JPH0393195A - Rare gas discharge fluorescent lamp device - Google Patents

Rare gas discharge fluorescent lamp device

Info

Publication number
JPH0393195A
JPH0393195A JP22964789A JP22964789A JPH0393195A JP H0393195 A JPH0393195 A JP H0393195A JP 22964789 A JP22964789 A JP 22964789A JP 22964789 A JP22964789 A JP 22964789A JP H0393195 A JPH0393195 A JP H0393195A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
rare gas
gas discharge
lamp
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22964789A
Other languages
Japanese (ja)
Inventor
Takehiko Sakurai
毅彦 櫻井
Takeo Nishikatsu
西勝 健夫
Yoshinori Anzai
安西 良矩
Hiroyoshi Yamazaki
山崎 広義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22964789A priority Critical patent/JPH0393195A/en
Priority to US07/525,962 priority patent/US5072155A/en
Priority to CA002017129A priority patent/CA2017129A1/en
Priority to EP19900109581 priority patent/EP0399428A3/en
Publication of JPH0393195A publication Critical patent/JPH0393195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To obtain a fluorescent lamp with high efficiency and high intensity by providing a serial circuit with a current limiting element and a pulse signal source applying the specific pulse signal to a switching element. CONSTITUTION:A serial circuit constituted of a DC power source 12 and a current limiting element 13 is connected between the anode 3a of a rare gas discharge fluorescent lamp 10 and one end of a cathode filament coil 3b, and a switching element 15 is connected between the anode 3a and the other end of the cathode filament coil 3b respectively. The fluorescent lamp 10 is discharged when the switching element 15 is opened by the pulse signal from a pulse signal source 16. The discharge period of the fluorescent lamp 10 by the opening of the switching element 15 is set to 150musec or below at the rate of 5-70% in one cycle for the xenon gas or krypton gas-sealed fluorescent lamp 10. The high-intensity and high-efficiency fluorescent lamp 10 is obtained by the pulse-shaped discharging.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は,ファクシミリ,複写機,イメージリーダな
どの情報機器に用いられる希ガス放電蛍ランプ装置に関
するものである. [従来の技術] 近年,情報化社会の進展とともに,ファクシミリや複写
機,イメージリーダなどの情報端末機器は高性能化し、
この市場は急激に拡大している.この高性能化する情報
機器を開発する上で、そこに使用される光源ユニットは
キーデバイスとして高性能なものが求められている.従
来、この光源ユニットに使用されるランプとしてハロゲ
ンランプと蛍光ランプが多く用いられてきた.しかし、
ハロゲンランプはその効率の悪さから近年は効率のよい
蛍光ランプが主に用いられるようになっている. しかしながら、蛍光ランプは効率が高い反面水銀蒸気の
放電を発光に利用しているため光出力などの特性が温度
によって変化する問題があり,そのため使用温度範囲を
制限したり、あるいはランプ管壁にヒーターを付け温度
制御するなどして使用していた.しかし、使用場所の多
様化、機器の高性能化から特性の安定した蛍光ランプの
開発が強く望まれるようになった.このような背景から
情報機器用光源として温度特性変化のない希ガス放電に
よる発光を利用した希ガス放電蛍光ランプの開発がなさ
れている. 第17図,第18図は例えば特開昭63−58752号
公報に示された従来の希ガス放電蛍光ランプ装置を示す
ものであり,第17図は希ガス放電蛍光ランプの横断面
と装置の全体構或を示す構成図,第18図はランプの縦
断面図である.図において(1)は細長い中空棒状をな
すバルブであり、石英または硬質あるいは軟質ガラスに
より形成されている.このバルブ(1)内面には蛍光体
被膜(2)が形威されており.かつバルブ(1)内には
キセノン,クリプトン、アルゴン、ネオン、ヘリウム等
の少なくとも1種からなる希ガスが封入されている.上
記バルブ(1)内には両端部に位置して互に極性が異る
一対の内部電極(3a) , (3b)が設けられてい
る.これら内部電極(3a) , (3b)は、バルブ
(1)の端部壁を気密に貫通されたリードm(4)に接
続されている.またバルブ(1)の側壁外面には軸方向
に沿って帯状の外部電極(5)が設けられている.上記
内部電極(3a) , (3b)は,リード線(4)を
介して高周波電力発生装置として高周波インバータ(8
)に接続され、この高周波インバータ(8)は直流電源
(9)に接続されている.そして、外部電極(5)は一
方の内部電極(3a)と同極性となるようにして高周波
インバータ(8)に接続されている.次に動作について
説明する.このような構或の希ガス放電蛍光ランプ装置
においては,高周波インバータ(8)を通して内部電極
(3a), (3b)間に高周波電力を印加すると、こ
れら内部電極(3a) , (3b)間でグロー放電が
発生する.これらグロー放電はバルブ(1)内の希ガス
を励起し、希ガス特有の紫外線を発する.この紫外線は
バルブ(1)内面に形或した蛍光体被膜(2)を励起し
,ここから可視光線が発せられ、バルブ(1)の外部に
放出される。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a rare gas discharge fluorescent lamp device used in information equipment such as facsimile machines, copying machines, and image readers. [Conventional technology] In recent years, with the advancement of the information society, information terminal devices such as facsimiles, copiers, and image readers have become more sophisticated.
