JPH02174096A - Rare gas discharge fluorescent lamp lighting method - Google Patents

Rare gas discharge fluorescent lamp lighting method

Info

Publication number
JPH02174096A
JPH02174096A JP33044188A JP33044188A JPH02174096A JP H02174096 A JPH02174096 A JP H02174096A JP 33044188 A JP33044188 A JP 33044188A JP 33044188 A JP33044188 A JP 33044188A JP H02174096 A JPH02174096 A JP H02174096A
Authority
JP
Japan
Prior art keywords
gas
lighting
lamp
pulse
rare gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33044188A
Other languages
Japanese (ja)
Other versions
JPH0812795B2 (en
Inventor
Takehiko Sakurai
毅彦 櫻井
Yoshinori Anzai
安西 良矩
Takeo Nishikatsu
西勝 健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63330441A priority Critical patent/JPH0812795B2/en
Priority to CA002006034A priority patent/CA2006034C/en
Priority to EP89123582A priority patent/EP0376149B1/en
Priority to DE68924406T priority patent/DE68924406T2/en
Priority to US07/453,828 priority patent/US5034661A/en
Priority to EP94115394A priority patent/EP0634781B1/en
Priority to DE68928650T priority patent/DE68928650T2/en
Publication of JPH02174096A publication Critical patent/JPH02174096A/en
Publication of JPH0812795B2 publication Critical patent/JPH0812795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02B20/183

Abstract

PURPOSE:To enable a high-luminance and high-efficiency lighting to be made by using argon as charging gas, giving the charging pressure of gas with its specific quantity, pulse impression time and an intermittent pulse impression time ratio respectively to a lamp, and intermittently lighting the lamp in such a condition like this. CONSTITUTION:A rare gas discharge fluorescent lamp has a phosphor screen formed almost all over the inner circumferential plane of its straight-shape cylindrical glass bulb 10 into which argon gas or krypton gas is charged and of which inside has a pair of electrodes 3a, 3b sealed at both-end portions. Also as the charged argon gas, a kind of gas having pressure ranging from 10Torr to 100Torr is used and then a pulsating voltage having the ration of its impression time to one cycle, being within 5 percent and 80 percent, and also having the impression time below 150 microseconds is impressed between both the electrodes 3a, 3b for making it possible to light the rare gas discharge fluorescent lamp. The pulsating voltage impression thus increases the probability of exciting the molecule of the charged gas, and then the lighting efficiency of the lamp becomes larger.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ファクシミリ、複写機、イメージリーダな
ど情報機器に用いられる希ガス放電蛍光ランプの点灯方
式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lighting system for rare gas discharge fluorescent lamps used in information equipment such as facsimiles, copying machines, and image readers.

〔従来の技術〕[Conventional technology]

近年、情報化社会の進展とともに、ファクシミリや複写
機、イメージリーダなどの情報端末機器は高性能化し、
その市場は急激に拡大している。
In recent years, with the advancement of the information society, information terminal equipment such as facsimiles, copiers, and image readers have become more sophisticated.
That market is rapidly expanding.

この高性能化する情報a器を開発する上で、そこに使用
される光源ユニットはキーデバイスとして高性能なもの
が求められている。従来、この光源ユニットに使用され
るランプとしてハロゲンランプと蛍光ランプが多く用い
られてきた。しかし。
In developing this highly sophisticated information device, the light source unit used therein is required to have high performance as a key device. Conventionally, halogen lamps and fluorescent lamps have often been used as lamps for this light source unit. but.

ハロゲンランプはその効率の悪さから近年は効率のよい
蛍光ランプが主に用いられるようになっている。
Due to the low efficiency of halogen lamps, more efficient fluorescent lamps have been mainly used in recent years.

しかしながら、蛍光ランプは効率が高い反面水銀蒸気の
放電を発光に利用しているため光出力などの特性が温度
によって変化する問題があシ、そのため使用温度範囲を
制限したυ、あるいはランプ管壁にヒーターを付は温度
制御するなどして使用していた。しかし、使用場所の多
様化9機器の高性能化から特性の安定した蛍光ランプの
開発が強く望まれるようになった。このような背景から
情報機器用光源として温度特性変化のない希ガス放電に
よる発光全利用した希ガス放電蛍光ランプの開発がなさ
れている。
However, although fluorescent lamps have high efficiency, they use discharge of mercury vapor for light emission, so there is a problem that characteristics such as light output change depending on temperature. A heater was used to control the temperature. However, due to the diversification of usage locations and the increasing performance of 9 equipment, there has been a strong desire to develop fluorescent lamps with stable characteristics. Against this background, rare gas discharge fluorescent lamps have been developed as light sources for information equipment, which make full use of the light emitted by rare gas discharge, which does not change in temperature characteristics.

