JPH0296406A - Temperature compensation crystal oscillator - Google Patents

Temperature compensation crystal oscillator

Info

Publication number
JPH0296406A
JPH0296406A JP24863188A JP24863188A JPH0296406A JP H0296406 A JPH0296406 A JP H0296406A JP 24863188 A JP24863188 A JP 24863188A JP 24863188 A JP24863188 A JP 24863188A JP H0296406 A JPH0296406 A JP H0296406A
Authority
JP
Japan
Prior art keywords
temperature
circuit
frequency
oscillation circuit
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24863188A
Other languages
Japanese (ja)
Inventor
Mitsuaki Koyama
光明 小山
Takashi Uchida
剛史 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP24863188A priority Critical patent/JPH0296406A/en
Publication of JPH0296406A publication Critical patent/JPH0296406A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To highly maintain the frequency stability by converting the oscillation frequency of one side oscillating circuit to the compensation voltage responding to the temperature and controlling the oscillation frequency of other side oscillating circuit by the compensation voltage. CONSTITUTION:A constant temperature bath 8 accommodates first and second oscillating circuits 1 and 7, a circuit 1 AT-cuts a crystal oscillator 2, and the temperature characteristic is made into a cubic curved line and the temperature slope from the minimum value is made into Appm/ deg.C. On the other hand, the circuit 7 makes a crystal oscillator 11 into a Y cut which is made into the linear curved line by the temperature characteristic. A frequency voltage converting circuit 9 converts the oscillation frequency of the circuit 7 to the compensation voltage and controls the capacity value of a variable capacity diode 10. The temperature characteristic of the circuit 7, since the temperature slope is steep, responds to the temperature in the bath 8 more sensitively than the circuit 1. Consequently, the micro frequency change due to the temperature change in the bath 8 of the circuit 1 is compensated and the oscillation frequency can be maintained to the high stability.

Description

【発明の詳細な説明】 (産業上の利用分胃) 本発明は、恒温槽を使用した温度?l[l償水晶発振v
:4(以下、温度?lfl in発振器とする)を利用
分野とし、待に恒温槽内の微少温度変化による周波数安
定度を良灯とした温度補償発振器に関する。
[Detailed Description of the Invention] (Industrial Utilization) The present invention uses a constant temperature bath. l [l compensated crystal oscillation v
:4 (hereinafter referred to as "temperature lfl in oscillator") is used as a field of application, and the present invention relates to a temperature-compensated oscillator that takes advantage of frequency stability due to minute temperature changes in a thermostatic oven.

(発明の背景) Li度補償発振蕾は水晶振動子に起因した周波数温度C
7性(以下、温度特性とする)を補償して安定な周波数
を供給することから、動的環境下等でのは!川が頻繁で
ある。特に高安定度の要求される場合:ζは、水晶発振
器を恒温槽内に収容してその動作温度を一定にする。
(Background of the invention) The Li degree compensated oscillation bud is caused by the frequency temperature C caused by the crystal resonator.
7 characteristics (hereinafter referred to as temperature characteristics) and provides a stable frequency, it is suitable for dynamic environments! Rivers are frequent. Especially when high stability is required: ζ houses the crystal oscillator in a constant temperature bath to keep its operating temperature constant.

(従来例) 第4図;よこの種の一従来例を説明する温度?l11償
発1a器の概略図である。
(Conventional example) Figure 4: Temperature to explain a conventional example of this kind? It is a schematic diagram of the l11 compensation 1a device.

発振回路1は水晶振動子2を発振子として例えば図示し
ないコルピッツ回路網を形成してなる。
The oscillation circuit 1 is formed by using a crystal resonator 2 as an oscillator to form, for example, a Colpitts network (not shown).

水晶rM!r’j子2は例えばATカットの厚みずべり
振動子からなる。このようなものでは、水晶振動子を1
因として、その温度特性を第5図に示したような常温付
近に変曲点をもつ三次曲線とする。
Crystal rM! The r'j element 2 is made of, for example, an AT-cut thickness shear vibrator. In this type of device, the crystal oscillator is
For this reason, the temperature characteristic is assumed to be a cubic curve with an inflection point near normal temperature as shown in FIG.

