JPH02174407A - Temperature compensated frequency crystal oscillator - Google Patents

Temperature compensated frequency crystal oscillator

Info

Publication number
JPH02174407A
JPH02174407A JP33017588A JP33017588A JPH02174407A JP H02174407 A JPH02174407 A JP H02174407A JP 33017588 A JP33017588 A JP 33017588A JP 33017588 A JP33017588 A JP 33017588A JP H02174407 A JPH02174407 A JP H02174407A
Authority
JP
Japan
Prior art keywords
temperature
frequency
vibration mode
circuit
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33017588A
Other languages
Japanese (ja)
Inventor
Haruyoshi Ota
太田 治良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP33017588A priority Critical patent/JPH02174407A/en
Publication of JPH02174407A publication Critical patent/JPH02174407A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a crystal oscillator with high accuracy and high reliability by using a temperature characteristic of a sub vibration mode not coupled with the main vibration mode, detecting directly the temperature of the substrate in a form of the frequency and applying temperature compensation control to the main vibration frequency of the substrate at the same time. CONSTITUTION:Exciting electrode pairs 3, 4 are provided independently of the front and rear sides of a crystal vibrator 2. A temperature compensation circuit TC and an oscillation circuit OS2 are connected to the electrode pair 4 to oscillate the main vibration mode, and an oscillation circuit OS1 is connected to the electrode pair 3 to oscillate the sub vibration mode. The temperature of the crystal substrate 2 is detected depending on the temperature characteristic of the frequency F1 of the sub vibration mode. The frequency F1 is converted into a voltage by an FV conversion circuit and the voltage is matched with an input voltage by the voltage/load capacitor conversion of the compensation circuit TC. Through the constitution above, a temperature compensated frequency crystal oscillator small in size, low in power consumption and high in accuracy is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 水晶振動子の周波数温度特性を補償して一定な発振周波
数を出力するように設計された、特に温(従来の技術) 高温度の恒温槽に水晶振動子を内蔵させた高安定恒温槽
水晶発振器は、恒温保持の電力を必要とすること及び恒
温槽そのものが小型化を妨げていることから、特殊な用
途に限定されている。
Detailed Description of the Invention (Industrial Field of Application) A high-temperature constant temperature chamber designed to output a constant oscillation frequency by compensating the frequency-temperature characteristics of a crystal resonator, particularly at a high temperature (prior art) Highly stable thermostatic bath crystal oscillators with built-in crystal oscillators are limited to special uses because they require power to maintain constant temperature and the thermostatic chamber itself prevents miniaturization.

この欠点を改善するため、サーミスタ等の感温素子を用
いて、温度−電気抵抗値の変化を電圧−静電容量値に変
換して、これを水晶振動子の等価負荷容量の変化として
利用することにより、水晶振動子の周波数温度変化を補
償する小型な非恒温槽型の周波数温度補償水晶発振器(
以下TCXOとする)が広く使用されている。
In order to improve this drawback, a temperature-sensitive element such as a thermistor is used to convert the temperature-electrical resistance change into a voltage-capacitance value, and this is used as a change in the equivalent load capacitance of the crystal resonator. This enables us to create a small non-temperature oven type frequency temperature compensated crystal oscillator (
(hereinafter referred to as TCXO) are widely used.

このTCXOをさらに改良して、水晶振動子固有の周波
数対温度のデーターを演算処理してメモリしておき、こ
れを周波数温度補償に利用するディジタル周波数温度補
償発振回器(以下DTCXOとする)が開発されて実用
段階にある。
This TCXO has been further improved to create a digital frequency temperature compensation oscillator (hereinafter referred to as DTCXO), which processes and stores the frequency vs. temperature data specific to the crystal resonator and uses this data for frequency temperature compensation. It has been developed and is in the practical stage.

(発明が解決しようとするLd) 従来、TCXOあるいはDTCXOの温度検出には、例
えば、サーミスタ、ポジスタ等の感温素子を用いてきて
いるが、測温対象の水晶振動子と必ずしも等価位置で等
価熱容量とすることはできないから、環境温度の急な変
化に対して、どうしても感温素子と水晶振動子との間で
温度差を生じ、周波数温度補償特性の劣化を招いていた
(Ld to be solved by the invention) Conventionally, a temperature sensing element such as a thermistor or a posistor has been used to detect the temperature of a TCXO or DTCXO, but it is not necessarily the case that the temperature sensing element is at an equivalent position and equivalent to the crystal resonator of the object of temperature measurement. Since heat capacity cannot be measured, a sudden change in environmental temperature inevitably causes a temperature difference between the temperature sensing element and the crystal resonator, leading to deterioration of frequency temperature compensation characteristics.

また、感温素子は化合物半導体材料を混成焼結して製造
することが多く、その化合物成分の不安定性に起因する
と考えられる経時変化が避けられず、安定性と信頼性を
損ねている。
Further, temperature-sensitive elements are often manufactured by hybrid sintering of compound semiconductor materials, and changes over time, which are thought to be caused by the instability of the compound components, are unavoidable, impairing stability and reliability.

これを改善するため、熱電錐などの利用が考えられたが
、低感度と低インピーダンスであることから、現在は殆
ど使用されていない。
In order to improve this, the use of a thermoelectric cone was considered, but it is rarely used today due to its low sensitivity and low impedance.