第12図、第13図は例えば特開昭63−58752号
公報に示された従来の希ガス放電蛍光ランプ装置を示す
ものでちゃ、第12図は希ガス放電蛍光ランプの横断面
と装置の全体構成を示す構成図。
Figures 12 and 13 show a conventional rare gas discharge fluorescent lamp device disclosed, for example, in JP-A-63-58752. Figure 12 shows a cross section of the rare gas discharge fluorescent lamp and the device. A configuration diagram showing the overall configuration.

第13図はランプの縦断面図である。図においてil+
は細長い中空棒状をなすバルブであシ2石英または硬質
あるいは軟質ガラスによ)形成されている。このバルブ
(1)の内面には蛍光体被膜(2)が形成されており、
かつバルブ(1)内にはキセノン、クリプトン、アルゴ
ン、ネオン、ヘリウム等の少なくとも1種からなる希ガ
スが封入されている。上記バルブill内には両端部に
位置して互いに極性が異なる一対の内部電極(3a)、
(3b)が設けられている。これら内部電極(3a) 
、(+b)は、バルブ(1)の端部壁を気密に貫通され
たリード線(4)に接続されている。またバルブ(11
の側壁外面には軸方向に沼って帯状の外部電極(5)が
設けられている。
FIG. 13 is a longitudinal sectional view of the lamp. In the figure, il+
The bulb is in the shape of an elongated hollow rod and is made of quartz, hard or soft glass. A phosphor coating (2) is formed on the inner surface of this bulb (1),
The valve (1) is filled with a rare gas consisting of at least one of xenon, krypton, argon, neon, helium, and the like. Inside the bulb ill is a pair of internal electrodes (3a) located at both ends and having mutually different polarities;
(3b) is provided. These internal electrodes (3a)
, (+b) are connected to a lead wire (4) which passes through the end wall of the valve (1) in an airtight manner. Also, the valve (11
A band-shaped external electrode (5) is provided on the outer surface of the side wall of the electrode 5 in the axial direction.

上記内部電極(3a)、(3b)は、リード線(4)を
介して高周波電力発生装置としての高周波インバータ(
8)に接続され、この高周波インバータ(8)は直流電
源(9)に接続されている。そして、外部電極(5)は
一方の内部電極(3a)と同極性となるようにして高周
波インバータ(8)に接続されている。
The internal electrodes (3a) and (3b) are connected to a high-frequency inverter (as a high-frequency power generator) via lead wires (4).
8), and this high frequency inverter (8) is connected to a DC power source (9). The external electrode (5) is connected to the high frequency inverter (8) so as to have the same polarity as one of the internal electrodes (3a).

次に動作について説明する。このような構成の希ガス放
電蛍光ランプ装置においては、高周波インバータ(8)
を通じて内部電極(5a)、(3b)間に高周波電力を
印加すると、これら内部電極(3a)。
Next, the operation will be explained. In a rare gas discharge fluorescent lamp device having such a configuration, a high frequency inverter (8)
When high frequency power is applied between the internal electrodes (5a) and (3b) through these internal electrodes (3a).

(3b)間でグロー放電が発生する。このグロー放電は
バルブ+11内の希ガスを励起し、希ガス特有の紫外線
を発する。この紫外線はバルブ(1)内面に形成した蛍
光体被膜(2)を励起し、ここから可視光線が発され、
バルブil+の外部に放出される。
(3b) Glow discharge occurs between. This glow discharge excites the rare gas in the bulb +11, and emits ultraviolet rays peculiar to rare gas. This ultraviolet light excites the phosphor coating (2) formed on the inner surface of the bulb (1), from which visible light is emitted.
It is released outside the valve il+.

また、他の希ガス放電蛍光ランプの例として特開昭63
−248050号公報に示されたものがある。
In addition, as an example of other rare gas discharge fluorescent lamps, JP-A-63
There is one shown in Japanese Patent No.-248050.

このランプは冷陰極希ガス放電ランプの始動電圧が高い
欠点を改良するために2例えば特公昭63−29931
号公報などに示されている熱陰極電極を用いたものであ
る。この希ガス放電蛍光ランプは電力負荷を増大できる
ため出力を増すことができる。しかし、水銀蒸気による
蛍光ランプに比較してかなり低い効率と光出力しか得る
ことができない。
This lamp was developed in order to improve the high starting voltage of cold cathode rare gas discharge lamps.
This uses the hot cathode electrode shown in the publication. This rare gas discharge fluorescent lamp can increase the power load, so the output can be increased. However, compared to mercury vapor fluorescent lamps, significantly lower efficiency and light output can be achieved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように、従来の希ガス放電蛍光ランプは。 As mentioned above, conventional rare gas discharge fluorescent lamps.

希ガス放電によυ発生する紫外線によって蛍光体を発光
させるので、水銀蒸気の蛍光ランプと比べて十分な輝度
、効率を得ることができなかった。
Since the phosphor is made to emit light by ultraviolet rays generated by rare gas discharge, it was not possible to obtain sufficient brightness and efficiency compared to mercury vapor fluorescent lamps.

