JPH08314559A - Rush current suppressor for transformer - Google Patents

Rush current suppressor for transformer

Info

Publication number
JPH08314559A
JPH08314559A JP7121073A JP12107395A JPH08314559A JP H08314559 A JPH08314559 A JP H08314559A JP 7121073 A JP7121073 A JP 7121073A JP 12107395 A JP12107395 A JP 12107395A JP H08314559 A JPH08314559 A JP H08314559A
Authority
JP
Japan
Prior art keywords
transformer
reactive power
circuit
inrush current
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7121073A
Other languages
Japanese (ja)
Inventor
Takashi Masuda
隆 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP7121073A priority Critical patent/JPH08314559A/en
Publication of JPH08314559A publication Critical patent/JPH08314559A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE: To obtain a rush current suppressor for a transformer which protects a power system from the transformer rush current by suppressing voltage fluctuation made by the transformer rush current which is generated by supplying the transformer of the power system. CONSTITUTION: The suppressor suppressing the transformer rush current (i), which is generated at the time of supplying the transformer 12 to the system bus 3, is provided with SVC 6 with TCR 4 of a thyristor 8 and a reactor 7, an SVC control circuit 10 phase-controlling the thyristor 8 for ignition, and an instantaneous compensation circuit 30 provided with a switching switch 31 operating the SVC circuit 10 only at the time of supplying the transformer. A multiplier 18 and a pulse generation circuit 20 in the SVC control circuit 10 are connected to each other by the switching switch 31 only during a fixed time after the supply of the transformer. Thus, the instantaneous reactive power (q) of the rush current (i) is outputted to the pulse generation circuit 20 from the multiplier 18 to ignite the thyristor 8 with an ignition pulse corresponding to the sudden instantaneous reactive power (q). Then the compensation reactive power (q) compensating the rush current (i) is generated at TCR 4 to suppress voltage fluctuation accompanied by the rush current (i) of the system bus 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変電所や電力需要家で
変圧器投入が頻繁に行われるような電力系統に有効な変
圧器突入電流抑制装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transformer inrush current suppressing device effective for a power system in which a transformer is frequently turned on in a substation or a power consumer.

【0002】[0002]

【従来の技術】変圧器投入で電源供給される一般負荷や
変動負荷を有する電力系統においては、変圧器投入時の
変圧器突入電流対策(後述する)が施されている。ま
た、アーク炉等の変動負荷を有する電力系統において
は、負荷変動に伴う系統母線の電圧変動を抑制する目的
でサイリスタ制御リアクトル方式の無効電力補償装置
(以下、SVCと称する)が設置される。その具体例を
図3に示すと、系統母線3にサイリスタ制御リアクトル
(以下、TCRと称する)4とフィルタ(以下、FLと
称する)5を並列接続してSVC6が構成される。
2. Description of the Related Art In a power system having a general load or a fluctuating load which is supplied with power when a transformer is turned on, measures against the inrush current of the transformer when the transformer is turned on (described later) are taken. Further, in a power system having a fluctuating load such as an arc furnace, a thyristor control reactor type reactive power compensator (hereinafter referred to as SVC) is installed for the purpose of suppressing a voltage fluctuation of a system bus due to a load fluctuation. 3, a thyristor control reactor (hereinafter referred to as TCR) 4 and a filter (hereinafter referred to as FL) 5 are connected in parallel to the system bus 3 to form an SVC 6.

【0003】系統母線3に変電所電源1が電源系統リア
クタンス2を介して接続され、系統母線3に負荷11が
降圧用変圧器12と遮断器13を介して接続される。遮
断器13を外部からの変圧器投入指令信号でもってオン
させることで、負荷11が電源1に接続される。この負
荷11の変動により発生する無効電力がSVC制御回路
10で検出され、SVC制御回路10でSVC6が制御
されてSVC6から系統母線3に負荷無効電力を打ち消
す補償用無効電力が印加されて、系統母線3の電圧変動
が抑制される。
A substation power supply 1 is connected to a system bus 3 via a power system reactance 2, and a load 11 is connected to the system bus 3 via a step-down transformer 12 and a circuit breaker 13. The load 11 is connected to the power source 1 by turning on the circuit breaker 13 by a transformer closing command signal from the outside. The reactive power generated by the fluctuation of the load 11 is detected by the SVC control circuit 10, the SVC 6 is controlled by the SVC control circuit 10, and the reactive power for compensation for canceling the load reactive power is applied from the SVC 6 to the system bus 3 to apply power to the system. Voltage fluctuations on the bus bar 3 are suppressed.

