周波数電源の上限周波数近傍に選定したものであ
る。
In the motor control method according to the invention of claim 2, when a variable frequency power source is connected to the electric motor instead of the commercial power source, a command signal from a rotation speed command generator to the variable frequency power source and a rotation speed signal from the electric motor are connected to the variable frequency power source. While the difference between the two is greater than a predetermined value, a rotation speed command value equal to the motor rotation speed plus a predetermined value is given to the variable frequency power supply, and the timing to turn on the variable frequency power supply is set near the upper limit frequency of the variable frequency power supply. This is the selected one.

〔作用〕[Effect]

請求項1の発明における電動機制御方法は、先行指令に
より電動機の回転数が可変周波数電源の最高回転数にな
った時点に可変周波数電源が電動機に接続されるように
したことにより、必要な加諌、1〜ルク(第3回のlτ
、に相当)は極小化され、安定に可変周波数電源へ切換
られる。
The electric motor control method in the invention of claim 1 is such that the variable frequency power source is connected to the electric motor when the rotational speed of the electric motor reaches the maximum rotational speed of the variable frequency power source according to the preceding command. , 1 ~ rk (3rd lτ
) is minimized and stably switched to a variable frequency power supply.

請求項2の発明における電動機制御方法は、商用電源か
ら可変周波数電源に切換えられる電動機が可変周波数電
源の上限周波数近傍で可変周波数電源に接続されること
により、省エネルギの運用上の制限がなくなる。また、
回転数指令発生器からの指令信号と電動機からの回転数
信号との差が所定以上の間は電動機回転数に所定値を加
えた値の回転数指令値を可変周波数電源に与えることに
より、必要な加速トルクは極小化されて、従って過渡的
な過電流は極小化されて安定に可変周波数電源が電動機
に接続される。
In the motor control method according to the invention of claim 2, the electric motor that is switched from the commercial power source to the variable frequency power source is connected to the variable frequency power source near the upper limit frequency of the variable frequency power source, thereby eliminating operational limitations on energy saving. Also,
While the difference between the command signal from the rotation speed command generator and the rotation speed signal from the motor is greater than or equal to a predetermined value, a rotation speed command value equal to the motor rotation speed plus a predetermined value is given to the variable frequency power supply to control the rotation speed as required. The acceleration torque is minimized, and therefore the transient overcurrent is minimized, and the variable frequency power source is stably connected to the motor.

〔実施例〕〔Example〕

以下、この発明の一実施例を図によって説明する。第1
図は請求項1の発明方法を説明する図であり、発明方法
を適用する回路構成は前記第4図と同様のものである。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. 1st
The figure is a diagram for explaining the method of the invention according to claim 1, and the circuit configuration to which the method of the invention is applied is the same as that shown in FIG. 4 above.

図において、横軸は時間軸、縦軸は電動機17の電流■
、電動機17の実際の回転数Nである。
In the figure, the horizontal axis is the time axis, and the vertical axis is the current of the motor 17.
, is the actual rotational speed N of the electric motor 17.

第1図において、T1は接触器16の開放時点、Icと
NCは商用電源11で運転される電動機17の電流値と
回転数、T3は接触器15の閉時点、Nvは可変周波数
電源14の最高回転数、IVは回転数NVで運転される
時の定常電流値、T4は時点T3後に回転数Nと電流■
が定常状態となる時点、/JNとaIはそれぞれ時点T
3とT4の間の過渡的な回転数と電流値の変化分、T、
は時点T3に先行する時点、N2は時点T2における電
動機17の回転数である。
In FIG. 1, T1 is the point at which the contactor 16 is opened, Ic and NC are the current value and rotational speed of the motor 17 operated by the commercial power supply 11, T3 is the point at which the contactor 15 is closed, and Nv is the point at which the variable frequency power supply 14 is operated. The maximum rotation speed, IV is the steady current value when operating at rotation speed NV, and T4 is the rotation speed N and current ■ after time T3.
The time point when becomes steady state, /JN and aI are respectively time points T
The transient change in rotation speed and current value between T3 and T4, T,
is the time point preceding time point T3, and N2 is the rotational speed of the electric motor 17 at time point T2.

つぎに動作について説明する。電動機17は時点T、以
前には商用電源11で駆動されて、定格回転数Ncで回
転し、電動機回転数は定常値工。である。
Next, the operation will be explained. At time T, the electric motor 17 was previously driven by the commercial power source 11 and rotated at the rated rotation speed Nc, and the motor rotation speed was at a steady value. It is.