This market is rapidly expanding. In developing these increasingly high-performance information devices, high-performance light source units are required as key devices. Conventionally, halogen lamps and fluorescent lamps have often been used as lamps for this light source unit. but,
Due to the inefficiency of halogen lamps, more efficient fluorescent lamps have been mainly used in recent years. However, although fluorescent lamps have high efficiency, they use discharge of mercury vapor for light emission, so there is a problem that characteristics such as light output change depending on temperature. It was used to control the temperature by attaching a However, due to the diversification of usage locations and the increasing performance of equipment, there has been a strong desire to develop fluorescent lamps with stable characteristics. Against this background, rare gas discharge fluorescent lamps have been developed as light sources for information equipment, which utilize light emission from rare gas discharge without any change in temperature characteristics. 17 and 18 show a conventional rare gas discharge fluorescent lamp device disclosed in, for example, Japanese Patent Laid-Open No. 63-58752, and FIG. 17 shows a cross section of the rare gas discharge fluorescent lamp and the device. Figure 18, which is a block diagram showing the overall structure, is a longitudinal sectional view of the lamp. In the figure, (1) is a bulb in the shape of an elongated hollow rod, and is made of quartz, hard or soft glass. The inner surface of this bulb (1) is coated with a phosphor coating (2). In addition, a rare gas consisting of at least one of xenon, krypton, argon, neon, helium, etc. is sealed inside the valve (1). Inside the bulb (1), a pair of internal electrodes (3a) and (3b) with mutually different polarities are provided at both ends. These internal electrodes (3a) and (3b) are connected to a lead m (4) that passes through the end wall of the bulb (1) in an airtight manner. Further, a band-shaped external electrode (5) is provided on the outer surface of the side wall of the bulb (1) along the axial direction. The internal electrodes (3a) and (3b) are connected to a high frequency inverter (8) as a high frequency power generator via lead wires (4).
), and this high frequency inverter (8) is connected to a DC power supply (9). The external electrode (5) is connected to the high frequency inverter (8) so as to have the same polarity as one of the internal electrodes (3a). Next, we will explain the operation. In a rare gas discharge fluorescent lamp device having such a structure, when high frequency power is applied between the internal electrodes (3a) and (3b) through the high frequency inverter (8), the voltage between these internal electrodes (3a) and (3b) increases. A glow discharge occurs. These glow discharges excite the rare gas inside the bulb (1) and emit ultraviolet light unique to rare gases. This ultraviolet light excites the phosphor coating (2) formed on the inner surface of the bulb (1), from which visible light is emitted and emitted to the outside of the bulb (1).