この発明は上記のような問題点を解消するためになされ
たもので、希ガス放電蛍光ランプをより高輝度、高効率
に点灯するランプ点灯方式を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a lamp lighting method for lighting a rare gas discharge fluorescent lamp with higher brightness and higher efficiency.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明に係る希ガス放電蛍光ランプ点灯方式は、内面
に蛍光体層が形成され9両端に一対の電極を有するガラ
スバルブ内に10 Torr以上100Torr以下の
アルゴンガスを封入して希ガス放電蛍光ランプを構成す
るとともに、−周期に対する通電時間の割合が5%以上
80チ以下1通電時間150μsec以下のパルス状電
圧を上記両電他間に印加して上記希ガス放電蛍光ランプ
を点灯するようにしたものである。
The rare gas discharge fluorescent lamp lighting method according to the present invention is a rare gas discharge fluorescent lamp in which argon gas of 10 Torr or more and 100 Torr or less is sealed in a glass bulb having a phosphor layer formed on the inner surface and a pair of electrodes at both ends. The rare gas discharge fluorescent lamp is lighted by applying a pulsed voltage between the two electric currents and the other electrodes, the ratio of the energization time to the cycle being 5% or more and 80 cm or less and one energization time of 150 μsec or less. It is something.

また、上記ガラスバルブ内に封入するガスを。Also, the gas sealed inside the glass bulb.

上記アルゴンに代えてクリプトンとするとともに。In addition to replacing the above argon with krypton.

上記パルス状印加電圧における一周期中の通電時間の割
合を5%以上70%以下として希ガス放電蛍光ランプを
点灯するようにしたものである。
The rare gas discharge fluorescent lamp is lit by setting the ratio of the energization time in one cycle of the pulsed applied voltage to 5% or more and 70% or less.

〔作用〕[Effect]

この発明においては2間欠点灯に適するようにガラスバ
ルブ内にアルゴンガスまたはクリプトンガスf I Q
 Torr以上100 Torr以下の圧力で封入し、
かつ−周期に対する通電時間の割合が、アルゴンガスの
場合は80%以下、クリプトンガスの場合は10%以下
で通電時間150μsec以下のパルス状電圧を印加し
て点灯するようにしたので。
In this invention, argon gas or krypton gas f
Enclosed at a pressure of Torr or more and 100 Torr or less,
And - the ratio of the current application time to the period is 80% or less in the case of argon gas, and 10% or less in the case of krypton gas, and the lighting is performed by applying a pulsed voltage with a current application time of 150 μsec or less.

このパルス状電圧の印加により2発光に寄与する封入ガ
スの共鳴紫外線を多く発するようなエネルギー準位で封
入ガスの分子が励起される確率が増大し、ランプの光出
力、効率が大きくなるとともに、−周期中の通電時間の
割合f:5%以上としたので、パルス状電圧の印加によ
る電極の損耗が抑制される。
By applying this pulsed voltage, the probability that the molecules of the filled gas will be excited at an energy level that will emit a large amount of resonance ultraviolet rays of the filled gas that contributes to light emission increases, and the light output and efficiency of the lamp increase. - Since the ratio f of the energization time during the cycle is set to 5% or more, wear and tear on the electrodes due to the application of pulsed voltage is suppressed.

〔発明の実施例〕[Embodiments of the invention]

以下この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は1本発明の一実施例の全体構成図である。Hは
希ガス放電蛍光ランプで、直径15.5 alll 。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention. H is a rare gas discharge fluorescent lamp with a diameter of 15.5 all.

長さ300 mの直状円筒状のガラス製のバルブの内周
面のはゾ全面に蛍光体膜が形成されておシ、バルブ内に
はアルゴンガスまたはクリプトンガスが封入されている
。バルブQ1内の両端部には一対の電極(3a) 、(
3b)が封止されている。バルブ外壁には始動補助導体
として幅3關のアルミニウム板がランプ全長にわたって
接着されている。(Iυは直流電源であり、希ガス蛍光
ランプの電極(3a)。
A phosphor film is formed on the entire inner peripheral surface of a straight cylindrical glass bulb with a length of 300 m, and argon gas or krypton gas is sealed inside the bulb. A pair of electrodes (3a), (
3b) is sealed. An aluminum plate three widths wide is glued to the outer wall of the bulb as a starting auxiliary conductor along the entire length of the lamp. (Iυ is a DC power supply and is the electrode (3a) of a rare gas fluorescent lamp.