【0004】SVC6のTCR4は、高インピーダンス
変圧器等のリアクトル7と逆並列接続サイリスタ8の直
列回路で、サイリスタ8がSVC制御回路10からの点
呼パルスPで位相制御されて、TCR4に発生する遅れ
無効電力を系統母線1に与える。FL5は、進相用コン
デンサ9を備え、これにより発生する進み無効電力を系
統母線1に与える。この遅れ無効電力と進み無効電力で
系統母線1の電圧変動が抑制される。
The TCR 4 of the SVC 6 is a series circuit of a reactor 7 such as a high-impedance transformer and an antiparallel connection thyristor 8, and the thyristor 8 is phase-controlled by a roll call pulse P from the SVC control circuit 10 to cause a delay in the TCR 4. Reactive power is applied to the system bus 1. The FL 5 is provided with a phase advancing capacitor 9, and supplies the reactive power generated thereby to the system bus 1. The delayed reactive power and the advanced reactive power suppress the voltage fluctuation of the system bus 1.

【0005】SVC制御回路10は、変流器14で検出
された負荷電流Iと、変圧器15で検出された母線電圧
Eから負荷無効電力の瞬時値qを検出する乗算器18
と、乗算器18の出力値の平均値から負荷無効電力Qを
検出するローパスフィルタ(以下、LPFと称する)1
9と、負荷無効電力QからTCR4のサイリスタ8を位
相制御する点呼パルスPを発生するパルス発生回路20
を備える。負荷電流Iは、相変換回路16で位相変換さ
れて乗算器18に出力され、母線電圧Eは、電圧位相器
17で位相を90゜遅らせた電圧Vに変換されて乗算器
18に出力される。乗算器18は、負荷電流Iと90゜
遅れの母線電圧Vを乗算した負荷無効電力瞬時値qを出
力し、この瞬時値qの平均値がLPF19で求められて
負荷無効電力Qがパルス発生回路20に出力される。
The SVC control circuit 10 detects the instantaneous value q of the load reactive power from the load current I detected by the current transformer 14 and the bus voltage E detected by the transformer 15.
And a low-pass filter (hereinafter referred to as LPF) that detects the load reactive power Q from the average value of the output values of the multiplier 18
9 and a pulse generation circuit 20 for generating a roll call pulse P for phase-controlling the thyristor 8 of the TCR 4 from the load reactive power Q.
Is provided. The load current I is phase-converted by the phase conversion circuit 16 and output to the multiplier 18, and the bus voltage E is converted by the voltage phase shifter 17 into a voltage V whose phase is delayed by 90 ° and output to the multiplier 18. . The multiplier 18 outputs the load reactive power instantaneous value q obtained by multiplying the load current I and the bus voltage V delayed by 90 °, and the average value of this instantaneous value q is obtained by the LPF 19 to output the load reactive power Q to the pulse generation circuit. It is output to 20.

【0006】パルス発生回路20は、負荷無効電力Qと
パルス発生基準信号形成回路21からの鋸波の基準信号
Vfのクロス点のタイミングで点弧パルスPを発生して
TCR4のサイリスタ8を位相制御して点弧させる。こ
のサイリスタ8の位相制御でTCR4に負荷無効電力Q
を打ち消す補償用無効電力が発生して、系統母線3の負
荷変動に伴う電圧変動が抑制される。
The pulse generation circuit 20 generates an ignition pulse P at the timing of the cross point of the load reactive power Q and the sawtooth wave reference signal Vf from the pulse generation reference signal forming circuit 21 to phase control the thyristor 8 of the TCR 4. And fire it. By controlling the phase of the thyristor 8, the load reactive power Q is applied to the TCR 4.
The compensating reactive power that cancels out is generated, and the voltage fluctuation due to the load fluctuation of the system bus 3 is suppressed.

【0007】[0007]

【発明が解決しようとする課題】図3の電力系統に遮断
器13をオンさせて変圧器12を投入するとき、例えば
図4の電流波形Aに示すような突発的で断続的な突入電
流(励磁電流)iの何発かが系統母線3に数秒程度の短
時間だけ流れる。この突入電流iは、プラス側かマイナ
ス側のいずれかに現われ、その始めの一発が最大で、二
発目から段階的に小さくなる。始めの突入電流iの大き
さは、変圧器投入時の変圧器12の残留磁束値に応じて
一定していないが、大きなもので変圧器容量の3〜5倍
となる。このような大きな突入電流iが系統母線3に流
れると、系統母線3に瞬時電圧低下を引き起こして、系
統母線3に接続された他の負荷(モータやファン、照明
器具等)に悪影響(回転数低下、照明のチラツキ等)を
及ぼし、悪くすると系統遮断が行われることがある。
When the circuit breaker 13 is turned on and the transformer 12 is turned on in the power system shown in FIG. 3, for example, a sudden and intermittent inrush current (shown by the current waveform A in FIG. 4) is generated. Some excitation currents i flow to the system bus 3 for a short time of about several seconds. This inrush current i appears on either the plus side or the minus side, and the first one is the maximum, and the second one is gradually reduced from the second one. The magnitude of the initial inrush current i is not constant according to the residual magnetic flux value of the transformer 12 when the transformer is turned on, but is large and becomes 3 to 5 times the transformer capacity. When such a large rush current i flows through the system bus 3, it causes an instantaneous voltage drop in the system bus 3 and adversely affects other loads (motors, fans, lighting equipment, etc.) connected to the system bus 3 (rotation speed). Deterioration, flicker of lighting, etc.), and if worse, system cutoff may occur.