また、他の希ガス放電蛍光ランプの例として特開昭63
−248050号公報に示されたものがある.このラン
プは冷陰極希ガス放電ランプの始動電圧が高い欠点を改
良するために、例えば特公昭63−29931号公報な
どに示されている熱陰極電極を用いたものである.この
希ガス放電蛍光ランプは電力負荷を増大できるため出力
を増すことができる.しかし、水銀蒸気による蛍光ラン
プに比較してかなり低い効率と光出力しか得ることがで
きない。また,熱陰極型ランプの場合,電極のフィラメ
ントコイルを加熱するための電源が必要である.[発明
が解決しようとする課題〕 以上のように従来の希ガス放電蛍光ランプ装置は、希ガ
ス放電により発生する紫外線によって蛍光体を発光させ
るので,水銀を用いた蛍光ランプに比べて効率が低く、
十分な明るさを得ることが困難であり、効率向上が望ま
れていた.この発明は上記のような課題を解決するため
になされたもので、高効率、高輝度な希ガス放電蛍光ラ
ンプ装置を得ることを目的とする.[課題を解決するた
めの手段] この発明に係る希ガス放電蛍光ランプ装置は、内面に蛍
光体層が形成され、両端に、陰極陽極からなり,少なく
とも陰極がフィラメントコイルである一対の電極を有す
るガラスバルブの内部にキセノンガス或はクリプトンガ
スを封入してなる希ガス放電蛍光ランプ、この希ガス放
電蛍光ランプの上記陽極と上記陰極フィラメントコイル
の一端との間に接続される直流電源と電流制限素子とか
らなる直列回路,上記希ガス放電蛍光ランプの上記陽極
と上記陰極フィラメントコイルの他端との間に接続され
るスイッチング素子、及びこのスイッチング素子に,こ
れを一周期に対する割合が5%以上70%以下、一周期
中150μsec以下の期間開放するパルス信号を印加
するパルス信号源を備えたものである. また,この発明の別の発明に係る希ガス放電蛍光ランプ
装置は、上記バルブ内に封入するガスをアルゴンガスと
するとともに、パルス信号源からのパルス信号によりス
イッチング素子を開放する期間を、一周期に対する割合
が5%以上80%以下で一周期中150μsec以下と
したものである.[作 用] この発明における希ガス放電蛍光ランプ装置は,希ガス
放電蛍光ランプの陽極と陰極フィラメントコイルの一端
との間に直流電源と電流制限素子とからなる直列回路が
,この陽極と陰極フィラメントコイルの他端との間にス
イッチング素子がそれぞれ接続されでいるので、このス
イッチング素子のパルス信号源からのパルス信号による
閉成期間には,希ガス放電蛍光ランプへの印加電圧は零
となり希ガス放電蛍光ランプは放電しないが,電流制限
素子を通してスイッチング素子に流れる電流により陰極
フィラメントコイルが予熱され、スイッチング素子の開
放時に希ガス放電蛍光ランプは放電する.そして,この
スイッチング素子の開放による希ガス放電蛍光ランプの
放電期間が、キセノンガス或はクリプトンガス封入の希
ガス放電蛍光ランプに対しては、一周期に対する割合が
5%以上70%以下で一周期中150μsec以下であ
り,アルゴンガス封入の希ガス放電蛍光ランプに対して
は、一周期に対する割合が5%以上80%以下で一周期
中150μsec以下であるので、このパルス状の放電
により,発光に寄与する封入ガスの共鳴紫外線が多く発
せら卆るようなエネルギー準位で封入ガスの分子が励起
される確率が増大し,ランプの光出力,効率が大きくな
るとともに、パルス状放電による電極の損耗が抑制され
る.[発明の実施例] 以下この発明の一実施例を図について説明する.第1図
は、この発明の一実施例の全体構成図である.図におい
て、(10)は希ガス放電蛍光ランプで,直径15.5
■醜、長さ300mmの直状円筒状のガラス製のバルブ
(1l)の内周面のほぼ全面に蛍光体膜が形成されてお
り、バルブ(11)内にはキセノンガス、クリプトンガ
ス或はアルゴンガスが封入されている.バルブ(l1)
の両端部には一対のフィラメントコイルからなる電極(
3a) , (3b)が封止されている.バルブ(1l
)の外壁には始動補助導体として1113 amのアル
ミニウム板がランプ全長にわたって接着されている. 