(3b)に接続され、直流電圧を供給する。O2はFE
Tなどのスイッチング素子でちり、希ガス蛍光ランプに
並列に接続され、ランプにかかる直流電圧をオン/オフ
する働きをもつ。0はパルス信号源であシ、スイッチン
グ素子Q3はこのパルス信号源0階の発するパルスの周
期、パルス幅でスイッチングを行い、希ガス放電蛍光ラ
ンプaωへの印加電圧を直流矩形波パルスにする働きを
もち、このパルス電圧によりランプが間欠点灯される。
(3b) and supplies DC voltage. O2 is FE
A switching element such as T is connected in parallel to a rare gas fluorescent lamp and has the function of turning on/off the DC voltage applied to the lamp. 0 is a pulse signal source, and the switching element Q3 performs switching according to the period and pulse width of the pulse emitted by the 0th pulse signal source, and converts the voltage applied to the rare gas discharge fluorescent lamp aω into a DC square wave pulse. This pulse voltage causes the lamp to be lit intermittently.

Hは抵抗で、を光制限素子である。H is a resistor and is a light limiting element.

次に、上記した希ガス放電蛍光ランプ装置において、ガ
ラスバルブα1内にアルゴンガス全封入した場合につい
て、ランプの間欠点灯におけるランプ内のアルゴンガス
封入圧力、−周期中の通電時間の割合(以下間欠比とい
う〕9通電時間等を変えて輝度、効率を測定する実験を
行った。
Next, in the rare gas discharge fluorescent lamp device described above, when the glass bulb α1 is completely filled with argon gas, the argon gas filling pressure inside the lamp during intermittent lighting of the lamp, - the ratio of the energization time during the cycle (hereinafter referred to as intermittent An experiment was conducted to measure the brightness and efficiency by changing the current application time, etc.

第2図は封入ガス圧力と、ランプ効率の関係を示してい
る。なお、ランプ効率は輝度を電力で割った値から求め
られる。第2図中、(イ)は間欠比60%の矩形波直流
パルス点灯の場合、(ロ)は通常の高周波交流点灯(正
弦波)の場合を示し、ともに周波数20 kHz 、同
一電力での値である。10Torr以下の封入圧に於て
はパルス点灯も、交流点灯も効率に大差はないが、 1
0 Torr以上ではパルス点灯時の効率が交流点灯時
の効率を上回ることがわかる。また、第3図は封入ガス
圧力と始動電圧の関係を示し、この図からガス封入圧力
が高くなると、始動に非常に高い電圧が必要となること
がわかる。特にガス封入圧力が100 Torr以上で
は始動電圧の上昇が顕著であるので、封入ガス圧力は1
00 Torr以下であることが望ましい。
FIG. 2 shows the relationship between filler gas pressure and lamp efficiency. Note that the lamp efficiency is determined by dividing the luminance by the electric power. In Figure 2, (a) shows the case of square wave DC pulse lighting with an intermittent ratio of 60%, and (b) shows the case of normal high frequency AC lighting (sine wave), both values at a frequency of 20 kHz and the same power. It is. At a sealing pressure of 10 Torr or less, there is not much difference in efficiency between pulse lighting and AC lighting, but 1
It can be seen that above 0 Torr, the efficiency during pulse lighting exceeds the efficiency during AC lighting. Further, FIG. 3 shows the relationship between the charged gas pressure and the starting voltage, and it can be seen from this figure that as the gas filled pressure increases, a very high voltage is required for starting. Especially when the gas filling pressure is 100 Torr or higher, the starting voltage increases significantly, so the filling gas pressure is 100 Torr or more.
00 Torr or less is desirable.

従って第2図、第3図よシ高周波点灯よシ効率がよく、
また始動電圧において実用性のあるパルス点灯を行うた
めに最適なガス封入圧力は10 Torr以上、 10
0 Torr以下である。
Therefore, Figures 2 and 3 are more efficient than high-frequency lighting.
In addition, the optimal gas filling pressure for practical pulse lighting at the starting voltage is 10 Torr or more, 10 Torr or more.
It is below 0 Torr.

また、直径81uIから15.5 yuar ’を長さ
30011a(7)ランプをアルゴンガス封入圧力30
 Torrで数多く製作し、直流パルス点灯条件を種々
変化させてランプの特性を測定した。第4図、第5図に
その結果を示す。
In addition, the diameter is 81 uI to 15.5 yuar', the length is 30011a (7), and the lamp is filled with argon gas and the pressure is 30
A large number of lamps were manufactured using Torr, and the characteristics of the lamps were measured by varying the DC pulse lighting conditions. The results are shown in FIGS. 4 and 5.

第4図は直流パルスの1周期中の通電時間とランプ効率
の関係をあられしたものであシ、非通電時間ヲ100μ
5eC一定とした場合を示している。この図からパルス
通電時間が短いほど効率がよく。
Figure 4 shows the relationship between the energizing time during one cycle of a DC pulse and the lamp efficiency.
The case where 5eC is constant is shown. From this figure, the shorter the pulse energization time, the better the efficiency.

特に150μ8eC以下ではその効果が特に顕著である
ことがわかる。
It can be seen that the effect is particularly remarkable below 150 μ8 eC.