時点T、で接触器16が開となれば、その後、電動機1
7は無電圧となり、回転数Nのカーブのように電動機1
7は自然減速し、電流工は0となる。
If the contactor 16 opens at time T, then the motor 1
7 becomes no voltage, and the motor 1 is turned off like the curve of rotation speed N.
7 is a natural deceleration and the electrical current becomes 0.

回転数Nが可変周波数電源14の最高回転数NVまで減
速する時点T3に先行した回転数N2、すなわち、時点
T2で接触器15を閉とする信号を出し、はゾ接触器1
5の動作時間T(時間T3T 2 )後の時点T、に接
触器15が実際に閉となる。
At the rotation speed N2 preceding the time T3 when the rotation speed N decelerates to the maximum rotation speed NV of the variable frequency power supply 14, that is, at the time T2, a signal is issued to close the contactor 15.
Contactor 15 actually closes at time T, after an operating time T of 5 (time T3T 2 ).

電動機17の電流は時点T3から増加を開始するが、電
動機17のリアクトル分のため徐々に増加するので、増
加のはじめの頃はこの電流による発生トルクは負荷トル
クτ。より小であり、電動機17の減速スピードは小と
なるが、まだ、しばらくは減速を続ける。17は増加す
る電動機電流■による発生トルクが負荷トルクより大と
なってから加速に転じ、時点T、で可変周波数電源の最
高回転数NVに回復して定常状態となる。
The current of the motor 17 starts to increase from time T3, but it gradually increases due to the reactor of the motor 17, so at the beginning of the increase, the torque generated by this current is the load torque τ. Although the deceleration speed of the electric motor 17 becomes smaller, the deceleration still continues for a while. 17 starts accelerating after the torque generated by the increasing motor current {circle around (2)} becomes larger than the load torque, and at time T, the speed returns to the maximum rotational speed NV of the variable frequency power source and enters a steady state.

上記の時点T3から同T4の間で電動機17の回転数の
落ち込み変化分4Nが大であれば、これを回復する(Δ
N→O)ための電流変化分4■が大となり、可変周波数
電源14の最大出力電流の限界値以内におさまらなくな
るが、第1図に示すように時点T2の先行指令で電動機
17の回転数が可変周波数電源14の最高回転数となる
時点T3で接触器15を閉としたので、変化分4Nを極
小化し、従って、電流変化分Δ工を含めた電動機電流■
を可変周波数電源14の許容最大出力電流以内におさめ
ることができる。
If the drop in the rotational speed of the motor 17 (4N) is large between time T3 and T4, this is recovered (Δ
The current change 4■ due to N→O) becomes large and does not fall within the limit value of the maximum output current of the variable frequency power supply 14, but as shown in FIG. Since the contactor 15 was closed at time T3 when the rotation speed of the variable frequency power supply 14 reached the maximum, the change amount 4N was minimized, and therefore the motor current including the current change Δ
can be kept within the allowable maximum output current of the variable frequency power supply 14.

上記先行指令を出す方法としては例えば次のような方法
を利用する。第1図の時点T3における電動機17の変
化率(dNV/dt)は設計段階、実測等で推定できる
ので、この値に接触器15の動作時間を乗じて先行すべ
き時間(T、 −T2)を算出する。すなわち、先行指
令を出す時点T、を可変周波数電源の最大出力回転数N
vに所定の回転数を加算した回転数の時点とする考え方
がある。
For example, the following method is used to issue the preceding command. The rate of change (dNV/dt) of the motor 17 at time T3 in FIG. 1 can be estimated at the design stage or through actual measurements, so multiply this value by the operating time of the contactor 15 to determine the preceding time (T, -T2). Calculate. In other words, the time point T when the advance command is issued is the maximum output rotation speed N of the variable frequency power supply.
There is an idea that the rotational speed is the point in time when a predetermined rotational speed is added to v.

また、別の方法として次のような方法でもよい。Alternatively, the following method may be used.