(12)は直流電源, (13)は抵抗である電流制限
素子で、この直流電源(12)と電流制限素子(13)
との直列回路(l4)がランプ(10)の陽極(3a)
と陰極フィラメントコイル(3b)の一端との間に接続
されている. (15)はトランジスタなどのスイッチ
ング素子で、ランプ(lO)の陽極(3a)と陰極フィ
ラメントコイル(3b)の他端との間に接続されている
. (16)はスイッチング素子(15)開閉用のパル
ス信号を発生するパルス信号源である。
In addition, as an example of other rare gas discharge fluorescent lamps, JP-A-63
There is one shown in Publication No.-248050. This lamp uses a hot cathode electrode as disclosed in, for example, Japanese Patent Publication No. 63-29931, in order to improve the drawback of the high starting voltage of cold cathode rare gas discharge lamps. This rare gas discharge fluorescent lamp can increase its output by increasing the power load. However, compared to mercury vapor fluorescent lamps, significantly lower efficiency and light output can be achieved. Additionally, hot cathode lamps require a power source to heat the filament coil of the electrode. [Problems to be Solved by the Invention] As described above, conventional rare gas discharge fluorescent lamp devices cause the phosphor to emit light using ultraviolet rays generated by rare gas discharge, and therefore have lower efficiency than fluorescent lamps using mercury. ,
It was difficult to obtain sufficient brightness, and improvements in efficiency were desired. This invention was made to solve the above-mentioned problems, and its purpose is to obtain a rare gas discharge fluorescent lamp device with high efficiency and high brightness. [Means for Solving the Problems] A rare gas discharge fluorescent lamp device according to the present invention has a phosphor layer formed on the inner surface and a pair of electrodes at both ends, each of which is a cathode and anode, and at least the cathode is a filament coil. A rare gas discharge fluorescent lamp comprising a glass bulb filled with xenon gas or krypton gas, a DC power source and a current limiter connected between the anode of the rare gas discharge fluorescent lamp and one end of the cathode filament coil. a switching element connected between the anode of the rare gas discharge fluorescent lamp and the other end of the cathode filament coil; It is equipped with a pulse signal source that applies a pulse signal that is open for a period of 70% or less and 150 μsec or less in one cycle. In addition, in the rare gas discharge fluorescent lamp device according to another aspect of the present invention, the gas sealed in the bulb is argon gas, and the period during which the switching element is opened by the pulse signal from the pulse signal source is set to one cycle. The ratio is 5% or more and 80% or less, and the duration is 150 μsec or less in one cycle. [Function] In the rare gas discharge fluorescent lamp device of the present invention, a series circuit consisting of a DC power supply and a current limiting element is connected between the anode of the rare gas discharge fluorescent lamp and one end of the cathode filament coil. Since each switching element is connected between the other end of the coil, the voltage applied to the rare gas discharge fluorescent lamp becomes zero during the closing period by the pulse signal from the pulse signal source of this switching element, and the rare gas discharge fluorescent lamp becomes zero. Discharge fluorescent lamps do not discharge, but the cathode filament coil is preheated by the current flowing to the switching element through the current limiting element, and rare gas discharge fluorescent lamps discharge when the switching element is opened. When the discharge period of the rare gas discharge fluorescent lamp due to opening of this switching element is 5% or more and 70% or less of one cycle for a rare gas discharge fluorescent lamp filled with xenon gas or krypton gas, the discharge period is one cycle. For a rare gas discharge fluorescent lamp filled with argon gas, the ratio to one cycle is 5% or more and 80% or less and 150 μsec or less in one cycle, so this pulsed discharge causes light emission. The probability that the molecules of the filled gas are excited at an energy level at which a large amount of the resonant ultraviolet radiation of the contributing gas is emitted increases, increasing the light output and efficiency of the lamp, and causing wear and tear on the electrodes due to the pulsed discharge. is suppressed. [Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of an embodiment of the present invention. In the figure, (10) is a rare gas discharge fluorescent lamp with a diameter of 15.5 mm.
■ Ugly, a phosphor film is formed on almost the entire inner surface of the straight cylindrical glass bulb (1L) with a length of 300 mm, and inside the bulb (11) there is xenon gas, krypton gas, or It is filled with argon gas. Valve (l1)
At both ends of the , there are electrodes (
3a) and (3b) are sealed. Valve (1l
) An aluminum plate of 1113 am is glued along the entire length of the lamp as a starting auxiliary conductor.