第5図は20 kHzと80 kH2のパルス点灯時の
ランプ効率とパルス間欠比の関係を示す(e勺に))。
FIG. 5 shows the relationship between the lamp efficiency and the pulse intermittency ratio during pulse lighting at 20 kHz and 80 kHz.

また、比較値として1通常用いられる2 0 kHzと
90 kHzの高周波交流点灯(正弦波)時の効率値も
示しである((ホ)(へ))。第5図よシ、パルスの間
欠比を小さくすることによシ直流点灯(間欠比100%
)時より大幅に効率が上昇し、また、同一周波数の交流
点灯時と比較した場合でも、パルス間欠比を80%以下
とすれば効率が大幅に上進ることがわかる。
Also shown are efficiency values during high frequency alternating current lighting (sine wave) of 20 kHz and 90 kHz, which are commonly used as comparison values ((e)(e)). As shown in Figure 5, DC lighting is achieved by reducing the pulse intermittency ratio (intermittent ratio 100%).
), and even when compared with AC lighting at the same frequency, it can be seen that if the pulse intermittency ratio is set to 80% or less, the efficiency increases significantly.

さらに、直径811mから15.5 was 、アルゴ
ンガス封入圧力をl Q Torrから200 Tor
rとしたランプを数多く製作し、このランプをランプ電
力を一定としてパルス間欠比を変化させて寿命試験を実
施した。結果を第6図に示す。ここで相対寿命とは。
Furthermore, the diameter was 811 m to 15.5 was, and the argon gas filling pressure was changed from lQ Torr to 200 Torr.
A large number of lamps with a temperature of r were manufactured, and a life test was conducted on the lamps by changing the pulse intermittency ratio while keeping the lamp power constant. The results are shown in Figure 6. What is relative lifespan here?

所定の間欠比(例えば40%〕で点灯した場合の平均寿
命時間に対する各間欠比で点灯した場合の平均寿命時間
の比である。パルス間欠比と相対寿命との関係は、第6
図からパルス間欠比を小さくしていくとパルス間欠比5
%までは相対寿命は若干低下傾向を示し、5%以下の小
さい間欠比では急激に寿命が低下することがわかる。5
%以下ではランプのパルスピーク電流が大きくなるため
電極の損耗が急激に進むものと推定される。したがって
、パルスの間欠比は寿命を考えると5%以上が望ましい
It is the ratio of the average life time when lighting is performed at each intermittency ratio to the average life time when lighting is performed at a predetermined intermittency ratio (for example, 40%).The relationship between the pulse intermittency ratio and the relative life is
As shown in the figure, as the pulse intermittency ratio is decreased, the pulse intermittency ratio becomes 5.
%, the relative life shows a slight tendency to decrease, and at a small intermittent ratio of 5% or less, the life rapidly decreases. 5
% or less, it is estimated that the pulse peak current of the lamp becomes large and the wear of the electrodes rapidly progresses. Therefore, the pulse intermittency ratio is desirably 5% or more in consideration of life.

また9以上に示したものとは別の発明として。Also, as an invention different from those shown in 9 and above.

ガラスバルブα1内にクリプトンガスを封入する場合の
実施例を以下に示す。なお、この場合の全体構成図は第
1図に示したものと同様である。
An example in which krypton gas is sealed in the glass bulb α1 will be shown below. Note that the overall configuration diagram in this case is the same as that shown in FIG.

第7図にクリプトンガスの封入圧力とランプ効率の関係
を示す。第7図中、(イ)は間欠比60%の矩形波直流
パルス点灯の場合、(ロ)は通常の高周波交流点灯(正
弦波)の場合を示し、ともに周波数20 kHz 、同
一電力での値である。10 Torr以下の封入圧に於
てはパルス点灯も、交流点灯も効率に大差はないが+ 
10 Torr以上ではパルス点灯時の効率が交流点灯
時の効率を上回ることがわかる。
FIG. 7 shows the relationship between the krypton gas sealing pressure and lamp efficiency. In Figure 7, (a) shows the case of square wave DC pulse lighting with an intermittent ratio of 60%, and (b) shows the case of normal high frequency AC lighting (sine wave), both values at a frequency of 20 kHz and the same power. It is. At a sealing pressure of 10 Torr or less, there is not much difference in efficiency between pulse lighting and AC lighting, but +
It can be seen that at temperatures above 10 Torr, the efficiency during pulse lighting exceeds the efficiency during AC lighting.

また、第8図に封入ガス圧力と始動電圧の関係を示し、
この第8図から、クリプトンガスの封入圧力が高くなる
と始動に非常に高い電圧が必要となることがわかる。特
にガス封入圧力が100Torr以上では始動電圧の上
昇が顕著であるので、封入ガス圧力は100 Torr
以下であることが望ましい。
In addition, Fig. 8 shows the relationship between the filled gas pressure and the starting voltage.
From FIG. 8, it can be seen that as the pressure of krypton gas increases, a very high voltage is required for starting. Especially when the gas filling pressure is 100 Torr or more, the starting voltage increases significantly, so the filling gas pressure should be 100 Torr or more.
The following is desirable.