また、半導体材料からなる感温素子は温度に対する抵抗
値の変化が指数関数的に大きく変化することから、単一
の素子で温度全Iatこわたって温度補償することは到
底不可能である。従って、特性の異なる2個ないしは3
個の感温素子を各々分担する狭い温度域に分割して一体
に組合せた回路構成としなければならなかった。
Furthermore, since the resistance value of a temperature sensing element made of a semiconductor material changes greatly exponentially with respect to temperature, it is completely impossible to compensate for temperature over the entire temperature Iat with a single element. Therefore, two or three with different characteristics
It was necessary to create a circuit configuration in which the individual temperature sensing elements were divided into narrow temperature ranges and combined into one.

第5図に従来例として、温度補償域をT CL、T C
M、TCHの3つに分担してそれぞれに可変容量素子V
CI、VO2、VO2を制御しているTCXOの例を示
す。
Figure 5 shows a conventional example where the temperature compensation range is T CL, T C
The variable capacitance element V is divided into three parts, M and TCH.
An example of a TCXO controlling CI, VO2, and VO2 is shown.

しかし、この感温素子の特性を要求に合致させることは
極めて難しく、多く素子の中から選別して目的の特性を
持った素子を得るは、かはなかった。
However, it is extremely difficult to match the characteristics of this temperature-sensitive element to the requirements, and it has been difficult to select from a large number of elements to obtain an element with the desired characteristics.

従って、回路のfl整作業も勢い複雑を極め、コンピュ
ータを利用しても、なお調整や測定Zこ長時間かけなけ
ればならなかった。
Therefore, the circuit adjustment work is extremely complicated, and even if a computer is used, adjustment and measurement Z still require a long time.

このようにしても、補償温度全域にわたって周波数偏差
の仕様規格内に温度補償するのは非常に困難になりつつ
あり、新たな技術手段の開発が強く望まれていた。
Even with this method, it is becoming extremely difficult to perform temperature compensation within the frequency deviation specifications over the entire compensation temperature range, and there has been a strong desire to develop new technical means.

DTCXOは、水晶振動子の固有周波数温度特性に一致
させた補償データを基に理想的な周波数温度補償を行い
易い利点があり、理論的には任意の周波数偏差規格内に
補償することができる。
The DTCXO has the advantage of easily performing ideal frequency temperature compensation based on compensation data matched to the natural frequency temperature characteristics of the crystal resonator, and can theoretically compensate within any frequency deviation standard.

第6図にスイッチドキャパシタを用いて、最適な補償容
量Cnを5n(nは自然数)の選択的開閉により温度補
償制御するDTCXOの従来例を示す。
FIG. 6 shows a conventional example of a DTCXO that uses a switched capacitor to perform temperature compensation control by selectively opening and closing an optimum compensation capacitance Cn of 5n (n is a natural number).

しかしながら、制御のために行う温度サンプリングの粗
さによって補償する周波数はなかなか平坦とならず、サ
ンプリングの量子化ノイズあるいはジッターが発生する
こと、演算マイクロコンピュータあるいはメモリー等の
多くの半導体素子を含むディジタルデータ処理回路の消
費電力が比較的大きくなり、小型低消費電力の要求に合
致しないなどの欠点があった。
However, due to the roughness of temperature sampling performed for control purposes, the frequency to be compensated for is difficult to flatten, and sampling quantization noise or jitter occurs. The disadvantages include that the power consumption of the processing circuit is relatively large, and it does not meet the requirements for small size and low power consumption.

本発明は、これらの欠点に鑑みてなされたもので、小型
低消費、電力の周波数温度補償発振器を高精度かつ高信
頼性に実現することを目的とするものである。
The present invention has been made in view of these drawbacks, and an object of the present invention is to realize a frequency-temperature compensated oscillator that is small, has low power consumption, and has high accuracy and high reliability.

(rR題を解決するための手段) 水晶基板の固有撮動姿態として様々なものがあり、その
中の一つのti動姿態に着目して主振動姿態(以下主振
動とする)として抽出し利用する。
(Means for solving the rR problem) There are various unique motion states of a crystal substrate, and we focus on one of them, the ti motion state, and extract and use it as the main vibration state (hereinafter referred to as "principal vibration"). do.

動作温度範囲内で周波数温度変化が最小となるよう、周
波数温度特性に変曲点を含ませる切断角度を求め、各種
水晶振動子が実用化されている。
Various crystal resonators have been put into practical use by determining a cutting angle that includes an inflection point in the frequency-temperature characteristics so that the frequency temperature change is minimized within the operating temperature range.

しかしながら、水晶基板の寸法形状が有限なため、主振
動の他に多くの共振(固有)振動姿態の発生を可能とす
る境W条件を満たし、その結果、主振動以外に望ましく
ない多数の副振動(スプリアスJH動’) φB(以下
副振動とする)を観測することがある。
However, since the dimensions and shape of the crystal substrate are finite, it satisfies the boundary W condition that enables the generation of many resonance (natural) vibration states in addition to the main vibration, and as a result, many undesirable secondary vibrations are generated in addition to the main vibration. (Spurious JH motion') φB (hereinafter referred to as sub-vibration) may be observed.

副振動はその発生形態から2つに分類される。Secondary vibrations are classified into two types based on their generation form.