恒温槽3は例えば図示しない熱闘に熱fi514等が巻
回される。恒温槽内にはサーミスタ等の感温素子5が設
置される。そして、感湿素子5の検出する槽内温度にま
り、制御回路6が動作して槽内温度を一定にする。槽内
温度は周波数変化の最も少ない例えば温度特性の極小値
(約70℃付近)に設定される。したがって、このよう
なものでは温度特性の極小値付近での発振周波数を基準
周波数10とし、その周波数安定度を1 p p m以
内として高安定な周波数全供給する。
In the constant temperature bath 3, for example, a heat filter (not shown) such as a heat filter 514 is wound. A temperature sensing element 5 such as a thermistor is installed in the constant temperature bath. Then, the temperature inside the tank reaches the temperature detected by the humidity sensing element 5, and the control circuit 6 operates to keep the temperature inside the tank constant. The temperature inside the tank is set to the minimum value of the temperature characteristics (around 70° C.), where the frequency change is the least. Therefore, in such a device, the oscillation frequency near the minimum value of the temperature characteristic is set as the reference frequency 10, and the frequency stability is set to within 1 ppm to supply all highly stable frequencies.

(従来技術の欠点) しかしながら、上記Ji?成の温度?lll償発振器で
は例えば規格温度領域を一30〜70℃として広範囲に
補償する場合等は、°槽内温度を70℃に設定しても、
第6図に示した。Lうに現実的には恒温槽の製造上等の
点から11℃変化する。したがって、このような場合に
は、発振周波数は槽内温度に応答して1゜からΔfの変
化量をもってf、まで変化し、周波数安定度を高度に維
持することができないIIJ題があった。
(Disadvantages of the prior art) However, the above Ji? Temperature of formation? In the case of a compensation oscillator, for example, when the standard temperature range is -30 to 70℃ and compensation is performed over a wide range, even if the chamber temperature is set to 70℃,
It is shown in Figure 6. In reality, the temperature varies by 11°C due to manufacturing considerations for constant temperature baths. Therefore, in such a case, the oscillation frequency changes from 1° to f with a change amount of Δf in response to the temperature inside the tank, and there is a problem that a high degree of frequency stability cannot be maintained.

(発明の目的) 本発明は周波数安定度を高度に駿持した恒温槽使用の温
度?ln IFF Q Elσ盟を提供することを目的
とする、。
(Objective of the invention) The present invention uses a constant temperature bath that maintains high frequency stability. The purpose is to provide ln IFF Q Elσ Alliance.

(解決下段) 本発明は、周波数温度特性の温度勾配をA/℃p rI
 Inとした電圧制御型の第1発振回路とその温度勾配
を07℃((rI7、B〉八)と17た第2発振回路の
少なくともこれらの発振子なる水晶yd動子を恒温1t
”l内に収容し、第2発振回路の発振周波数を恒2!1
.l漕の槽内温度(ζ応答した?+11償電圧に変換し
、該補償電圧(こより第1光振回路の発振メ、〕波数を
制御したことを解決手段とする。以下、本発明の一従来
例を説明する。
(Lower part of the solution) The present invention calculates the temperature gradient of the frequency temperature characteristic by A/℃p rI
At least these oscillators of the voltage-controlled first oscillation circuit and the second oscillation circuit whose temperature gradient was 07°C ((rI7, B>8) and 17°C) were kept at a constant temperature of 1t.
"l", and the oscillation frequency of the second oscillation circuit is kept constant at 2!1.
.. The solution is to convert the temperature inside the tank (ζ) into a compensated voltage of +11 and control the wave number of the first optical oscillation circuit from this compensation voltage.Hereinafter, one of the aspects of the present invention A conventional example will be explained.