従って、第T図、第8図よシ高周波点灯より効率がよく
、また始動電圧において実用性のあるパルス点灯を行う
ために最適なガス封入圧力は10Torr以上、 10
0Torr以下である。
Therefore, as shown in Figures T and 8, the optimal gas filling pressure is 10 Torr or more in order to perform pulse lighting, which is more efficient than high-frequency lighting and practical at a starting voltage of 10 Torr.
It is 0 Torr or less.

また、直径8wsから15.5M、長さ300−のラン
プ全クリフ゛トンガス封入圧力30 Torrで数多く
製作し、直流パルス点灯条件を種々変化させてランプの
特性を測定した。第9図、第10図にその結果を示す。
In addition, a large number of lamps with a diameter of 8 ws to 15.5 m and a length of 300 mm were manufactured with a total carbon gas filling pressure of 30 Torr, and the characteristics of the lamps were measured by varying the DC pulse lighting conditions. The results are shown in FIGS. 9 and 10.

第9図は直流パルスの1周期中の通電時間とランプ効率
の関係をあられしたものであシ、非通電時間t−100
μ5ec一定とした場合を示している。
Figure 9 shows the relationship between the energization time and lamp efficiency during one cycle of a DC pulse, and the non-energization time t-100.
The case where μ5ec is constant is shown.

この図からパルス通電時間が短いほど効率がよく。From this figure, the shorter the pulse energization time, the better the efficiency.

特に150μsec以下ではその効果が特に顕著である
ことがわかる。
It can be seen that the effect is particularly remarkable at 150 μsec or less.

第10図は20 kH2と80 kHzのパルス点灯時
のランプ効率とパルス間欠比の関係を示す(e9に))
Figure 10 shows the relationship between lamp efficiency and pulse intermittency ratio during pulse lighting at 20 kHz and 80 kHz (see e9).
.

また、比較値として9通常用いられる2 0 kHzと
80kHzの高周波交流点灯(正弦波)時の効率値も示
しである((ホ)(へ)〕。第10図よシ、パルスの間
欠比を小さくすることによシ直流点灯(間欠比100%
)時よシ大幅に効率が上昇し、また、同一周波数の交流
点灯時と比較した場合でも、パルス間欠比i70%以下
とすれば効率が大幅に上進ることがわかる。
In addition, as comparison values, the efficiency values when high-frequency AC lighting (sine wave) of 20 kHz and 80 kHz, which are commonly used, are also shown ((e)(e)). Figure 10 shows the pulse intermittent ratio. By making it smaller, DC lighting (intermittent ratio 100%)
) The efficiency increases significantly over time, and even when compared with AC lighting at the same frequency, it can be seen that the efficiency increases significantly when the pulse intermittent ratio i is set to 70% or less.

さらに、直径8騙から15.5M、クリリカ゛トンガス
封入圧力を10 Torrから200 Torrとした
ランプを数多く製作し、このランプをランプ電力を一定
としてパルス間欠比を変化させて寿命試験を実施した。
Furthermore, a number of lamps with diameters ranging from 8mm to 15.5M and chlorine gas filling pressures ranging from 10 Torr to 200 Torr were manufactured, and life tests were conducted on these lamps by varying the pulse intermittency ratio while keeping the lamp power constant.

結果を第11図に示し、この第11図から、パルス間欠
比を小さくしていくと、パルス間欠比5チまでは相対寿
命は若干低下傾向を示し。
The results are shown in FIG. 11. From FIG. 11, as the pulse intermittency ratio is decreased, the relative life tends to decrease slightly up to a pulse intermittency ratio of 5.

5%以下の小さい間欠比では急激に寿命が低下すること
がわかる。5%以下ではランプのパルスピーク電流が大
きくなるため電極の損耗が急激に進むものと推定される
。したがって、パルスの間欠比は寿命を考えると5%以
上が望ましい。
It can be seen that at a small intermittent ratio of 5% or less, the life span decreases rapidly. It is estimated that if it is less than 5%, the pulse peak current of the lamp becomes large and the wear of the electrodes rapidly progresses. Therefore, the pulse intermittency ratio is desirably 5% or more in consideration of life.

なお、上記実施例ではいずれも、パルス的な間欠点灯の
例として直流パルス点灯の例を示したが。
In each of the above embodiments, an example of direct current pulse lighting is shown as an example of pulsed intermittent lighting.