主振動周波数と副振動(高次高調波)周波数とが河等か
の理由により一致して音響的に結合し生起する場合(結
合共振)と、たまたま副振動周波数が発振回路の発振条
件を満足し主振動との間の結合が弱く単独に近い形で生
起する場合(非結合共振)とである。一般に、水晶発振
器の安定性を維持するには、結合共振の副振動との結合
を小さくしてより純粋な主振動を如何にして得るかに多
くの努力が払われてきた。
When the main vibration frequency and the secondary vibration (higher harmonic) frequency match for some reason and are acoustically coupled to occur (coupled resonance), the secondary vibration frequency happens to satisfy the oscillation conditions of the oscillation circuit. The coupling between the vibration and the main vibration is weak and occurs almost independently (non-coupled resonance). Generally, in order to maintain the stability of a crystal oscillator, much effort has been made to reduce the coupling of the coupled resonance with the sub-oscillation to obtain a purer main vibration.

他方、非結合共振の副振動は、発振回路に周波数選択手
段等を設けるとかあるいは振動子の形状寸法の変更とか
の設計手段等により、結合共振の場合に比較してその抑
圧が容易である。
On the other hand, the secondary vibration of non-coupled resonance can be suppressed more easily than the case of coupled resonance by design means such as providing a frequency selection means in the oscillation circuit or changing the shape and dimensions of the vibrator.

本発明は、特にこの非結合の副振動に着目し、独立の振
動姿態として主振動に与える影響が少ない副振動を同時
に発振させて、それぞれの周波数に分離し、副振動周波
数の温度特性から逆に水晶基板の温度を検出して、主振
動周波数の温度特性を補償制御するものである。
The present invention pays particular attention to this non-coupled sub-vibration, simultaneously oscillates the sub-vibration that has little influence on the main vibration as an independent vibration state, separates it into each frequency, and reverses the sub-vibration frequency based on the temperature characteristics of the sub-vibration frequency. The temperature of the crystal substrate is detected and the temperature characteristics of the main vibration frequency are compensated and controlled.

ATカット水晶振動子を例にとって説明する。This will be explained using an AT cut crystal resonator as an example.

第4図(1))に示すように、平板形状に設計したAT
カット水晶基板1の板面上に、部分励振型ri15 a
、5bを配設した水晶振動子は、同図(c)の厚みすべ
り振動姿態TSで共振させると、切断角度がATカット
に近接したCTカット相当の同図(d)の面滑りWi動
姿態FSを、両娠動姿態間の音響的結合を利用すること
なしに、同時に共振させることができる。
As shown in Figure 4 (1)), an AT designed in a flat plate shape
On the surface of the cut crystal substrate 1, a partially excitation type RI15a
, 5b is caused to resonate in the thickness shear vibration state TS shown in the same figure (c), the plane slip Wi motion state shown in the same figure (d), which is equivalent to the CT cut where the cutting angle is close to the AT cut, is generated. The FS can be made to resonate simultaneously without using acoustic coupling between both pregnancy motion states.

これは、この振動姿態の節点が中心以外に辺縁中央部に
4箇所あり、ATカフェ・振動子の支持と一致させ易い
こと及び水晶基板の厚みがCT力・ント娠動子の最適厚
みに近いことなどが両共振の共存できる主な理由である
This is because there are four nodes in this vibration mode in the center of the periphery in addition to the center, which makes it easy to match the support of the AT cafe and vibrator, and the thickness of the crystal substrate is the optimum thickness for the CT force and oscillator. The main reason why both resonances can coexist is that they are close to each other.

しかしながら、第4図(d)に示すように、水晶基板1
をCTカット水晶据動子として面滑り振動姿態FSで動
作させたとき、同図(a)に示すようにその周波数温度
特性FSの変曲点は常温になく、ATカット水晶振動子
としての周波数温度特性TSが最平坦部を与える常温付
近では、はぼ直線的で急激な変化を示している。
However, as shown in FIG. 4(d), the crystal substrate 1
When operated as a CT-cut crystal oscillator in the plane-sliding vibration mode FS, the inflection point of its frequency-temperature characteristic FS is not at room temperature, as shown in Figure (a), and the frequency as an AT-cut quartz crystal oscillator is Near room temperature, where the temperature characteristic TS is at its flattest point, it shows an almost linear and rapid change.

この温度特性の差異は水晶基板の設計により一方的に決
まるものであり、周波数調整等の付随する加工処理等に
よってあまり変化せず、いわばその水晶基板1に固有な
特性とみなすことができるので、この副振動の周波数F
lの温度特性を抽出することにより、逆にその水晶基板
lの温度を正確に検知できる。
This difference in temperature characteristics is determined unilaterally by the design of the crystal substrate, and does not change much due to accompanying processing such as frequency adjustment, so it can be regarded as a characteristic unique to the crystal substrate 1. The frequency F of this secondary vibration
Conversely, by extracting the temperature characteristics of the crystal substrate l, the temperature of the crystal substrate l can be accurately detected.

本発明は、この原理を応用して水晶基板自体の温度を検
出し温度補償制御に利用するものである。
The present invention applies this principle to detect the temperature of the crystal substrate itself and utilizes it for temperature compensation control.