(実施例) ftS1図は本発明の一従来例を説明する411度?1
11償発振器の概略図である。なお、前従来例と同一部
分には同番号を付り17てその説明は簡略する。
(Example) The ftS1 diagram illustrates a conventional example of the present invention at 411 degrees? 1
11 is a schematic diagram of an eleventh compensation oscillator; FIG. Note that the same parts as in the previous conventional example are given the same numbers 17, and the explanation thereof will be simplified.

温度補償発振潴は、第1発振回路1と、第2発眼回路7
と、hi渇槽8と、周波数電圧(f・・V)変換回路9
とからなる。
The temperature compensated oscillation plate includes a first oscillation circuit 1 and a second eye development circuit 7.
, a high temperature tank 8, and a frequency voltage (f...V) conversion circuit 9
It consists of

第1冗振回:Ir11は前述fft様に水晶振動子(発
振子)2をATカットとし、その温度特性を三次曲線と
する(第2図の曲線イ)。そして、温度特性の極小値と
なる70℃(基準温度)での発振周波数を見窄周波c&
t oとする。なお、極小値からの温度勾配をΔへp 
p m / ”C(fllL絶対値)とする。
First redundant cycle: In Ir11, the crystal resonator (oscillator) 2 is AT-cut as in the fft described above, and its temperature characteristic is a cubic curve (curve A in FIG. 2). Then, the oscillation frequency at 70°C (reference temperature), which is the minimum value of the temperature characteristics, is
Let it be to. In addition, the temperature gradient from the minimum value to Δp
p m / ”C (absolute value of fllL).

そして、水晶振動子とアース電位との間に電圧可変′f
¥甲グイオード10を接続して電圧制御型とする。。
Then, a variable voltage 'f' is applied between the crystal oscillator and the ground potential.
Connect the ¥A guide wire 10 to make it a voltage control type. .

第2発振回路7は第1発振回路盲と!11様に図示1ノ
ないコルピ・ソツ回路網とする。そして、発振子となる
水晶振動子11を温度特性が一次曲線となるYカットと
し、その温度勾配をIS p p m / ℃((Il
l、n>A)とする(第2図曲線口)。
The second oscillation circuit 7 is blind to the first oscillation circuit! 11 is a Korpi-Sotsu network not shown in the figure. Then, the crystal resonator 11 serving as an oscillator is made into a Y-cut whose temperature characteristic is a linear curve, and its temperature gradient is IS p p m / °C ((Il
l, n>A) (Figure 2 curve opening).

hi澗槽8は第1と第2の光域回路1.7を収容し、感
温素子5を配設して制御回路6により槽内温度を70℃
に設定する。
The high temperature tank 8 accommodates the first and second light range circuits 1.7, is equipped with a temperature sensing element 5, and is controlled to control the temperature inside the tank by a control circuit 6 to 70°C.
Set to .

周波数電圧変換回路9は第2発振回路7の発振周波数を
?ln fft ftf圧V、に変換して電圧可変賽爪
ダイオード10のア、ノードに印加する。補償電圧V、
は第314に示した。1.うに第2発振回路7の基準温
度(70℃)時における発振周波数(基準周波数re)
を基準電圧V、とする。そして、恒温槽内の温度変化(
ζよる第2発振回路7の周波数変化に応答して、基準周
波数10から上界・下降した周波数変化量の絶対値に応
答し、基準温度時を中心として第1発振回路の温度特性
とは逆特性となる補償電圧特性とする。
The frequency-voltage conversion circuit 9 changes the oscillation frequency of the second oscillation circuit 7? ln fft ftf voltage V, and is applied to the a node of the voltage variable diode 10. Compensation voltage V,
is shown in No. 314. 1. Oscillation frequency (reference frequency re) of the second oscillation circuit 7 at the reference temperature (70°C)
Let be the reference voltage V. Then, the temperature change in the thermostatic chamber (
In response to the frequency change of the second oscillation circuit 7 caused by The compensation voltage characteristic is set as the characteristic.