(12) is a DC power supply, (13) is a current limiting element which is a resistor, and this DC power supply (12) and current limiting element (13)
The series circuit (l4) with the anode (3a) of the lamp (10)
and one end of the cathode filament coil (3b). (15) is a switching element such as a transistor, which is connected between the anode (3a) of the lamp (lO) and the other end of the cathode filament coil (3b). (16) is a pulse signal source that generates a pulse signal for opening and closing the switching element (15).

次に動作について説明する。第1図構威の希ガス放電蛍
光ランプ装置では,直流電源(l2)からの直流電圧が
電流制限素子(13)である抵抗を通してランプ(10
)の陽極(3a)と陰極フィラメントコイル(3b)の
一端との間に印加される.しかし,@極(3a)と陰極
フィラメントコイル(3b)の他端との間にスイッチン
グ素子(15)が接哨されているので,パルス信号源(
l6)からのパルス信号の周期及びパルス幅によってき
まる周期及び期間スイッチング素子(l5)が閉成し、
ランプ(10)に印加される電圧はカットオフされ,こ
の間陰極フィラメントコイル(3b)に電流が流れこれ
が予熱される。従って、ランプ印加電圧は直流のパルス
電圧となり、ガラスバルブ(l1)内の放電もランプ電
流に休止期間のあるパルス的放電となり,この休止期間
に陰極が予熱される. 以下、上記した希ガス放電蛍光ランプ装置において,ガ
ラスバルブ(11)内にキセノンガス,クリプトンガス
或はアルゴンガスの各ガスを封入し、ランプ(10)の
間欠点灯を行なった場合について、バルブ(11〉内へ
の各ガスの封入圧力,ランプの一周期中の通電時間の割
合(以下間欠比という)及び一周期中の通電時間と、ラ
ンプ効率、始動電圧及びランプ寿命との関係を,実験結
果に基すいて説明する. 第2図はキセノンガスを封入した場合の封入ガス圧力と
、ランプ効率の関係を示している.なお、ランプ効率は
輝度を電力で割った値から求められる.第2図中、(イ
)は間欠比60%の矩形波直流パルス点灯の場合,(口
)は通常の高周波交流点灯(正弦波)の場合を示し、と
もに周波数20kHz、同一電力での値である,IQT
orr以下の封入圧においてはパルス点灯も、交流点灯
も効率に大差はないが、10Torr以上ではパルス点
灯時の効率が交流点灯時の効率を上回ることがわかる.
しかし、封入圧が約70Torr以上になると、交流点
灯のランプの効率は上昇するが,パルス点灯のランプの
効率は下降し始め、200〜3 0 0 Torrで再
び交流点灯の値に近づく.また、第3図はキセノンガス
を封入した場合の封入ガス圧力と始動電圧の関係を示し
、この図からガス封入圧力が高くなると、始動に非常に
高い電圧が必要となることがわかる.特にガス封入圧力
が2 0 0 Torr以上では始動電圧の上昇が顕著
であるので,封入ガス圧力は200Torr以下である
ことが望ましい.従って,第2図、第3図より高周波点
灯より効率がよく、また始動電圧において実用性のある
パルス点灯を行うために最適なガス封入圧力は10To
rr以上、200τorr以下である. また、直径8一鵬から15.5一園、長さ300++a
のランプをキセノンガス封入圧力30Torrで数多く
製作し、直流パルス点灯条件を種々変化させてランプの
特性を測定した.第4図,第5図にその結果を示す.第
4図は直流パルスの一周期中の通電時間とランプ効率の
関係をあらわしたものであり、非通電時間を100μs
ec一定とした場合を示している.この図からパルス通
電時間が短いほど効率がよく、特に150μsec以下
ではその効果が特に顕著であることがわかる.第5図は
5KHzから80KHzのパルス点灯時のランプ効率と
パルス間欠比の関係を示す((ハ)(二)(ホ)).ま
た,比較値として,通常用いられる5 KHzから80
KHzの高周波交流点灯(正弦波)時の効率値も示して
ある((へ)(ト)(チ))。第5図より,パルスの間
欠比を小さくすることにより直流点灯(間欠比100%
)時より大幅に効率が上昇し、また、同一周波数の交流
点灯時と比較した場合でも,パルス間欠比を70%以下
とすれば効率が大幅に上廻ることがわかる. さらに,直径8■から15.5mm、キセノンガス封入
圧力を10Torrから2 0 0 Torrとしたラ
ンプを数多く製作し,このランプをランプ電力を一定と
してパルス間欠比を変化させて寿命試験を実施した.結
果を第6図に示す.ここで相対寿命とは,所定の間欠比
(例えば40%)で点灯した場合の平均寿命時間に対す
る各間欠比で点灯した場合の平均寿命時間の比である.