すなわち、 水晶振動子と発振回路と温度補償回路とを接続した周波
数温度補償水晶発振器において、水晶振動子の水晶基板
の表裏板面上に独立した2つの励振電極対を設け、一方
の励振電極対に温度mfr4回路と第1発振回路とを接
続して主振動を発振させ、他方の励振電極対に第2発振
回路を接続して副振動を発振させ、副振動周波数の温度
特性から水晶基板の温度を検出して温度補償回路を;l
/J御して第1発振回路の主振動周波数を温度補償する
手段、あるいは 水晶振動子の水晶基板の表裏板面上に1つの励振電極対
を設け、この励振電極対に温度補償回路と第1発振回路
とを接続して主振動を発振させ、また、同励振電極対に
1収載濾波回路と第2発振回路とを接続して主振動と同
時に副振動を発振させ、主振動周波数と副振動周波数と
をそれぞれ分離し、副振動周波数の温度特性から水晶基
板の温度を検出して温度補償回路を制御して第1発振回
路の主振動周波数を温度補償する手段、 のいづれかを用いて周波数温度補償水晶発振器を構成す
るものである。
That is, in a frequency temperature compensated crystal oscillator in which a crystal resonator, an oscillation circuit, and a temperature compensation circuit are connected, two independent excitation electrode pairs are provided on the front and back surfaces of the crystal substrate of the crystal resonator, and one excitation electrode pair is The temperature mfr4 circuit and the first oscillation circuit are connected to oscillate the main vibration, and the second oscillation circuit is connected to the other excitation electrode pair to oscillate the sub-oscillation. From the temperature characteristics of the sub-oscillation frequency, the temperature of the crystal substrate is determined. Detect the temperature and set up the temperature compensation circuit;l
/J to temperature compensate the main oscillation frequency of the first oscillation circuit, or provide a pair of excitation electrodes on the front and back surfaces of the crystal substrate of the crystal resonator, and connect the temperature compensation circuit and the The first oscillation circuit is connected to oscillate the main vibration, and the first filter circuit and the second oscillation circuit are connected to the same excitation electrode pair to oscillate the sub vibration at the same time as the main vibration. oscillating frequency, detecting the temperature of the crystal substrate from the temperature characteristics of the auxiliary oscillating frequency, controlling a temperature compensation circuit, and temperature-compensating the main oscillating frequency of the first oscillating circuit. This constitutes a temperature compensated crystal oscillator.

(発明の作用) 上記のように構成した周波数温度補償発振器は、水晶基
板の温度検出光とその主振動周波数の温度補償する対象
先とが同一水晶基板そのものであり、周波数温度補償す
る機能が同じ周波数というデータ形式を介して滑らかか
つ高精度に行われる。
(Operation of the invention) In the frequency temperature compensated oscillator configured as described above, the temperature detection light of the crystal substrate and the target for temperature compensation of its main vibration frequency are the same crystal substrate itself, and the frequency temperature compensation function is the same. This is done smoothly and with high precision using a data format called frequency.

しかし高信頼な周波数温度補償を保証するには、温度検
出の副振動と周波数温度特性の補償対象の主振動とが互
いに水晶基板上で直接干渉しないよう、音響的結合の少
ない独立した振動姿態を選ぶことが重要である。
However, in order to guarantee highly reliable frequency-temperature compensation, the secondary vibration of temperature detection and the main vibration to be compensated for frequency-temperature characteristics must have independent vibration modes with less acoustic coupling so that they do not directly interfere with each other on the crystal substrate. It is important to choose.

非結合共振を利用する場合は、1つの励振電極対に主振
動と副振動の両振動を同時に発振させ、それぞれの周波
数に分離することができる(第2図、第3図及び第4図
(b))。
When using non-coupled resonance, it is possible to cause a pair of excitation electrodes to simultaneously oscillate both the main vibration and the sub-vibration, and separate them into their respective frequencies (see Figures 2, 3 and 4). b)).

あるいは、主振動の振動部分と副振動の振動部分との間
に切り溝等を設けて構造的に遮断することにより、両娠
動閘の相互干渉をほぼ完全に防止することができる(第
1図(b))。
Alternatively, by providing a groove or the like between the main vibration vibration part and the secondary vibration vibration part to structurally isolate them, it is possible to almost completely prevent mutual interference between the two locks (first Figure (b)).

この場合、2つの励振電極対を音響的に隔離できれば、
両振動が結合共振することがある振動姿態も本発明とし
て実施できる。
In this case, if the two excitation electrode pairs can be acoustically isolated,
A vibration mode in which both vibrations are combined and resonated can also be implemented as the present invention.

通常、周波数温度補償は温度−周波数の変換から周波数
−電圧値、そして電圧値−負荷容量値の変換へと順に実
行される。
Typically, frequency-temperature compensation is performed in sequence from temperature-frequency conversion, frequency-voltage value, and voltage value-load capacitance value conversion.

この場合、従来のアナログ方式で実施されている周波数
温度補償制御方式の電圧値−負荷容量値の変換をそのま
ま本発明に転用できる。
In this case, the voltage value-load capacitance value conversion of the frequency temperature compensation control method implemented in the conventional analog method can be directly applied to the present invention.

図示してないが、この変換にPLLループ制御系を用い
ることにより周波数−周波数の直接変換として実施する
ことができる。
Although not shown, by using a PLL loop control system for this conversion, it can be implemented as a direct frequency-to-frequency conversion.