【0008】上記のような変圧器投入時の突入電流iに
よる系統母線3の電圧変動を、SVC6で抑制すること
はできない。即ち、突発的で断続的な突入電流iと母線
電圧の乗算で求めた負荷無効電力の瞬時値をLPF21
に通して負荷無効電力を検出すると、この負荷無効電力
は、図4の電力波形Bに示すような波形、つまり、突発
的で断続的な何発かの突入電流iを平均した立上がり立
下がりの緩やかな波形となって現われる。この波形Bの
負荷無効電力は、実際の突入電流iと対応せず、この負
荷無効電力をパルス発生回路20に出力して鋸波の基準
信号Vfとのクロスのタイミングで点弧パルスを発生し
てTCR4のサイリスタ8を位相制御しても、系統母線
3の電圧変動が抑制されず、かえって電圧変動が増幅さ
れるといった逆効果を招くことがある。
The voltage fluctuation of the system bus 3 due to the inrush current i when the transformer is turned on cannot be suppressed by the SVC 6. That is, the instantaneous value of the load reactive power obtained by multiplying the sudden and intermittent inrush current i and the bus voltage is used as the LPF 21.
When the load reactive power is detected through the power supply, the load reactive power has a waveform as shown in the power waveform B of FIG. 4, that is, a rise and fall of an average of several sudden and intermittent inrush currents i. Appears as a gentle waveform. The load reactive power of this waveform B does not correspond to the actual inrush current i, and this load reactive power is output to the pulse generation circuit 20 to generate an ignition pulse at the timing of crossing with the sawtooth wave reference signal Vf. Even if the thyristor 8 of the TCR 4 is phase-controlled, the voltage fluctuation of the system bus 3 may not be suppressed and the voltage fluctuation may be amplified, which may have an adverse effect.

【0009】そこで、電力系統の変圧器突入電流対策と
して、変圧器の投入前に変圧器の残留磁束を打ち消すよ
うにして、突入電流が発生しないようにすることが行わ
れている。しかし、電力系統に設置される変圧器や負荷
の数、種類が様々であるため、各々の変圧器に対して上
記対策を施すことが困難である問題があった。
Therefore, as a countermeasure against the transformer rush current in the power system, the residual magnetic flux of the transformer is canceled before the transformer is turned on so that the rush current is not generated. However, since the number and types of transformers and loads installed in the power system are various, there is a problem that it is difficult to take the above countermeasures for each transformer.

【0010】また、図3のようなSVC6を設置した電
力系統における変圧器突入電流対策として、変圧器投入
時だけパルス発生回路20を遮断状態にして点弧パルス
発生を中断させることが行われている。この場合、変圧
器投入時の系統母線3の電圧変動増幅が解消されるが、
変圧器突入電流による電圧変動による問題がそのまま残
されているのが現状である。
Further, as a measure against transformer inrush current in a power system in which an SVC 6 as shown in FIG. 3 is installed, the pulse generation circuit 20 is cut off only when the transformer is turned on to interrupt the ignition pulse generation. There is. In this case, the voltage fluctuation amplification of the system bus 3 when the transformer is turned on is eliminated,
At present, the problem of voltage fluctuation due to transformer inrush current remains.

【0011】本発明の目的とするところは、電力系統の
変圧器投入で発生した変圧器突入電流による電圧変動を
直接に抑制して、電力系統を保護する変圧器突入電流抑
制装置を提供することにある。
An object of the present invention is to provide a transformer inrush current suppressing device which directly suppresses a voltage fluctuation due to a transformer inrush current generated when a transformer of a power system is turned on, thereby protecting the power system. It is in.