間欠点灯として交流パルスの間欠点灯でも同一の効果を
示すことが上記各実施例の実験から確認された。
It has been confirmed from the experiments of the above-mentioned Examples that the same effect can be obtained by intermittent lighting using alternating current pulses as the intermittent lighting.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、封入ガスをアルゴン
とし、その封入圧力を10 Torr以上。
As described above, according to the present invention, the sealed gas is argon, and the sealed pressure is 10 Torr or more.

jQQ Torr以下とし、パルスの通電時間全150
μsec以下9間欠比を5−以上、80%以下という条
件でランプを間欠点灯をさせる点灯方式としたため、従
来の直流点灯や通常の高周波交流点灯と比較して寿命を
短くすることなく、高輝度、高効率の希ガス放電蛍光ラ
ンプが得られるという効果がある。
jQQ Torr or less, total pulse energization time 150
The lighting method allows the lamp to be lit intermittently under the conditions that the intermittent ratio of less than 9 μsec is 5- or more and less than 80%, so it can achieve high brightness without shortening the life compared to conventional DC lighting or normal high-frequency AC lighting. This has the effect of providing a highly efficient rare gas discharge fluorescent lamp.

また別の発明によれば、封入ガスをクリプトンガスとす
るとともに2間欠比を5チ以上70%以下とすることに
よシ同様の効果がある。
According to another invention, the same effect can be obtained by using krypton gas as the filler gas and setting the intermittent ratio to 5% or more and 70% or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す希ガス放電蛍光ラン
プ装置の全体構成図、第2図はその装置におけるアルゴ
ンガス封入圧力によるランプ効率特性図、第3図はアル
ゴンガス封入圧力による始動電圧特性図、第4図はパル
ス通電時間によるランプ効率特性図、第5図は、パルス
間欠比によるランプ効率特性図、第6図は、パルス間欠
比による寿命特性図、第7図は別の発明の一実施例にお
けるクリプトンガス封入圧力によるランプ効率特性図、
第8図はそのクリプトンガス封入圧力による始動電圧特
性図、第9図はその装置のパルス通電時間によるランプ
効率特性図、第10図はその装置のパルス間欠比による
ランプ効率特性図、第11図はその装置のパルス間欠比
による寿命特性図、第12図は従来の希ガス放電蛍光ラ
ンプ装置の全体構成図、第13図はそのランプの縦断面
図である。 図において、 (3a)、(+b)は電極、Hはガラス
バルブ、aυは直流電源、α2はスイッチング素子。 (13はパルス信号源である。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is an overall configuration diagram of a rare gas discharge fluorescent lamp device showing an embodiment of the present invention, Fig. 2 is a lamp efficiency characteristic diagram depending on the argon gas filling pressure in the device, and Fig. 3 is a startup diagram based on the argon gas filling pressure. Voltage characteristic diagram, Figure 4 is a lamp efficiency characteristic diagram according to pulse energization time, Figure 5 is a lamp efficiency characteristic diagram according to pulse intermittency ratio, Figure 6 is a life characteristic diagram according to pulse intermittency ratio, and Figure 7 is another diagram. Lamp efficiency characteristic diagram according to krypton gas filling pressure in an embodiment of the invention,
Fig. 8 is a starting voltage characteristic diagram depending on the krypton gas filling pressure, Fig. 9 is a lamp efficiency characteristic diagram depending on the pulse energization time of the device, Fig. 10 is a lamp efficiency characteristic diagram depending on the pulse intermittency ratio of the device, and Fig. 11 12 is a diagram showing the lifetime characteristics of the device according to the pulse intermittency ratio, FIG. 12 is an overall configuration diagram of a conventional rare gas discharge fluorescent lamp device, and FIG. 13 is a longitudinal sectional view of the lamp. In the figure, (3a) and (+b) are electrodes, H is a glass bulb, aυ is a DC power supply, and α2 is a switching element. (13 is a pulse signal source. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)内面に蛍光体層が形成され、両端に一対の電極を
有するガラスバルブ内に10Torr以上100Tor
r以下のアルゴンガスを封入して希ガス放電蛍光ランプ
を構成するとともに、一周期に対する通電時間の割合が
5%以上 80%以下、通電時間150μsec以下のパルス状電
圧を上記両電極間に印加して上記希ガス放電蛍光ランプ
を点灯することを特徴とする希ガス放電蛍光ランプ点灯
方式。
(1) A glass bulb with a phosphor layer formed on the inner surface and a pair of electrodes at both ends has a temperature of 10 Torr or more and 100 Torr.
A rare gas discharge fluorescent lamp is constructed by filling argon gas with an amount of less than A method for lighting a rare gas discharge fluorescent lamp, characterized in that the rare gas discharge fluorescent lamp is turned on by
(2)内面に蛍光体層が形成され、両端に一対の電極を
有するガラスバルブ内に10Torr以上100Tor
r以下のクリプトンガスを封入して希ガス放電蛍光ラン
プを構成するとともに、一周期に対する通電時間の割合
が5%以上 70%以下、通電時間150μsec以下のパルス状電
圧を上記両電極間に印加して上記希ガス放電蛍光ランプ
を点灯することを特徴とする希ガス放電蛍光ランプ点灯
方式。
(2) A glass bulb with a phosphor layer formed on the inner surface and a pair of electrodes at both ends has a temperature of 10 Torr or more and 100 Torr.
A rare gas discharge fluorescent lamp is constructed by enclosing krypton gas with an amount of less than A method for lighting a rare gas discharge fluorescent lamp, characterized in that the rare gas discharge fluorescent lamp is turned on by
JP63330441A 1988-12-27 1988-12-27 Lighting method of rare gas discharge fluorescent lamp Expired - Lifetime JPH0812795B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63330441A JPH0812795B2 (en) 1988-12-27 1988-12-27 Lighting method of rare gas discharge fluorescent lamp
CA002006034A CA2006034C (en) 1988-12-27 1989-12-19 Rare gas discharge fluorescent lamp device
EP89123582A EP0376149B1 (en) 1988-12-27 1989-12-20 Rare gas discharge fluorescent lamp device
DE68924406T DE68924406T2 (en) 1988-12-27 1989-12-20 Fluorescent discharge lamp with noble gas.
US07/453,828 US5034661A (en) 1988-12-27 1989-12-20 Rare gas discharge fluorescent lamp device
EP94115394A EP0634781B1 (en) 1988-12-27 1989-12-20 Rare gas discharge fluorescent lamp device
DE68928650T DE68928650T2 (en) 1988-12-27 1989-12-20 Noble gas fluorescent discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63330441A JPH0812795B2 (en) 1988-12-27 1988-12-27 Lighting method of rare gas discharge fluorescent lamp