(実施例) 第1図(a)は、水晶基板2の表裏板面に2個の独立し
た励振電極対(3、4を配設した構造の同図(b)の水
晶振動子に必要な回路を接続して周波数温度補償水晶発
振器とした本発明の実施例である。
(Example) FIG. 1(a) shows the necessary components for the crystal resonator shown in FIG. This is an embodiment of the present invention in which circuits are connected to form a frequency temperature compensated crystal oscillator.

すなわち、一方の励振電極対4に第1発振回路052と
温度補償回路TCとを接続し、他方の励振電極対3に第
2発振回路oSlとを接続したものであって、励振電極
対3はCTカット相当の面滑り振動姿態で発振し周波数
Flが得られる。
That is, one excitation electrode pair 4 is connected to a first oscillation circuit 052 and a temperature compensation circuit TC, and the other excitation electrode pair 3 is connected to a second oscillation circuit oSl. It oscillates in a plane-sliding vibration state equivalent to a CT cut, and a frequency Fl is obtained.

励振電極対4は、ATカットの厚みすべり振動姿態で発
振し周波数F2が得られる。
The excitation electrode pair 4 oscillates in an AT-cut thickness-shear vibration mode to obtain a frequency F2.

副振動である面滑り振動周波数Flは温度の1価間数で
あるから、これより水晶基板2Φ温度が検出される。
Since the surface sliding vibration frequency Fl, which is a sub-vibration, is a monovalent value of temperature, the temperature of the crystal substrate 2Φ is detected from this.

この副振動周波数Flを周波数電圧変換回路FVにより
電圧に変換するが、温度補償回路TCの電圧−負荷容量
変換に必要な電圧値に整合させる。
This sub-oscillation frequency Fl is converted into a voltage by the frequency-voltage conversion circuit FV, which is matched to the voltage value required for voltage-load capacitance conversion of the temperature compensation circuit TC.

図示してないが、副振動周波数F1を、周波数電圧変換
回路FVの替わりに、例えば、PLL等の周波数処理回
路を経由させることにより、主振動周波数F2を直接制
御することもできる。この場合、主振動と副振動との周
波数温度特性が一対一の対応間係であるならば、例えば
、最もスプリアスの少ないYカット振動子など、動作温
度範囲内に変曲点を持たないために利用されることの少
なかった直線的に変化する周波数温度特性振IJJ姿態
などを主振動として、積極的に利用することができる。
Although not shown, the main vibration frequency F2 can also be directly controlled by passing the secondary vibration frequency F1 through a frequency processing circuit such as a PLL instead of the frequency-voltage conversion circuit FV. In this case, if the frequency-temperature characteristics of the main vibration and the sub-vibration have a one-to-one correspondence, for example, a Y-cut resonator with the least spurious, etc., has no inflection point within the operating temperature range. The linearly changing frequency-temperature characteristic vibration IJJ configuration, which has rarely been used, can be actively utilized as the main vibration.

水晶基板2aの振動姿態をDTカット相当の面滑り振動
姿態とするならば、同2bをBTカッにとって厚みすべ
り振動姿態とすることもできる。
If the vibration state of the crystal substrate 2a is made into a surface sliding vibration state corresponding to a DT cut, it is also possible to make the crystal substrate 2b into a thickness shear vibration state by using a BT cut.

あるいは、水晶基板2a、2bは、基板中央部で溝切り
構造等により物理的に隔離されているから、例えば、結
合共振間係にある屈曲と厚みすべりの振動姿態を利用す
ることもできる。この場合、回路等の非直線結合を考慮
して高次高調波まで非整数倍関係を保ちつつ、主振動と
副振動の周波数を常に異ならしめることが重要である(
以下簡便tこ、これを異なる周波数とのみ表す)。
Alternatively, since the crystal substrates 2a and 2b are physically separated by a grooved structure or the like at the center of the substrate, it is also possible to utilize, for example, the vibration state of bending and thickness shear in the coupling resonance relationship. In this case, it is important to maintain a non-integer multiple relationship up to high-order harmonics, taking into account non-linear coupling in circuits, etc., and to always make the frequencies of the main vibration and sub-vibration different (
Hereinafter, for the sake of simplicity, this will only be referred to as a different frequency).

第2図(a)は、水晶基板1に単励振電極対5を配設し
た第4図(b)の水晶振動子に必要な回路を接続して構
成した本発明の他の実施例である。
FIG. 2(a) shows another embodiment of the present invention constructed by connecting the necessary circuits to the crystal resonator of FIG. 4(b) in which a single excitation electrode pair 5 is arranged on a crystal substrate 1. .

すなわち、副振動の面滑り振動姿態FSと主振動の厚み
すべり振動姿態TSとが非結合共振関係にあることを利
用して、励振電極対5において互いに干渉することなく
同時に重ね合わせ発振出来るように、両振動姿態の周波
数Fl、F2とを常に異ならしめて、励振電極対5に発
振回路oS1と低域通過フィルタFILとを接続したも
のに、発振回路OS2と温度補償回路TCとを接続した
ものを、更に並列接続した例である。
That is, by utilizing the non-coupled resonance relationship between the surface-slip vibration state FS of the sub-vibration and the thickness-shear vibration state TS of the main vibration, superimposed oscillation can be simultaneously performed in the excitation electrode pair 5 without mutual interference. , the frequencies Fl and F2 of both vibration modes are always made different, and the oscillation circuit oS1 and the low-pass filter FIL are connected to the excitation electrode pair 5, and the oscillation circuit OS2 and the temperature compensation circuit TC are connected. , is an example of further parallel connection.