この、1:うなものであれば、第2発振回路7の温度特
性はその温度勾配が急峻なので、第1発振回路1より槽
内温度に敏感に応答する(即ち、d、、1度変化の検出
精度が高い)。そして、第2発振回路7の発振周波数(
変化量の絶対値)に基づいたnnff1電圧v5はIi
■変容抵ダイオード1oの容取値を変化ずろ。j7たが
って、第1発振回路1の槽内温度変化による微少の周波
数変化を?lrl償して発振周波数を高安定度に維持す
る。
In this case, the temperature characteristic of the second oscillation circuit 7 has a steep temperature gradient, so it responds more sensitively to the bath temperature than the first oscillation circuit 1 (i.e., for a change of 1 degree, d). (high detection accuracy). Then, the oscillation frequency of the second oscillation circuit 7 (
The nnff1 voltage v5 based on the absolute value of the amount of change is Ii
■Change the capacitance value of the transformer resistance diode 1o. j7 Therefore, what is the slight frequency change due to the temperature change inside the tank of the first oscillation circuit 1? lrl compensation to maintain the oscillation frequency at high stability.

(他の事項) なお、」1記実施例では第1と第2の発振回路1.7を
恒温槽内に収容しtコが、例えば温度特性の主因となる
水晶振動子2.11のみを恒温槽内に収容j7たとして
もよく、要は発振回路の;り度特性を決定的にずろ部分
を恒温槽内に収容ずればよい。
(Other matters) Note that in the embodiment described in item 1, the first and second oscillation circuits 1.7 are housed in a constant temperature oven, and only the crystal oscillator 2.11, which is the main cause of temperature characteristics, is housed. The oscillation circuit may be housed in a thermostatic oven, and the key point is that the oscillation circuit's stiffness characteristic is determined by housing the deviated portion in the thermostatic oven.

まtこ恒温槽8は一つとしたが同一特性をもつものであ
れば第1と第2の発振回1f5 ’ s 7は4ス1別
に収容されても、1゛い。また、第1発振回路1は?W
S度tl f’i ’t:二次曲線としたA′rカット
、第2発振回路7は一次曲線のYカットの水晶振動子と
したが、実施例から明らかなように第2発振回路7の温
度特性が第1発振回路よりもり峻な温度特性(例えば他
の圧電体であっても)であればよいことは勿論である。
Although only one constant temperature bath 8 is used, if they have the same characteristics, even if the first and second oscillation circuits 1f5's7 are housed in four separate chambers, the number of chambers 8 will be one. Also, what about the first oscillation circuit 1? W
S degree tl f'i 't: The second oscillation circuit 7 is a quadratic curve A'r cut, and the second oscillation circuit 7 is a linear curve Y cut crystal oscillator. Of course, it is sufficient if the temperature characteristics of the piezoelectric material are steeper than those of the first oscillation circuit (for example, even if it is made of another piezoelectric material).