電動機17の回転数率化率(d Nv/ d t )は
負荷によって若干変化することが予想されるので、より
正確に先行指令を出す方法として、(d N/d t)
XTc+N=Nv ここで、Tcは接触器15の動作時間を満足する電動機
回転数Nの時点を時点T2とする。すなわち、電動機の
回転数Nとその変化率(dN/dt)に所定時間を乗じ
た値との和が可変周波数電源の最大出力回転数NVに等
しくなる条件を満足する回転数Nの時点をT2とする。
Since it is expected that the rotational speed rate (d Nv/d t ) of the electric motor 17 will change slightly depending on the load, (d N/d t)
XTc+N=Nv Here, Tc is the point in time when the motor rotation speed N that satisfies the operating time of the contactor 15 is the point in time T2. That is, T2 is the point in time at which the rotation speed N satisfies the condition that the sum of the rotation speed N of the motor and the value obtained by multiplying the rate of change (dN/dt) by a predetermined time is equal to the maximum output rotation speed NV of the variable frequency power supply. shall be.

第2は請求項2の発明方法を適用する回路構成図であり
、前記第4図と同一部分には同一符号を付して重複説明
を省略する。第2図において、20は回転数指令発生器
18からの指令信号と電動機1−7からの回転数信号を
比較する比較器である。
The second is a circuit configuration diagram to which the method of the invention of claim 2 is applied, and the same parts as in FIG. In FIG. 2, 20 is a comparator that compares the command signal from the rotation speed command generator 18 and the rotation speed signal from the electric motor 1-7.

つぎに動作について説明する。比較器20は入力される
回転数指令発生器18からの指令信号と電動機17から
の回転数信号の差が所定値以下のときには、回転数指令
発生器18からの指令信号を切替制御回路19に出力し
、両信号の差が所定値以上のときには、回転数信号21
に所定値を加えた値を切替制御回路19に出力する。
Next, the operation will be explained. When the difference between the input command signal from the rotation speed command generator 18 and the rotation speed signal from the electric motor 17 is less than a predetermined value, the comparator 20 transmits the command signal from the rotation speed command generator 18 to the switching control circuit 19. When the difference between both signals is greater than a predetermined value, the rotation speed signal 21 is output.
A value obtained by adding a predetermined value to the switching control circuit 19 is output to the switching control circuit 19.

他の部分の動作は前記第4図と同様であるが、商用電源
11から切りはなされた電動機17が可変周波数電源1
4に接続される時点の回転数指令発生器18の値は第4
図では40%であるが、第1図では50%(可変周波数
電源14の上限)近傍としている。
The operation of other parts is the same as that shown in FIG.
The value of the rotation speed command generator 18 at the time when it is connected to the fourth
In the figure, it is 40%, but in FIG. 1 it is close to 50% (the upper limit of the variable frequency power supply 14).

以上の情況下で請求項2の発明方法を前記第5図と同一
または相当部分に同一符号を付した第3図により説明す
る。
Under the above circumstances, the inventive method of claim 2 will be explained with reference to FIG. 3, in which the same or corresponding parts as in FIG. 5 are given the same reference numerals.

第3図において、20aは比較器20の出力であり、時
点TSと同T6の間は回転数指令発生器18からの指令
信号と電動機17からの回転数信号との差が所定値以上
であることを示している。
In FIG. 3, 20a is the output of the comparator 20, and between time TS and time T6, the difference between the command signal from the rotation speed command generator 18 and the rotation speed signal from the electric motor 17 is greater than a predetermined value. It is shown that.

電動機17は時点T、以前には商用電源11で運転され
ており、電動機17は定格回転数Ncで回転し、電動機
電流■は定常値■。である。
The electric motor 17 was operated by the commercial power supply 11 before time T, the electric motor 17 rotates at the rated rotational speed Nc, and the motor current ■ is a steady value ■. It is.

時点T□で接触器16が開となれば、その後、電動機1
7は無電圧となり、回転数Nのカーブのように電動機1
7は自然減速し、電流IはOとなる。
If the contactor 16 opens at time T□, then the motor 1
7 becomes no voltage, and the motor 1 is turned off like the curve of rotation speed N.
7, the speed naturally decelerates, and the current I becomes O.

回転数Nが可変周波数電源14の最高回転数Nvまで減
速する時点T3に先行した回転数N2、すなわち、時点
T2で接触器15を閉とする信号を出し、ぼり接触器1
5の動作時間T(時間T3T 、)後の時点T3に接触
器15が実際に閉となる。
At the rotation speed N2 preceding the time T3 when the rotation speed N decelerates to the maximum rotation speed Nv of the variable frequency power supply 14, that is, at the time T2, a signal is issued to close the contactor 15, and the contactor 1
The contactor 15 actually closes at time T3 after an operating time T of 5 (time T3T, ).