【0012】[0012]

【課題を解決するための手段】本発明は、系統母線にお
ける変圧器投入時の突入電流を抑制する装置であって、
逆並列接続サイリスタとリアクトルの直列回路を系統母
線に接続したTCRを有するSVCと、系統母線での母
線電圧と負荷電流を乗算して変圧器投入時の突入電流の
瞬時無効電力を検出する乗算器、この乗算器の瞬時無効
電力出力値に対応してTCRのサイリスタを位相制御し
て点弧させる点弧パルスを発生するパルス発生回路を備
えたSVC制御回路と、変圧器の系統母線への投入時点
から突入電流が発生する一定時間だけ前記乗算器の出力
をパルス発生回路に入力し、この一定時間経過後は乗算
器出力のパルス発生回路への入力を遮断する切換スイッ
チを備えた瞬時補償回路を備えた構成にて、上記目的を
達成するものである。
DISCLOSURE OF THE INVENTION The present invention is a device for suppressing inrush current when a transformer is turned on in a system bus.
An SVC having a TCR in which a series circuit of an anti-parallel connection thyristor and a reactor is connected to a system bus, and a multiplier for detecting the instantaneous reactive power of the inrush current when the transformer is turned on by multiplying the bus voltage at the system bus and the load current. , An SVC control circuit having a pulse generation circuit for generating an ignition pulse for phase-controlling a thyristor of a TCR according to the instantaneous reactive power output value of the multiplier, and inputting a transformer to a system bus From the time point, the output of the multiplier is input to the pulse generating circuit for a certain period of time when an inrush current is generated, and after this certain period of time, the instantaneous compensation circuit includes a changeover switch that shuts off the input of the multiplier output to the pulse generating circuit. The above-mentioned object is achieved by a configuration including.

【0013】[0013]

【作用】系統母線での母線電圧と負荷電流を乗算して変
圧器投入時の突入電流の瞬時無効電力を乗算器で検出
し、この検出された瞬時無効電力出力で直接にTCRの
サイリスタを位相制御して発生させた瞬時無効電力補償
用遅れ無効電力を系統母線に印加すると、突発かつ断続
的な変圧器突入電流の個々に対応した補償無効電力が系
統母線に与えられて、変圧器突入電流による系統母線の
電圧変動が抑制される。また、変圧器突入電流が発生す
る一定時間経過後に、切換スイッチで乗算器出力のパル
ス発生回路への入力を遮断することで、SVCが開放さ
れて変圧器投入後の電力系統の正常な動作が確保され
る。
Function: The bus voltage at the system bus is multiplied by the load current to detect the instantaneous reactive power of the inrush current when the transformer is turned on by the multiplier, and the detected instantaneous reactive power output is used to directly phase the TCR thyristor. When the delayed reactive power generated by the control for the instantaneous reactive power compensation is applied to the system bus, the compensation reactive power corresponding to each of the sudden and intermittent transformer inrush currents is given to the system bus, and the transformer inrush current is applied. The voltage fluctuation of the system bus line due to Also, after a certain period of time when the transformer inrush current is generated, the input of the multiplier output to the pulse generation circuit is cut off by the changeover switch, so that the SVC is opened and the normal operation of the power system after the transformer is turned on can be achieved. Reserved.

【0014】[0014]

【実施例】以下、本発明実施例を図1及び図2を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0015】図1に示される変圧器突入電流抑制装置
は、図3の電力系統に適用したもので、図3のSVC6
とSVC制御回路10とほぼ同様な構造のSVC6とS
VC制御回路10に本発明の特徴とする瞬時補償回路3
0を加えた構造である。尚、図1の図3と同一、又は、
相当部分には同一符号を付して、説明は省略する。
The transformer inrush current suppressing device shown in FIG. 1 is applied to the power system shown in FIG. 3, and the SVC 6 shown in FIG.
And SVC 6 and S having substantially the same structure as the SVC control circuit 10.
The VC control circuit 10 includes an instantaneous compensation circuit 3 which is a feature of the present invention.
It is a structure with 0 added. The same as in FIG. 3 of FIG. 1, or
Corresponding parts will be assigned the same reference numerals and explanations thereof will be omitted.

【0016】図1のSVC6は、図3のSVC6と同一
構造で、TCR4とFL5を系統母線3に並列接続して
構成される。図1のSVC制御回路10は、図3のSV
C制御回路10のローパス19を省略して、代わりに瞬
時補償回路30の切換スイッチ31を配置したものに相
当する。
The SVC 6 shown in FIG. 1 has the same structure as the SVC 6 shown in FIG. 3, and is constructed by connecting a TCR 4 and a FL 5 in parallel to a system bus 3. The SVC control circuit 10 shown in FIG.
This corresponds to a circuit in which the low pass 19 of the C control circuit 10 is omitted and the changeover switch 31 of the instantaneous compensation circuit 30 is arranged instead.