温度補償制御は、発振回路O9Iの出力周波数F1を周
波数電圧変換口′PtFVにより温度補償回路TCの制
御電圧Vを出力し−C行うことが出来る。
Temperature compensation control can be performed by converting the output frequency F1 of the oscillation circuit O9I into the control voltage V of the temperature compensation circuit TC through the frequency-voltage conversion port 'PtFV.

この例において、水晶基板1の支持は両標動姿態を考慮
して四辺中央部にて行うのが望ましい。
In this example, it is desirable to support the crystal substrate 1 at the center of the four sides in consideration of both target motions.

第3図(a)に、第2図の実施例における励振゛電極対
5の発振波形(F 1 +F2)を、同図(b)に発振
回路oS2の発振出力波形(F2)を、そして同図(c
)に発振回路OSIの発振出力波形(F1)をそれぞれ
示す。
FIG. 3(a) shows the oscillation waveform (F 1 +F2) of the excitation electrode pair 5 in the embodiment of FIG. 2, and FIG. 3(b) shows the oscillation output waveform (F2) of the oscillation circuit oS2. Figure (c
) respectively show the oscillation output waveform (F1) of the oscillation circuit OSI.

なお、各発振回路を別々に接続されているようζこ図示
したが、画周波数は大きくかけ離れていて、例えば、C
Tカットの発振周波数F1は水晶基板辺長をLとして、 F I =にIL (k=3080kHz −mm)と
表されるから、10MHz、11XI 1mmの場合、
約280 K Hzとなり1つの発振回路で重ね合わせ
発振させることが可能である。
Note that although each oscillation circuit is shown as being connected separately, the image frequencies are far apart, for example, C
The T-cut oscillation frequency F1 is expressed as IL (k=3080kHz - mm) where L is the side length of the crystal substrate, so in the case of 10MHz and 11XI 1mm,
The frequency is approximately 280 KHz, and it is possible to perform superimposed oscillation with one oscillation circuit.

第4図(1))の水晶基板1の励振電極対5は、同図(
C)、 ((1)ここそれぞれ示す両振動姿態以外に発
生するスプリアス振動の抑圧のために部分電極対として
いるが、他方、面中央部において面滑り振動姿態FSが
節をとるので、厚みすべり振動6BTSの最大変位部分
と重ならず干渉を避ける意味合において非常に都合がよ
い。
The excitation electrode pair 5 of the crystal substrate 1 in FIG. 4(1)) is
C), ((1) Partial electrode pairs are used to suppress spurious vibrations that occur in other than the two vibration states shown here, but on the other hand, since the surface slip vibration state FS takes a node at the center of the surface, thickness slip This is very convenient in the sense that it does not overlap with the maximum displacement part of the vibration 6BTS and avoids interference.

(発明の効果) 本発明は、上記詳述したように構成されているので、水
晶基板の主振動姿態に結合しない副振動姿態の温度特性
を用いて、基板から基板温度を周波数の形で直接検出し
、同時に基板の主振動周波数を温度補償制御するもので
あるので、温度測定と制御に伴う従来の欠点が全くなく
理想的な温度ある。
(Effects of the Invention) Since the present invention is configured as detailed above, the substrate temperature can be directly measured from the substrate in the form of a frequency by using the temperature characteristics of the sub-vibration mode that is not coupled to the main vibration mode of the crystal substrate. Since it detects and simultaneously controls the main vibration frequency of the substrate with temperature compensation, it has no disadvantages associated with conventional temperature measurement and control and has an ideal temperature.

利用する撮動姿態は、従来実施されてきたものに限定さ
れることなく、動(′l:温度範囲内に周波数温度特性
の変曲点を有しないものであつも利用出来る。スプリア
ス抑圧に効果のある手段等が、P1波数温度特性が劣る
ことを理由に利用されることのなかった、例えは、Yカ
ットなどの各種カットに大いに適用できることになり、
技術的に資するところ大である。
The imaging mode to be used is not limited to those conventionally used, but can also be used as long as it does not have an inflection point in the frequency-temperature characteristic within the temperature range. Certain methods have not been used due to poor P1 wavenumber temperature characteristics, but can now be applied to various cuts such as Y-cuts.
It has a great technical contribution.