電動機]−7の電流は時点T:lから増加を開始するが
、電動機17のリアクトル分のため徐々に増加するので
、増加のはじめの頃はこの電流による発生トルクは負荷
トルクで。より小であり、電動機17の減速スピードは
小となるが、まだしばらくは減速を続ける。
The current of the electric motor ]-7 starts to increase from time T:l, but it gradually increases due to the reactor of the electric motor 17, so at the beginning of the increase, the torque generated by this current is the load torque. Although the deceleration speed of the electric motor 17 is smaller, the deceleration will continue for a while.

電動機17は増加する電動機電流■による発生トルクが
負荷トルクより大となってから加速に転じ時点T4で可
変周波数電源の最高回転数Nvに回復して定常状態とな
る。
The electric motor 17 starts accelerating after the torque generated by the increasing motor current {circle around (2)} becomes larger than the load torque, and at time T4, it recovers to the maximum rotational speed Nv of the variable frequency power source and enters a steady state.

時点T5〜T6間では、電動機17の回転数Nの落ち込
みが大であり、この値を測定した回転数信号21と回転
数指令発生器18からの指令信号との差が大となり、比
較器20はこの間は回転数信号21に所定値を加えた値
となる。
Between time points T5 and T6, the rotation speed N of the electric motor 17 drops significantly, and the difference between the rotation speed signal 21 obtained by measuring this value and the command signal from the rotation speed command generator 18 becomes large, and the comparator 20 During this period, the value becomes the rotation speed signal 21 plus a predetermined value.

回転数指令発生器18からの指令信号は、時点TS−T
、の間は上記のように小さく修正されるので、周波数差
をうめるための加速トルクを発生する電流が比較器20
がない時より小となり、定格値からの電流変化分lIを
小とすることができる。
The command signal from the rotation speed command generator 18 is transmitted at time TS-T.
, is corrected to a small value as described above, so that the current that generates the acceleration torque to compensate for the frequency difference is
This is smaller than when there is no current, and the current change lI from the rated value can be made smaller.

また、上記の時点T3から同T4の間で電動機17の回
転数の落ち込み変化分INが大であれば、これを回復す
る(dN−)O)ための電流変化分乙■が大となり、可
変周波数電源14の最大出力電流の限界値以内におさま
らなくなるが、第3図のように時点T2の先行指令で電
動機17の回転数が可変周波数電源14の最高回転数と
なる時点T3で接触器15を閉としたので、変化分4N
を極小化し、従って電流変化分a王を含めた電動機電流
■を比較器20の作用と合せての総合効果として可変周
波数電源14の許容最大出力電流以内におさめることが
できる。
Furthermore, if the drop change IN in the rotational speed of the motor 17 is large between the above time T3 and T4, the current change B to recover (dN-)O) will be large, making it variable. Although the maximum output current of the frequency power supply 14 does not fall within the limit value, as shown in FIG. Since it is closed, the change is 4N
Therefore, the motor current (2) including the current variation a can be kept within the allowable maximum output current of the variable frequency power supply 14 as a total effect in combination with the action of the comparator 20.

なお、上記の各制御方法は出力電流のリップルが電流形
に比して非常に小となる電圧形可変周波数電源の場合に
特に有効である。
Note that each of the above control methods is particularly effective in the case of a voltage type variable frequency power supply in which the ripple of the output current is much smaller than that of a current type power supply.

電圧形の可変周波数電源は、出力電圧制御形を意味して
おり、本質的に出力電圧の変動はないものであり、出力
電流のリップルも小であるので、先行指令を導入するこ
とにより、接触器15の動作時間の間に電動機17が回
転数を減少することを取り除くことができることと比較
器20の効果とあいまって、可変周波数電源14に切換
えたとき電動機の発生トルクが若干でも負荷トルクτ。
A voltage-type variable frequency power supply is an output voltage control type, which means that there is essentially no fluctuation in the output voltage and the ripple in the output current is small. This fact, combined with the effect of the comparator 20 and the ability to eliminate the reduction in the rotational speed of the motor 17 during the operating time of the motor 15, reduces the load torque τ even if the generated torque of the motor is small when switching to the variable frequency power supply 14. .

を上まわれば安定して可変周波数電源に引き込むことが
できる。
If it exceeds , it can be stably drawn into a variable frequency power supply.