【0017】瞬時補償回路30は、外部からの変圧器投
入指令信号mで作動して遮断器13をオンさせ、同時に
切換スイッチ31を切換えるCB投入指令回路32を備
える。切換スイッチ31は、有接点スイッチ或いは半導
体スイッチング素子の無接点スイッチである。切換スイ
ッチ31は、乗算器18の出力をパルス発生回路20に
入力させる回路接続端子35と、、乗算器18からパル
ス発生回路20への出力を遮断して、パルス発生回路2
0の入力端子をアースする遮断アース端子36の間で切
換わる。
The instant compensation circuit 30 is provided with a CB closing command circuit 32 which operates by a transformer closing command signal m from the outside to turn on the circuit breaker 13 and at the same time switches the changeover switch 31. The changeover switch 31 is a contact switch or a non-contact switch of a semiconductor switching element. The change-over switch 31 cuts off the output from the multiplier 18 to the pulse generating circuit 20 and the circuit connection terminal 35 for inputting the output of the multiplier 18 to the pulse generating circuit 20, and the pulse generating circuit 2
Switching between a break ground terminal 36 which grounds the 0 input terminal.

【0018】変圧器投入指令信号mでCB投入指令回路
32が作動すると、例えばCB投入回路33が作動して
遮断器13をオンさせ、同時にCB投入判定回路34が
作動して切換スイッチ31を遮断アース端子36から回
路接続端子35に切換える。切換スイッチ31が回路接
続端子35に切換えられると、その状態が変圧器突入電
流iが発生する一定時間だけ維持されて、この一定時間
経過すると回路接続端子35から遮断アース端子36に
自動切換えされる。このような切換スイッチ31の一定
時間経過後の自動切換えは、CB投入判定回路34に内
蔵された、或いは特別なタイマー回路(図示せず)で制
御される。
When the CB closing command circuit 32 is activated by the transformer closing command signal m, for example, the CB closing circuit 33 is activated to turn on the circuit breaker 13, and at the same time, the CB closing determination circuit 34 is activated to cut off the changeover switch 31. The ground terminal 36 is switched to the circuit connection terminal 35. When the change-over switch 31 is switched to the circuit connecting terminal 35, the state is maintained for a certain period of time when the transformer inrush current i is generated, and after this certain period of time, the circuit connecting terminal 35 is automatically switched to the breaking earth terminal 36. . Such automatic switching of the changeover switch 31 after a predetermined time has elapsed is controlled by a built-in CB closing determination circuit 34 or a special timer circuit (not shown).

【0019】瞬時補償回路30は、遮断器13をオンし
て変圧器12を系統母線3に投入した時点から一定時間
作動して、SVC制御回路10とSVC6に変圧器突入
電流iによる系統母線3の電圧変動を抑制する動作を行
わしめる。この電圧変動抑制の動作を、図2(a)〜
(d)の波形図を参照して説明する。
The instantaneous compensation circuit 30 operates for a certain period of time after the breaker 13 is turned on and the transformer 12 is turned on to the system bus 3, and the SVC control circuit 10 and the SVC 6 are supplied to the system bus 3 by the transformer inrush current i. The operation of suppressing the voltage fluctuation of is performed. This voltage fluctuation suppressing operation is shown in FIG.
This will be described with reference to the waveform diagram of (d).

【0020】CB投入指令信号mで遮断器13がオンし
て変圧器12が系統母線3に投入されると、系統母線3
に変圧器突入電流iが流れる。この突入電流iは、母線
電圧Eと位相が90゜遅れの無効電力であり、大きさは
変圧器投入時の電圧位相、変圧器残留磁束で変わる。図
2(a)には、大きさが大中小の3段階で異なる突入電
流iが、、の記号で示される。突入電流iは、突
発的なもので、変圧器投入時点から数秒程度の間に大き
さが段階的に減少して断続的に発生する。
When the circuit breaker 13 is turned on by the CB closing command signal m and the transformer 12 is closed to the system bus 3, the system bus 3
An inrush current i of the transformer flows. This inrush current i is a reactive power whose phase is delayed by 90 ° with respect to the bus voltage E, and its magnitude changes depending on the voltage phase when the transformer is turned on and the transformer residual magnetic flux. In FIG. 2A, the inrush current i that differs in three steps of large, medium, and small is indicated by the symbol. The inrush current i is abrupt and is generated intermittently as the magnitude gradually decreases within a few seconds after the transformer is turned on.