パルス間欠比と相対寿命との関係は,第6図から、パル
ス間欠比を小さくしていくとパルス間欠比5%までは、
相対寿命は若干低下傾向を示し、5%以下の小さい間欠
比では急激に寿命が低下することがわかる.5%以下で
はランプのパルスビーク電流が大きくなるため電極の損
耗が急激に進むものと推定される.したがって,パルス
の間欠比は寿命を考えると5%以上が菫ましい. 第7図〜第11図はガラスバルブ(11)内にクリプト
ンガスを封入したランプ(10)について、上述のキセ
ノンガスを封入したランプと同様の試験を行なった場合
の結果を示す特性図である.これらの試験結果から,ク
リプトンガスを封入した場合は,最適なガス封入圧力は
lQTorr以上、100Torr以下、一周期中のパ
ルス通電時間は150μsec以下、そしてパルス間欠
比は5%以上70%以下が望ましいことがわかる. さらに,第12図〜第16図はガラスバルブ(11)内
にアルゴンガスを封入したランプ(10)について.上
述と同様の試険を行なった場合の結果を示す特性図であ
る.これらの試険結果から同様に,アルゴンガスを封入
した場合は、最適なガス封入圧力は10Torr以上、
1 0 0 Torr以下、一周期中のパルス通電時間
は150μtsec以下、そしてパルス間欠比は5%以
上80%以下が望ましいことがわかる. 上記の実施例ではいずれも陰極がフィラメントコイルで
ある熱陰極形のランプを使用している.熱陰極形ランプ
の点灯装置としては、従来は点灯電源の他に陰極を加熱
するための予熱電源が必要であったが,第1図にみられ
る本回路では,ランプ印加電圧が休止期間のときに、陰
極のフィラメントコイルに電流が流れて加熱されるよう
になっているため.予熱電源は不要となり,装置の構威
も簡単なものとなる. [発明の効果] 以上のようにこの発明によれば、内面に蛍光体層が形成
され、両端に、陰極陽極からなり、少なくとも陰極がフ
ィラメントコイルである一対の電極を有するガラスバル
ブの内部にキセノンガス或はクリプトンガスを封入して
なる希ガス放電蛍光ランプ,この希ガス放電蛍光ランプ
の上記陽極と上記陰極フィラメントコイルの一端との間
に接続される直流電源と電流制限素子とからなる直列回
路、上記希ガス放電蛍光ランプの上記陽極と上記陰極フ
ィラメントコイルの他端との間に接続されるスイッチン
グ素子、及びこのスイッチング素子に,これを一周期に
対する割合が5%以上70%以下、一周期中150μs
ec以下の期間開放するパルス信号を印加するパルス信
号源を備えたので,パルスの休止期間に陰極のフィラメ
ントが予熱され、装置が安価にでき、従来の直流点灯や
通常の高周波交流点灯と比較して寿命を短くすることな
く、高輝度,高効率な希ガス放電蛍光ランプが得られる
効果がある. また、この発明の別の発明によれば,封入ガスをアルゴ
ンとし、間欠比を5%以上80%以下とした場合も上記
と同様の効果がある.