先行指令で接触器15の動作時間の影響を除去する方法
及び比較器20の効果は、電流形可変周波数電源の場合
にも好ましいものであり、効果を期待することができる
The method of eliminating the influence of the operating time of the contactor 15 by the preceding command and the effect of the comparator 20 are also preferable in the case of a current type variable frequency power supply, and the effects can be expected.

また、請求項2の発明の上記実施例では、可変周波数電
源14の投入指令を電動機17の回転数Nが可変周波数
電源14の上限値に等しくなる時点を狙って、先行投入
指令を出すことで説明したが、比較器20の効果は電動
機17の回転数Nが可変周波数電源14の上限周波数ま
たはその近傍の値と一致したときに可変周波数電源を投
入する場合を含めて、あらゆる時点での投入に有効に作
用する。
Further, in the above-mentioned embodiment of the invention of claim 2, the advance turning-on command of the variable frequency power source 14 is issued by aiming at the point in time when the rotation speed N of the electric motor 17 becomes equal to the upper limit value of the variable frequency power source 14. As explained above, the effect of the comparator 20 is that the variable frequency power supply can be turned on at any time, including when the variable frequency power supply is turned on when the rotation speed N of the electric motor 17 matches the upper limit frequency of the variable frequency power supply 14 or a value in the vicinity thereof. It works effectively.

〔発明の効果〕〔Effect of the invention〕

以上のように、請求項1の発明によれば、商用電源で駆
動している電動機を可変周波数電源に切替えて駆動する
とき、電動機の回転数が可変周波数電源の最大出力周波
数に相当する回転数に達する前に先行して可変周波数電
源接続指令を出して、最大出力周波数に相当する回転数
近傍で電動機を接続するように構成したので、可変周波
数電源接続時の過渡電流を小とすることができ、安定し
て切換が行われる。
As described above, according to the invention of claim 1, when a motor driven by a commercial power source is switched to a variable frequency power source and driven, the rotational speed of the motor is a rotational speed corresponding to the maximum output frequency of the variable frequency power source. The configuration is configured so that a variable frequency power supply connection command is issued in advance before reaching the maximum output frequency, and the motor is connected at a rotation speed close to the maximum output frequency, so that the transient current when the variable frequency power supply is connected can be reduced. and switching is performed stably.

また、可変周波数電源の最大容量近傍で切換ることかで
きるので、切換の運用制限もなく、省エネルギ効果を有
効に得られる効果がある。
Further, since switching can be performed near the maximum capacity of the variable frequency power supply, there is no operational restriction on switching, and energy saving effects can be effectively obtained.

請求項2の発明によれば、比較器によって可変周波数電
源の出力周波数を電動機の回転数と所定値以下の値に制
御するようにしたので、電動機の過渡電流乙■を抑制す
る効果があり、可変周波数電源の許容電流範囲以内で安
定して商用電源から可変周波数電源へ電動機を切換えで
きる効果がある。
According to the invention of claim 2, since the output frequency of the variable frequency power supply is controlled by the comparator to a value that is equal to or lower than the rotational speed of the motor and a predetermined value, there is an effect of suppressing the transient current (ii) of the electric motor. This has the effect of stably switching the motor from a commercial power source to a variable frequency power source within the allowable current range of the variable frequency power source.

更に可変周波数電源の接続をその上限周波数近傍で行う
ようにしたので、省エネルギ効果を有効に発揮すること
ができる効果がある。
Furthermore, since the variable frequency power source is connected near its upper limit frequency, the energy saving effect can be effectively exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は請求項1の発明方法を説明する説明図、第2図
は請求項2の発明方法を適用する回路構成図、第3図は
請求項2の発明方法を説明する説明図、第4図は従来方
法を適用する回路構成図、第5図は従来方法による回転
数とトルクの関係を示す説明図である。 11は商用電源、14は可変周波数電源、17は電動機
、18は回転数指令発生器、19は切替制御回路、20
は比較器。 なお、図中、同一符号は同一または相当部分を示す。 特許出願人  三菱電機株式会社 廻q〒L分心ぺ 手続補正書(自発) 4  +”’J”flos
FIG. 1 is an explanatory diagram for explaining the inventive method of claim 1, FIG. 2 is a circuit configuration diagram to which the inventive method of claim 2 is applied, and FIG. 3 is an explanatory diagram for explaining the inventive method of claim 2. FIG. 4 is a circuit configuration diagram to which the conventional method is applied, and FIG. 5 is an explanatory diagram showing the relationship between rotation speed and torque according to the conventional method. 11 is a commercial power supply, 14 is a variable frequency power supply, 17 is an electric motor, 18 is a rotation speed command generator, 19 is a switching control circuit, 20
is a comparator. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Patent Applicant: Mitsubishi Electric Co., Ltd. 〒L Bunshin Pe Procedure Amendment (Voluntary) 4 +”'J”flos