【0021】系統母線3の突入電流iが変流器14で検
出されて乗算器18に出力されると、乗算器18は突入
電流iと電圧位相器17からの母線電圧Vを乗算して、
図2(b)に示される瞬時無効電力qを算出する。図2
(b)の、、で示される大きさの異なる3段階の
瞬時無効電力qは、図1(a)の、、の突入電流
iに数字を対応させてある。瞬時無効電力qは、突入電
流iと同じ突発的なものであり、数秒程度の一定時間だ
け断続的に発生する。
When the inrush current i of the system bus 3 is detected by the current transformer 14 and output to the multiplier 18, the multiplier 18 multiplies the inrush current i by the bus voltage V from the voltage phase shifter 17,
The instantaneous reactive power q shown in FIG. 2 (b) is calculated. Figure 2
The three-stage instantaneous reactive power q shown in (b) and having different magnitudes corresponds to the inrush current i in () of FIG. The instantaneous reactive power q is the same sudden power as the inrush current i, and is generated intermittently for a fixed time of about several seconds.

【0022】CB投入指令信号mで変圧器投入が行われ
ると同時に、瞬時補償回路30が切換スイッチ31を回
路接続端子35に切換えているので、乗算器18で算出
された瞬時無効電力qの出力値がそのままパルス発生回
路20に入力される。パルス発生回路20は、図2
(c)に示すように、瞬時無効電力qとパルス発生基準
信号形成回路21からの鋸波の基準信号Vfのクロス点
のタイミングで点弧パルスPを発生し、TCR4のサイ
リスタ8を位相制御して点弧させる。
At the same time when the transformer is closed by the CB closing command signal m, the instantaneous compensating circuit 30 switches the changeover switch 31 to the circuit connecting terminal 35. Therefore, the instantaneous reactive power q calculated by the multiplier 18 is output. The value is directly input to the pulse generation circuit 20. The pulse generation circuit 20 is shown in FIG.
As shown in (c), the ignition pulse P is generated at the timing of the cross point of the instantaneous reactive power q and the sawtooth wave reference signal Vf from the pulse generation reference signal forming circuit 21, and the thyristor 8 of the TCR 4 is phase-controlled. To fire.

【0023】突入電流iによる大中小の瞬時無効電力q
と基準信号Vfのクロス点のパルス位相βは、図2
(c)の、、で示すように大中小と異なる。つま
り、図2(c)の瞬時無効電力qとパルス位相βの、
、が対応させてあり、瞬時無効電力qが大きいとパ
ルス位相βも大きくなり、瞬時無効電力qが小さくなる
とパルス位相βが小さくなる。このようなパルス位相β
で発生する点弧パルスPでサイリスタ8を位相制御して
点弧させたときにTCR4に流れるサイリスタ電流iTh
が図2(d)に示される。
Large, medium and small instantaneous reactive power q due to inrush current i
And the pulse phase β at the crossing point of the reference signal Vf is shown in FIG.
As shown in (c) and, different from large, medium and small. That is, the instantaneous reactive power q and the pulse phase β in FIG.
, And the pulse phase β increases as the instantaneous reactive power q increases, and the pulse phase β decreases as the instantaneous reactive power q decreases. Such a pulse phase β
The thyristor current i Th flowing through the TCR 4 when the thyristor 8 is phase-controlled and ignited by the ignition pulse P
Is shown in FIG.

【0024】図2(d)で明らかなように、瞬時無効電
力qが大のときのサイリスタ電流i Thが小となり、瞬時
無効電力qが小のときのサイリスタ電流iThが大とな
る。このようなサイリスタ電流iThが系統母線3に流れ
ることで、TCR4が系統母線3の断続的な突入電流i
を各相独立させて順次に打ち消すように動作して、系統
母線3の突入電流iに伴う電圧変動が抑制される。
As is apparent from FIG. 2 (d), the instantaneous reactive voltage is
Thyristor current i when force q is large ThBecomes small and instant
Thyristor current i when reactive power q is smallThIs big
It Such a thyristor current iThFlows to system bus 3
As a result, the TCR 4 causes the inrush current i of the system bus 3 to be intermittent.
The system operates by making each phase independent and canceling them sequentially.
Voltage fluctuations associated with inrush current i of bus bar 3 are suppressed.

【0025】以上の突入電流抑制動作は、変圧器投入か
ら突入電流発生が無くなる数秒の一定時間だけ行われ
る。この一定時間が経過すると、瞬時補償回路30がタ
イマー制御で切換スイッチ31を回路接続端子35から
遮断アース端子36に切換える。以後、乗算器18の出
力が遮断されてパルス発生回路20が停止し、SVC6
が停止状態になって、SVC6による系統母線3側への
影響が回避される。
The above-described inrush current suppressing operation is performed only for a fixed time of several seconds after the transformer is turned on and no inrush current is generated. When this fixed time has elapsed, the instant compensation circuit 30 switches the changeover switch 31 from the circuit connection terminal 35 to the cutoff ground terminal 36 by timer control. After that, the output of the multiplier 18 is cut off, the pulse generation circuit 20 is stopped, and the SVC6
Is stopped, and the influence of the SVC 6 on the system bus 3 side is avoided.