利用しようとする振動姿態が上記の通り結合しない状態
に分離可能ならば、他の圧電材に適用可能であり、水晶
に限定されることはない。
As long as the vibration mode to be utilized can be separated into a non-coupling state as described above, it can be applied to other piezoelectric materials, and is not limited to crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の構成図、同図(1)
)はそれに適用されろ水晶振動子基板の斜視図、第2図
は本発明の他の実施例の構成図、第3図(a)(b)(
c)は第2図の周波数F1+F2、Fl、F2の波形図
である。 第4図(a)はATカット水晶振動子の振v1姿態の周
波数温度特性図、同図(b)は第2図に適用される水晶
振動子基板斜視図、同図(C)は厚みすべり撮動姿態説
明図、同図(d)は面滑り撮動姿態説明図である。 第5図は従来例のTCXO機能説明図、第6図は従来例
のDTCXO機能説明図である。 1.2・・・・・・水晶基板 3、  IL、  5・・・・励振電極対O81,O8
2,05C−−発振回路 TC,T(I、〜TCH ・・・・・温度補償回路 FV・・・・・・・周波数電圧変換回路FIL・・・・
・・低域濾波回路 TS・・・・・・・厚みすべり振動姿態FS・・・・・
・・面滑り振動姿態 X・・・・・・・・水晶1辰動子 A/D・・・・・・アナログデ(ジチル変換器 SP・・・・・・・同1111信号発生回路SW・・・
・・・・スイッチング回路 VCI〜VC3・・容量可変ダイオード第1!!! (Q) 第41!I 箪4閃 (C) (d)
FIG. 1(a) is a configuration diagram of an embodiment of the present invention, and FIG. 1(1)
) is a perspective view of a crystal resonator substrate applied thereto, FIG. 2 is a configuration diagram of another embodiment of the present invention, and FIGS. 3(a), (b) (
c) is a waveform diagram of frequencies F1+F2, Fl, and F2 in FIG. Figure 4 (a) is a frequency temperature characteristic diagram of the vibration v1 state of the AT-cut crystal resonator, Figure 4 (b) is a perspective view of the crystal resonator substrate applied to Figure 2, and Figure 4 (C) is a diagram of thickness slip. A diagram illustrating a photographing state; FIG. FIG. 5 is an explanatory diagram of the TCXO function of a conventional example, and FIG. 6 is an explanatory diagram of the DTCXO function of the conventional example. 1.2...Crystal substrate 3, IL, 5...Excitation electrode pair O81, O8
2,05C--Oscillation circuit TC, T (I, ~TCH... Temperature compensation circuit FV... Frequency voltage conversion circuit FIL...
・・Low-pass filter circuit TS・・・・Thickness shear vibration mode FS・・・・
・・Surface sliding vibration mode・
...Switching circuit VCI~VC3...Variable capacitance diode 1st! ! ! (Q) 41st! I Kan 4 Sen (C) (d)

Claims (1)

【特許請求の範囲】 1)水晶振動子と発振回路と温度補償回路とを接続して
なる周波数温度補償水晶発振器において、該水晶振動子
の水晶基板(2)の表裏板面上に独立した2つの励振電
極対(3、4)を配設し、一方の励振電極対(4)に該
温度補償回路(TC)と第1発振回路(OS2)とを接
続して主振動姿態を発振させ、かつ他方の励振電極対(
3)に第2発振回路(OS1)を接続して副振動姿態を
発振させ、該副振動姿態の周波数(F1)の温度特性よ
り該水晶基板(2)の温度を検出して該温度補償回路(
TC)を制御することにより該第1発振回路(OS2)
の該主振動姿態の周波数(F2)を温度補償するように
したことを特徴とする周波数温度補償水晶発振器。 2)水晶振動子と発振回路と温度補償回路とを接続して
なる周波数温度補償水晶発振器において、該水晶振動子
の水晶基板(1)の表裏板面上に1つの励振電極対(5
)を配設し、該励振電極対(5)に該温度補償回路(T
C)と第1発振回路(OS2)とを接続して主振動姿態
を発振させ、かつ該励振電極対(5)に低域濾波回路(
FIL)と第2発振回路(OS1)とを接続して該主振
動姿態と同時に副振動姿態を発振させ、該主振動姿態の
周波数(F2)と該副振動姿態の周波数(F1)とをそ
れぞれ分離し、該副振動姿態の周波数(F1)の温度特
性より該水晶基板の温度を検出して該温度補償回路(T
C)を制御することにより該第1発振回路(OS2)の
該主振動姿態の周波数(F2)を温度補償するようにし
たことを特徴とする周波数温度補償水晶発振器。
[Scope of Claims] 1) In a frequency temperature compensated crystal oscillator formed by connecting a crystal resonator, an oscillation circuit, and a temperature compensation circuit, two two excitation electrode pairs (3, 4) are arranged, and the temperature compensation circuit (TC) and the first oscillation circuit (OS2) are connected to one excitation electrode pair (4) to oscillate the main vibration mode, and the other excitation electrode pair (
3) is connected to a second oscillation circuit (OS1) to oscillate the sub-vibration mode, detects the temperature of the crystal substrate (2) from the temperature characteristics of the frequency (F1) of the sub-vibration mode, and activates the temperature compensation circuit. (
TC) by controlling the first oscillation circuit (OS2).
1. A frequency temperature compensated crystal oscillator, characterized in that the frequency (F2) of the main vibration mode of is temperature compensated. 2) In a frequency temperature compensated crystal oscillator formed by connecting a crystal resonator, an oscillation circuit and a temperature compensation circuit, one excitation electrode pair (5) is provided on the front and back surfaces of the crystal substrate (1) of the crystal resonator.
), and the temperature compensation circuit (T
C) and the first oscillation circuit (OS2) to oscillate the main vibration state, and a low-pass filter circuit (
FIL) and a second oscillation circuit (OS1) are connected to oscillate a sub-vibration mode at the same time as the main vibration mode, and the frequency (F2) of the main vibration mode and the frequency (F1) of the sub-vibration mode are set respectively. The temperature of the crystal substrate is detected from the temperature characteristic of the frequency (F1) of the sub-vibration mode, and the temperature compensation circuit (T
A frequency temperature compensated crystal oscillator, characterized in that the frequency (F2) of the main vibration state of the first oscillation circuit (OS2) is temperature compensated by controlling the frequency (F2) of the first oscillation circuit (OS2).
JP33017588A 1988-12-27 1988-12-27 Temperature compensated frequency crystal oscillator Pending JPH02174407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33017588A JPH02174407A (en) 1988-12-27 1988-12-27 Temperature compensated frequency crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33017588A JPH02174407A (en) 1988-12-27 1988-12-27 Temperature compensated frequency crystal oscillator