Claims (2)

【特許請求の範囲】[Claims] (1)電動機を所定の回転速度以下の範囲では可変周波
数電源で駆動し、それ以上では商用電源で駆動するよう
にした電動機制御方法において、前記商用電源切離し後
、前記電動機の回転数が前記可変周波数電源の最大出力
周波数に相当する回転数になる時点近傍で該可変周波数
電源を該電動機に接続するように、この接続時点に至る
前に先行して、前記電動機に対する前記可変周波数電源
の接続指令を出すようにしたことを特徴とする電動機制
御方法。
(1) In a motor control method in which the motor is driven by a variable frequency power supply in a range below a predetermined rotational speed, and driven by a commercial power supply above it, after the commercial power supply is disconnected, the rotational speed of the motor is changed to the variable frequency power supply. A command to connect the variable frequency power source to the electric motor prior to reaching this connection point so that the variable frequency power source is connected to the motor near the point when the rotation speed corresponds to the maximum output frequency of the frequency power source is reached. A method for controlling an electric motor, characterized by:
(2)電動機を所定の回転速度以下の範囲では可変周波
数電源で駆動し、それ以上では商用電源で駆動するよう
にした電動機制御方法において、前記商用電源で駆動し
ている前記電動機を前記可変周波数電源に切換えるに当
り、回転数指令発生器からの指令信号と前記電動機から
の回転数信号との差が所定値以上の間は、前記電動機か
らの回転数信号に所定値を加えた回転数指令値を前記可
変周波数電源に与えることを特徴とする電動機制御方法
(2) In a motor control method in which an electric motor is driven by a variable frequency power source in a range below a predetermined rotational speed, and is driven by a commercial power source above a predetermined rotation speed, the motor being driven by the commercial power source is driven by the variable frequency power source. When switching to the power source, if the difference between the command signal from the rotation speed command generator and the rotation speed signal from the electric motor is greater than or equal to a predetermined value, the rotation speed command is obtained by adding a predetermined value to the rotation speed signal from the electric motor. A motor control method, characterized in that a value is given to the variable frequency power supply.
JP63328600A 1988-12-26 1988-12-26 Motor control method Pending JPH02174594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63328600A JPH02174594A (en) 1988-12-26 1988-12-26 Motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63328600A JPH02174594A (en) 1988-12-26 1988-12-26 Motor control method

Publications (1)

Publication Number Publication Date
JPH02174594A true JPH02174594A (en) 1990-07-05

Family

ID=18212090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328600A Pending JPH02174594A (en) 1988-12-26 1988-12-26 Motor control method

Country Status (1)

Country Link
JP (1) JPH02174594A (en)

Similar Documents

Publication Publication Date Title
US5450309A (en) Method and device for switching inverters in parallel
US5953902A (en) Control system for controlling the rotational speed of a turbine, and method for controlling the rotational speed of a turbine during load shedding
CA1217260A (en) Airflow control system
JPH02174594A (en) Motor control method
JP2002013427A (en) Speed controller of engine for generator
RU2046492C1 (en) Gas-turbine plant electric braking device
JPH0270280A (en) Control method for electric motor
JPH10215521A (en) System interconnection protector for power generation facility
JP3911598B2 (en) AC excitation type generator motor
JP3669043B2 (en) Hydropower plant control equipment
JPH11332107A (en) Starter for generating apparatus
JP2981604B2 (en) Control device for private power generator
JPH08314557A (en) Controller for reactive power compensator
JPH06225459A (en) Controlling method for power of non-utility generator facility
JPH11103598A (en) Controller for non-utility generator
JPS59188398A (en) Speed controller of water wheel generator
JPH0746763A (en) Reactive power regulator
JPH027900A (en) Excitation control device of synchronous generator
JPH11229903A (en) Gas turbine control device
JP2685199B2 (en) How to start a variable speed hydropower plant
JPH08314559A (en) Rush current suppressor for transformer
JPH0850190A (en) Reactor core flow rate control system
SU1577039A1 (en) Device for selfstarting of electrical installations
JPH04347597A (en) Non-utility generator facility
JP2519687B2 (en) Power control method for wire wound induction machine