【0026】尚、図1の変圧器突入電流を、プラス側に
発生したもので説明したが、突入電流がマイナス側に発
生することもあり、このマイナス側突入電流に対しても
本発明装置の適用が可能である。
Although the transformer inrush current shown in FIG. 1 has been described as being generated on the plus side, the inrush current may be generated on the minus side. Applicable.

【0027】また、図1の負荷は変動負荷に限らず、ま
た、電力系統に変圧器突入電流を流す変圧器は負荷投入
用変圧器に限らず、系統母線に交流電源を投入する変圧
器等であってもよい。
The load shown in FIG. 1 is not limited to the variable load, and the transformer for supplying the transformer inrush current to the power system is not limited to the load input transformer, but may be a transformer for supplying AC power to the system bus. May be

【0028】[0028]

【発明の効果】本発明によれば、変圧器投入時に系統母
線に突発的に流れる突入電流の瞬時無効電力を乗算器で
検出し、この検出された瞬時無効電力で直接にサイリス
タ制御リアクトルのサイリスタを位相制御して発生させ
た瞬時無効電力補償用遅れ無効電力を系統母線に印加す
ることにより、突発かつ断続的な変圧器突入電流の個々
に対応した補償無効電力が系統母線に与えられて、変圧
器突入電流に伴う系統母線の電圧変動が抑制される。従
って、変圧器突入電流による負荷誤動作、破損等の電力
系統上での各種トラブルを減少させることができる。
According to the present invention, the multiplier detects the instantaneous reactive power of the inrush current that suddenly flows in the system bus when the transformer is turned on, and the detected instantaneous reactive power directly affects the thyristor of the thyristor control reactor. By applying the delayed reactive power for instantaneous reactive power compensation generated by controlling the phase to the system bus, compensation reactive power corresponding to each of the sudden and intermittent transformer inrush currents is given to the system bus, Voltage fluctuations on the system busbar due to transformer inrush current are suppressed. Therefore, it is possible to reduce various troubles on the power system such as load malfunction and damage due to transformer inrush current.

【0029】また、変圧器突入電流が発生する一定時間
の経過後に、切換スイッチで乗算器出力のパルス発生回
路への入力を遮断してSVCを開放状態にしたので、変
圧器投入後の電力系統の正常な動作が確保される。
Further, after a lapse of a certain time when the transformer inrush current is generated, the input of the multiplier output to the pulse generating circuit is cut off by the changeover switch to open the SVC, so that the power system after the transformer is turned on. The normal operation of is secured.

【0030】更に、系統母線に設置されるSVCは既設
のSVCがそのまま適用でき、また、SVC制御回路は
既設のSVC制御回路の一部を切換スイッチに代えるだ
けで適用できるので、既設設備の大部分が使用できる設
備投資的に有利な変圧器突入電流抑制装置が提供でき
る。
Further, since the existing SVC can be applied as it is to the SVC installed on the system bus, and the SVC control circuit can be applied only by replacing a part of the existing SVC control circuit with a changeover switch, the existing equipment can be installed in a large size. It is possible to provide a transformer inrush current suppressing device that can be used partially, which is advantageous in terms of capital investment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す変圧器突入電流抑制装置
と電力系統の回路図
FIG. 1 is a circuit diagram of a transformer inrush current suppressing device and a power system showing an embodiment of the present invention.

【図2】(a)〜(d)は図1の変圧器突入電流抑制装
置の動作を説明するための各点での電圧・電流波形図
2 (a) to (d) are voltage / current waveform diagrams at various points for explaining the operation of the transformer inrush current suppressing device of FIG.

【図3】SVCを備えた電力系統の回路図FIG. 3 is a circuit diagram of a power system including an SVC.

【図4】図3の電力系統で発生する変圧器突入電流とそ
の無効電流の波形図
FIG. 4 is a waveform diagram of transformer inrush current and its reactive current generated in the power system of FIG.