Publications (1)

Publication Number Publication Date
JPH02174407A true JPH02174407A (en) 1990-07-05

Family

ID=18229662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33017588A Pending JPH02174407A (en) 1988-12-27 1988-12-27 Temperature compensated frequency crystal oscillator

Country Status (1)

Country Link
JP (1) JPH02174407A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108170A (en) * 2005-09-15 2007-04-26 Nippon Dempa Kogyo Co Ltd Crystal oscillator and sensing device
JP2009206792A (en) * 2008-02-27 2009-09-10 Nippon Dempa Kogyo Co Ltd Piezoelectric oscillation circuit and sensor
JP2010249708A (en) * 2009-04-16 2010-11-04 Nippon Dempa Kogyo Co Ltd Sensing device
CN102111107A (en) * 2009-12-24 2011-06-29 日本电波工业株式会社 Piezoelectric oscillator
JP2016144048A (en) * 2015-02-02 2016-08-08 富士通株式会社 Inspection method of quartz resonator
JP2016146551A (en) * 2015-02-06 2016-08-12 富士通株式会社 Quartz resonator
JP2017220905A (en) * 2016-06-10 2017-12-14 富士通株式会社 Crystal oscillator and characteristic measurement method for quartz vibrator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080869A (en) * 1973-11-15 1975-07-01
JPS55163481A (en) * 1979-06-07 1980-12-19 Seiko Instr & Electronics Ltd Time standard generator
JPS5662404A (en) * 1979-10-26 1981-05-28 Seiko Instr & Electronics Ltd Quartz oscillating system
JPS56169909A (en) * 1980-06-02 1981-12-26 Seikosha Co Ltd Oscillating circuit using piezoelectric oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080869A (en) * 1973-11-15 1975-07-01
JPS55163481A (en) * 1979-06-07 1980-12-19 Seiko Instr & Electronics Ltd Time standard generator
JPS5662404A (en) * 1979-10-26 1981-05-28 Seiko Instr & Electronics Ltd Quartz oscillating system
JPS56169909A (en) * 1980-06-02 1981-12-26 Seikosha Co Ltd Oscillating circuit using piezoelectric oscillator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108170A (en) * 2005-09-15 2007-04-26 Nippon Dempa Kogyo Co Ltd Crystal oscillator and sensing device
JP2009206792A (en) * 2008-02-27 2009-09-10 Nippon Dempa Kogyo Co Ltd Piezoelectric oscillation circuit and sensor
JP2010249708A (en) * 2009-04-16 2010-11-04 Nippon Dempa Kogyo Co Ltd Sensing device
CN102111107A (en) * 2009-12-24 2011-06-29 日本电波工业株式会社 Piezoelectric oscillator
JP2011135342A (en) * 2009-12-24 2011-07-07 Nippon Dempa Kogyo Co Ltd Piezoelectric oscillator
US8242856B2 (en) 2009-12-24 2012-08-14 Nihon Dempa Kogyo Co., Ltd. Piezoelectric oscillator
JP2016144048A (en) * 2015-02-02 2016-08-08 富士通株式会社 Inspection method of quartz resonator
JP2016146551A (en) * 2015-02-06 2016-08-12 富士通株式会社 Quartz resonator
JP2017220905A (en) * 2016-06-10 2017-12-14 富士通株式会社 Crystal oscillator and characteristic measurement method for quartz vibrator

Similar Documents

Publication Publication Date Title
US11835843B2 (en) Piezoelectric resonant-based mechanical frequency combs
US7248128B2 (en) Reference oscillator frequency stabilization
US7378916B2 (en) Crystal oscillator device, oscillation method and heater
JP5015229B2 (en) Crystal oscillator
EP1762004A1 (en) Frequency synthesizer
JP2010050973A (en) Method, system and device for accurate and stable lc type reference oscillator
JPH02174407A (en) Temperature compensated frequency crystal oscillator
Mussi et al. A MEMS real-time clock with single-temperature calibration and deterministic jitter cancellation
JP4754580B2 (en) Phase synchronization circuit
KR20010020248A (en) Resonator having a selection circuit for selecting a resonance mode
JPH02170607A (en) Frequency temperature compensating crystal oscillator
JP2003204260A (en) Temperature compensated high frequency oscillator and communication equipment
JPS6355806B2 (en)
JP4805706B2 (en) Constant temperature crystal oscillator
Petit et al. Temperature compensated BAW resonator and its integrated thermistor for a 2.5 GHz electrical thermally compensated oscillator
JPH03252204A (en) Temperature compensated crystal oscillator
JP7410108B2 (en) Clock oscillator and how to create a clock oscillator
JPS63128816A (en) Pll circuit
US20240106393A1 (en) Method For Manufacturing Oscillator
JPH06308009A (en) Signal conversion circuit
JPH0296406A (en) Temperature compensation crystal oscillator
JPH06268442A (en) Temperature compensation type crystal oscillation circuit
Griffith Integrated BAW-Based Frequency References
JPH03229502A (en) Digital temperature compensation crystal oscillator
JPH08274541A (en) Temperature compensated oscillator