Next, the operation will be explained. In the rare gas discharge fluorescent lamp device with the configuration shown in Figure 1, the DC voltage from the DC power source (12) passes through the lamp (10
) is applied between the anode (3a) and one end of the cathode filament coil (3b). However, since the switching element (15) is sent between the @ pole (3a) and the other end of the cathode filament coil (3b), the pulse signal source (
the switching element (l5) is closed for a period and period determined by the period and pulse width of the pulse signal from l6);
The voltage applied to the lamp (10) is cut off, and during this time current flows through the cathode filament coil (3b) to preheat it. Therefore, the voltage applied to the lamp becomes a DC pulse voltage, and the discharge inside the glass bulb (l1) also becomes a pulsed discharge with a rest period in the lamp current, and the cathode is preheated during this rest period. In the following, in the rare gas discharge fluorescent lamp device described above, the glass bulb (11) is filled with each gas such as xenon gas, krypton gas, or argon gas, and the lamp (10) is lit intermittently. 11> The relationship between the pressure of each gas sealed in the lamp, the ratio of current-on time during one cycle of the lamp (hereinafter referred to as intermittent ratio), and the current-on time during one cycle, lamp efficiency, starting voltage, and lamp life was experimentally determined. I will explain based on the results. Figure 2 shows the relationship between the filled gas pressure and the lamp efficiency when xenon gas is filled.The lamp efficiency is calculated from the luminance divided by the electric power. In Figure 2, (a) shows the case of square wave DC pulse lighting with an intermittent ratio of 60%, and (opening) shows the case of normal high frequency AC lighting (sine wave), both values at a frequency of 20kHz and the same power. ,IQT
It can be seen that there is no significant difference in efficiency between pulsed lighting and AC lighting at fill pressures below 10 Torr, but at temperatures above 10 Torr, the efficiency during pulsed lighting exceeds the efficiency during AC lighting.
However, when the sealing pressure becomes about 70 Torr or more, the efficiency of the AC lamp increases, but the efficiency of the pulse lamp starts to decrease and approaches the value for AC lamp again at 200 to 300 Torr. Furthermore, Figure 3 shows the relationship between the filled gas pressure and the starting voltage when xenon gas is filled, and from this figure it can be seen that as the gas filled pressure increases, a very high voltage is required for starting. In particular, if the gas filling pressure is 200 Torr or more, the starting voltage will increase significantly, so it is desirable that the filling gas pressure is 200 Torr or less. Therefore, from Figures 2 and 3, the optimal gas filling pressure is 10To to perform pulse lighting, which is more efficient than high-frequency lighting and is practical at the starting voltage.
rr or more and 200τorr or less. In addition, the diameter is 8-15 to 15.5-1, and the length is 300++ a.
A large number of lamps were manufactured with a xenon gas filling pressure of 30 Torr, and the characteristics of the lamps were measured by varying the DC pulse lighting conditions. Figures 4 and 5 show the results. Figure 4 shows the relationship between the energization time and lamp efficiency during one cycle of the DC pulse, and the non-energization time is 100 μs.
The case where ec is constant is shown. From this figure, it can be seen that the shorter the pulse energization time, the better the efficiency, and the effect is particularly remarkable when the pulse energization time is 150 μsec or less. Figure 5 shows the relationship between lamp efficiency and pulse intermittency ratio during pulse lighting from 5KHz to 80KHz ((c)(ii)(e)). In addition, as a comparison value, 80 KHz from the commonly used 5 KHz
Efficiency values during KHz high frequency AC lighting (sine wave) are also shown ((e)(e)(e)). From Figure 5, we can see that DC lighting (intermittent ratio 100%) can be achieved by reducing the pulse intermittency ratio.
), and even when compared with AC lighting at the same frequency, it can be seen that the efficiency is significantly higher if the pulse intermittency ratio is set to 70% or less. Furthermore, we manufactured a number of lamps with diameters from 8mm to 15.5mm and xenon gas filling pressures from 10 Torr to 200 Torr, and conducted life tests on these lamps by varying the pulse intermittency ratio while keeping the lamp power constant. The results are shown in Figure 6. Here, the relative life is the ratio of the average life time when the lamp is lit at each intermittent ratio to the average life time when the lamp is lit at a predetermined intermittent ratio (for example, 40%).
The relationship between the pulse intermittency ratio and the relative lifespan is shown in Figure 6, as the pulse intermittency ratio decreases, up to 5%.