Publications (2)

Publication Number Publication Date
JPH02174096A true JPH02174096A (en) 1990-07-05
JPH0812795B2 JPH0812795B2 (en) 1996-02-07

Family

ID=18232653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63330441A Expired - Lifetime JPH0812795B2 (en) 1988-12-27 1988-12-27 Lighting method of rare gas discharge fluorescent lamp

Country Status (1)

Country Link
JP (1) JPH0812795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048121A1 (en) * 1996-06-12 1997-12-18 Tdk Corporation Ceramic cathode discharge lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820478A (en) * 1981-07-30 1983-02-05 Citizen Watch Co Ltd Smudge preventing device for printer
JPS6334897A (en) * 1986-07-29 1988-02-15 東芝ライテック株式会社 Method of lighting xenon lamp
JPS6358752A (en) * 1986-08-29 1988-03-14 Toshiba Corp Aperture type area gas discharge lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820478A (en) * 1981-07-30 1983-02-05 Citizen Watch Co Ltd Smudge preventing device for printer
JPS6334897A (en) * 1986-07-29 1988-02-15 東芝ライテック株式会社 Method of lighting xenon lamp
JPS6358752A (en) * 1986-08-29 1988-03-14 Toshiba Corp Aperture type area gas discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997048121A1 (en) * 1996-06-12 1997-12-18 Tdk Corporation Ceramic cathode discharge lamp
US5982088A (en) * 1996-06-12 1999-11-09 Tdk Corporation Ceramic cathode fluorescent discharge lamp

Also Published As

Publication number Publication date
JPH0812795B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JP2658506B2 (en) Rare gas discharge fluorescent lamp device
US5965988A (en) Discharge lamp with galvanic and dielectric electrodes and method
HU182651B (en) Method for operating miniature high-pressure metal-vapour discharge lamp and miniature high-pressure lamp arrangement
US5034661A (en) Rare gas discharge fluorescent lamp device
US5072155A (en) Rare gas discharge fluorescent lamp device
US6903518B2 (en) Discharge lamp device and backlight using the same
JPH02174096A (en) Rare gas discharge fluorescent lamp lighting method
JP3540333B2 (en) Fluorescent lamp device
JPH02174097A (en) Rare gas discharge fluorescent lamp lighting system
JPH0393195A (en) Rare gas discharge fluorescent lamp device
JPH0393196A (en) Rare gas discharge fluorescent lamp device
JPH05242870A (en) Discharge lamp
JP3655686B2 (en) Noble gas discharge lamp and document irradiation device
JPH10289791A (en) Lighting circuit for rare gas fluororescent lamp with external electrode and lighting system
JPH07114154B2 (en) Noble gas discharge fluorescent lamp device
JP2712719B2 (en) Hot cathode type rare gas discharge fluorescent lamp device
JPH0311055B2 (en)
JPH06188087A (en) Lighting device for rare gas discharge lamp
JPH02312192A (en) Rare gas discharge fluorescent lamp device
JPH06283137A (en) Pulse lighting type rare gas discharge lamp device
JPS58169863A (en) Low pressure rare gas discharge lamp device
JPH1125909A (en) Rare gas discharge lamp device
JP2006024367A (en) Discharge lamp device, backlight, and backlight for liquid crystal display element
JPS5838447A (en) Neon gas discharge lamp for optical device
JP2006004887A (en) Lighting device for noble gas fluorescent lamp

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

EXPY Cancellation because of completion of term