(発明の効果) 本発明は、周波数温度特性の温度勾配を47℃11 i
l mとした電圧制御型の第1発振回路とその温度勾配
をR/l(([11,、B〉八)とした第2発振回路の
少なくともこれらの発振子なる水晶振動子を恒温槽内に
収容j7、第2発振回路の発振周波数を恒温槽の槽内温
度に応答しtこ補償電圧に変換し、該補償電圧により第
1発振回路の発振周波数を制御したので、周波数安定度
を高度に維持した恒温槽便用のX+を度補償発振器を促
供できる。
(Effects of the Invention) The present invention reduces the temperature gradient of the frequency temperature characteristic to 47°C11 i
At least these oscillators, ie, crystal resonators, of a voltage-controlled first oscillation circuit whose temperature gradient is R/l (([11,,B〉8)] are placed in a thermostatic chamber. The oscillation frequency of the second oscillation circuit is converted into a compensation voltage in response to the temperature inside the thermostatic chamber, and the oscillation frequency of the first oscillation circuit is controlled by the compensation voltage, so the frequency stability can be improved to a high degree. It is possible to use a compensation oscillator for X+ for use in a constant temperature bath maintained at a constant temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する温度補償発[蕎の
概略図である。第2図は本発明の一実施例にある第1と
第2の発振回路の温度特性図である。、第3図は本発明
の一実施例にある補償電圧特性図である。 第4図は従来例を説明する温度補償発振器の概略図、第
5図、第【3図はけ発振回路の温度特性図である。 1.7 ・発振回路、2.11・・・水晶振動子、3.
8・恒温槽、4・・・熱線、5・・・感温素子、6・制
御回路、9・・・周波数電圧変換回路、10・・電圧可
変容置ゲイオ・−ド。 情3図 *2tx
FIG. 1 is a schematic diagram of a temperature-compensated generator illustrating an embodiment of the present invention. FIG. 2 is a temperature characteristic diagram of the first and second oscillation circuits in one embodiment of the present invention. , FIG. 3 is a compensation voltage characteristic diagram in one embodiment of the present invention. FIG. 4 is a schematic diagram of a temperature compensated oscillator to explain a conventional example, FIG. 5, and FIG. 3 are temperature characteristic diagrams of a brush oscillation circuit. 1.7 - Oscillation circuit, 2.11...Crystal resonator, 3.
8. Constant temperature chamber, 4. Heat wire, 5. Temperature sensing element, 6. Control circuit, 9. Frequency voltage conversion circuit, 10. Voltage variable container gayode. Information 3 diagram*2tx

Claims (2)

【特許請求の範囲】[Claims] (1)周波数濁度特性の温度勾配をA/℃ppmとした
電圧制御型の第1発振回路とその温度勾配をB/℃(但
し、B>A)とした第2発振回路とを恒温槽内に収容し
、第2発振回路の発振周波数を恒温槽の槽内温度に応答
した補償電圧に変換し、該補償電圧により第1発振回路
の発振周波数を制御したことを特徴とする温度補償水晶
発振器。
(1) A voltage-controlled first oscillation circuit with a temperature gradient of frequency turbidity characteristics of A/°C ppm and a second oscillation circuit with a temperature gradient of B/°C (however, B>A) are placed in a thermostatic chamber. A temperature-compensated crystal, characterized in that the oscillation frequency of the second oscillation circuit is converted into a compensation voltage responsive to the temperature inside the thermostatic oven, and the oscillation frequency of the first oscillation circuit is controlled by the compensation voltage. oscillator.
(2)周波数温度特性の温度勾配をA/℃ppmとした
電圧制御型の第1発振回路とその温度勾配をB/℃(但
し、B>A)とした第2発振回路の発振子となる水晶振
動子を恒温槽内に収容し、第2発振回路の発振周波数を
恒温槽の槽内温度に応答した補償電圧に変換して該補償
電圧により第1発振回路の発振周波数を制御したことを
特徴とする温度補償水晶発振器。
(2) Serves as an oscillator for a voltage-controlled first oscillation circuit with a temperature gradient of frequency-temperature characteristics of A/°C ppm and a second oscillation circuit with a temperature gradient of B/°C (however, B > A). The crystal resonator is housed in a thermostatic oven, the oscillation frequency of the second oscillation circuit is converted into a compensation voltage responsive to the temperature inside the thermostatic oven, and the oscillation frequency of the first oscillation circuit is controlled by the compensation voltage. Features a temperature compensated crystal oscillator.
JP24863188A 1988-09-30 1988-09-30 Temperature compensation crystal oscillator Pending JPH0296406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24863188A JPH0296406A (en) 1988-09-30 1988-09-30 Temperature compensation crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24863188A JPH0296406A (en) 1988-09-30 1988-09-30 Temperature compensation crystal oscillator

Publications (1)

Publication Number Publication Date
JPH0296406A true JPH0296406A (en) 1990-04-09

Family

ID=17180985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24863188A Pending JPH0296406A (en) 1988-09-30 1988-09-30 Temperature compensation crystal oscillator

Country Status (1)