【符号の説明】[Explanation of symbols]

3 系統母線 4 サイリスタ制御リアクトル(TCR) 6 無効電力補償装置(SVC) 8 サイリスタ 10 無効電力補償装置制御回路 11 負荷 12 変圧器 18 乗算器 20 パルス発生回路 30 瞬時補償回路 31 切換スイッチ i 変圧器突入電流 q 瞬時無効電力 P 点弧パルス 3 System Bus 4 Thyristor Control Reactor (TCR) 6 Reactive Power Compensator (SVC) 8 Thyristor 10 Reactive Power Compensator Control Circuit 11 Load 12 Transformer 18 Multiplier 20 Pulse Generation Circuit 30 Instantaneous Compensation Circuit 31 Changeover Switch i Transformer Inrush Current q Instantaneous reactive power P Firing pulse

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 系統母線における変圧器投入時の突入電
流を抑制する装置であって、 逆並列接続サイリスタとリアクトルの直列回路を系統母
線に接続したサイリスタ制御リアクトルを有する無効電
力補償装置と、 系統母線での母線電圧と負荷電流を乗算して変圧器投入
時の突入電流の瞬時無効電力を検出する乗算器、この乗
算器の瞬時無効電力出力値に対応して前記サイリスタを
位相制御して点弧させる点弧パルスを発生するパルス発
生回路を備えた無効電力補償装置制御回路と、 前記変圧器の系統母線への投入時点から変圧器突入電流
が発生する一定時間帯だけ前記乗算器の出力をパルス発
生回路に入力し、この一定時間経過後は乗算器出力のパ
ルス発生回路への入力を遮断する切換スイッチを備えた
瞬時補償回路と、 を具備したことを特徴とする変圧器突入電流抑制装置。
1. A reactive power compensator for suppressing inrush current when a transformer is turned on in a system busbar, the reactive power compensating device having a thyristor control reactor in which a series circuit of an antiparallel connection thyristor and a reactor is connected to a system busbar. A multiplier that multiplies the bus voltage on the bus and the load current to detect the instantaneous reactive power of the inrush current when the transformer is turned on, and controls the phase of the thyristor according to the instantaneous reactive power output value of this multiplier. A reactive power compensator control circuit having a pulse generation circuit for generating an ignition pulse to be ignited, and the output of the multiplier only for a certain period of time when the transformer inrush current is generated from the time of inputting the transformer to the system bus. An instantaneous compensation circuit having a changeover switch for inputting to the pulse generation circuit and cutting off the input of the multiplier output to the pulse generation circuit after a certain period of time. Transformer inrush current suppression apparatus according to symptoms.
JP7121073A 1995-05-19 1995-05-19 Rush current suppressor for transformer Withdrawn JPH08314559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121073A JPH08314559A (en) 1995-05-19 1995-05-19 Rush current suppressor for transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121073A JPH08314559A (en) 1995-05-19 1995-05-19 Rush current suppressor for transformer

Publications (1)

Publication Number Publication Date
JPH08314559A true JPH08314559A (en) 1996-11-29

Family

ID=14802181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121073A Withdrawn JPH08314559A (en) 1995-05-19 1995-05-19 Rush current suppressor for transformer

Country Status (1)

Country Link
JP (1) JPH08314559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908697A (en) * 2017-04-20 2017-06-30 广西电网有限责任公司电力科学研究院 A kind of synthetic power-frequency and the distribution network fault line selection method in transient reactive power direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908697A (en) * 2017-04-20 2017-06-30 广西电网有限责任公司电力科学研究院 A kind of synthetic power-frequency and the distribution network fault line selection method in transient reactive power direction

Similar Documents

Publication Publication Date Title
KR890004588B1 (en) Power supply system and controlling method
JP3432640B2 (en) Converter protection device
JPH10156537A (en) Power source device
US5625277A (en) Dynamic mechanically switched damping system and method for damping power oscillations using the same
JPH09182294A (en) Power factor regulator
JPH08314559A (en) Rush current suppressor for transformer
JPH08314557A (en) Controller for reactive power compensator
JP2001333536A (en) Non-utility generating facility
JP2001016783A (en) Reverse power flow preventing device for private power generating facility
JPH11299109A (en) Counter power flow preventive device for private generation equipment
JPH1189090A (en) Voltage stabilization controller using static phase modification equipment
JPH06205547A (en) Service interruption control circuit of emergency power supply device of power storage type
JP2002218658A (en) Reverse tidal current preventive device
JPS63314136A (en) Purchasing energy controller
JP4062704B2 (en) Control method and control device for private power generation auxiliary generator
JPH0746763A (en) Reactive power regulator
JP3319307B2 (en) Self-excited reactive power compensator
JPH027900A (en) Excitation control device of synchronous generator
JP2001333537A (en) Power supply facility
JP2994277B2 (en) Power factor adjustment system
JPH06203688A (en) Circuit breaker controlling apparatus for phase adjusting facility
JPH07284224A (en) Ac-dc converter control device
JPH08163781A (en) Self-exciting reactive voltage compensator
JP2000262096A (en) Controller for generator motor and generating system using the same
JPS6087695A (en) Excitation controller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806