Country Link
JP (1) JPH0296406A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647319A (en) * 1995-06-15 1997-07-15 Unisia Jecs Corporation Decompression braking apparatus for diesel engine
US5655499A (en) * 1995-06-15 1997-08-12 Unisia Jecs Corporation Decompression braking apparatus for diesel engine
US6032643A (en) * 1997-04-17 2000-03-07 Unisia Jecs Corporation Decompression engine brake device of automotive internal combustion engine
JP2011205166A (en) * 2010-03-24 2011-10-13 Seiko Epson Corp Constant-temperature piezoelectric oscillator and method of manufacturing the same
JP2020532929A (en) * 2017-09-05 2020-11-12 キョーセラ ティキティン オーユーKyocera Tikitin Oy Frequency Reference Oscillator Devices and How to Stabilize Frequency Reference Signals

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840155A (en) * 1981-09-03 1983-03-09 山本 惣一 Hulling apparatus
JPS6154283A (en) * 1984-08-21 1986-03-18 Kurita Water Ind Ltd Dephosphorizing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840155A (en) * 1981-09-03 1983-03-09 山本 惣一 Hulling apparatus
JPS6154283A (en) * 1984-08-21 1986-03-18 Kurita Water Ind Ltd Dephosphorizing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647319A (en) * 1995-06-15 1997-07-15 Unisia Jecs Corporation Decompression braking apparatus for diesel engine
US5655499A (en) * 1995-06-15 1997-08-12 Unisia Jecs Corporation Decompression braking apparatus for diesel engine
US6032643A (en) * 1997-04-17 2000-03-07 Unisia Jecs Corporation Decompression engine brake device of automotive internal combustion engine
JP2011205166A (en) * 2010-03-24 2011-10-13 Seiko Epson Corp Constant-temperature piezoelectric oscillator and method of manufacturing the same
US9007134B2 (en) 2010-03-24 2015-04-14 Seiko Epson Corporation Constant-temperature piezoelectric oscillator and method of manufacturing the same
JP2020532929A (en) * 2017-09-05 2020-11-12 キョーセラ ティキティン オーユーKyocera Tikitin Oy Frequency Reference Oscillator Devices and How to Stabilize Frequency Reference Signals

Similar Documents

Publication Publication Date Title
US5041800A (en) Lower power oscillator with heated resonator (S), with dual mode or other temperature sensing, possibly with an insulative support structure disposed between the resonator (S) and a resonator enclosure
JP5737834B2 (en) Method, system, and apparatus for accurate and stable LC-type reference oscillator
US8581671B2 (en) Oscillation device
JP2003218636A5 (en)
JP5205827B2 (en) Oscillation frequency control method and oscillator
JPH0296406A (en) Temperature compensation crystal oscillator
Taranchuk et al. The pressure transducer based on the dual-mode piezoresonant sensors with modulated interelectrode gap
KR920004825A (en) Measuring method of pressure using tuning fork crystal oscillator
KR910010849A (en) Overtone crystal oscillator
JPS6154283B2 (en)
JPH02174407A (en) Temperature compensated frequency crystal oscillator
JPS6038904A (en) Temperature compensation type frequency generator
Petit et al. Temperature compensated BAW resonator and its integrated thermistor for a 2.5 GHz electrical thermally compensated oscillator
Stein et al. A systems approach to high performance oscillators
JPH0870232A (en) Surface acoustic wave element and oscillat0r
WO2024057606A1 (en) Mechanical resonator-based oscillators and related methods for generation of a phase used to compensate for temperature-dependent frequency errors
Xue et al. Development and Research Progress of Crystal Oscillator
JPH06308009A (en) Signal conversion circuit
JP2975386B2 (en) Digital temperature compensated oscillator
Song VLSI Reference Circuits-Theory, Design, and Applications
JP2017073728A (en) Crystal oscillator
JPH08274541A (en) Temperature compensated oscillator
RU1788577C (en) Synchronization device with thermal compensation circuit
Satoh et al. Four‐segment oscillator circuit for piezoelectric sensing devices
Watanabe et al. Ultra-stable OCXO using dual-mode crystal oscillator