It can be seen that the relative life tends to decrease slightly, and at a small intermittency ratio of 5% or less, the life decreases rapidly. It is estimated that if it is less than 5%, the pulse peak current of the lamp will increase, causing rapid wear on the electrodes. Therefore, a pulse intermittency ratio of 5% or more is embarrassing when considering the lifespan. FIGS. 7 to 11 are characteristic diagrams showing the results of tests similar to the above-mentioned lamps filled with xenon gas for lamps (10) filled with krypton gas in the glass bulb (11). .. From these test results, when krypton gas is filled, the optimal gas filling pressure is 1QTorr or more and 100Torr or less, the pulse energization time in one cycle is 150μsec or less, and the pulse intermittency ratio is preferably 5% or more and 70% or less. I understand that. Furthermore, Figures 12 to 16 show a lamp (10) in which argon gas is filled in a glass bulb (11). This is a characteristic diagram showing the results of a test run similar to that described above. Similarly, from these test results, when filling with argon gas, the optimal gas filling pressure is 10 Torr or more,
It can be seen that it is desirable that the pulse current is 100 Torr or less, the pulse energization time during one cycle is 150 μtsec or less, and the pulse intermittency ratio is 5% or more and 80% or less. All of the above embodiments use hot cathode lamps in which the cathode is a filament coil. Conventionally, hot cathode lamp lighting devices require a preheating power source to heat the cathode in addition to the lighting power source, but in this circuit shown in Figure 1, the voltage applied to the lamp is Because current flows through the filament coil of the cathode and heats it up. There is no need for a preheating power supply, and the structure of the device becomes simpler. [Effects of the Invention] As described above, according to the present invention, a phosphor layer is formed on the inner surface, and xenon is placed inside a glass bulb having a pair of electrodes at both ends, each consisting of a cathode and an anode, at least the cathode being a filament coil. A rare gas discharge fluorescent lamp filled with gas or krypton gas, and a series circuit consisting of a DC power source and a current limiting element connected between the anode of the rare gas discharge fluorescent lamp and one end of the cathode filament coil. , a switching element connected between the anode of the rare gas discharge fluorescent lamp and the other end of the cathode filament coil; Medium 150μs
Since it is equipped with a pulse signal source that applies a pulse signal that is open for a period of less than EC, the cathode filament is preheated during the rest period of the pulse, making the device cheaper and compared to conventional DC lighting or normal high-frequency AC lighting. This has the effect of producing a high-brightness, high-efficiency rare gas discharge fluorescent lamp without shortening its life. Further, according to another aspect of the present invention, the same effect as described above can be obtained when the filler gas is argon and the intermittent ratio is set to 5% or more and 80% or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す希ガス放電蛍光ラン
プ装置の全体構成図,第2図はその装置におけるキセノ
ンガス封入圧力によるランプ効率特性図、第3図はキセ
ノンガス封入圧力による始動電圧特性図、第4図はキセ
ノンガス封入ランプのパルス通電時間によるランプ効率
特性図、第5図はキセノンガス封入ランプのパルス間欠
比によるランプ効率特性図、第6図はキセノンガス封入
ランプのパルス間欠比による寿命特性図、第7図はクl
)プトンガス封入圧力によるランプ効率特性図、第8図
はそのクリプトンガス封入圧力による始動電圧特性図、
第9図はクリプトンガス封入ランプのパルス通電時間に
よるランプ効率特性図、第10図はクリプトンガス封入
ランプのパルス間欠比によるランプ効率特性図、第11
図はクリプトンガス封入ランプのパルス間欠比による寿
命特性図,第12図はアルゴンガス封入圧力によるラン
プ効率特性図,第13図はアルゴンガス封入圧力による
始動電圧特性図、第141!fはアルゴンガス封入ラン
プのパルス通電時間によるランプ効率特性図、第15図
はアルゴンガス封入ランプのパルス間欠比によるランプ
効率特性図,第16図はアルゴンガス封入ランプのパル
ス間欠比による寿命特性図,第17図は従来の希ガス放
電蛍光ランプ装置の全体構成図、第18図はそのランプ
の縦断面図である. 図において、(3a) (3b)は電極. (10)は
希ガス放電蛍光ランプ,(11)はガラスバルブ、(1
2)は直流電源. (13)は電流制限素子,(14)
は直列回路、(15)はスイッチング素子、(16)は
パルス信号源である.
Fig. 1 is an overall configuration diagram of a rare gas discharge fluorescent lamp device showing an embodiment of the present invention, Fig. 2 is a lamp efficiency characteristic diagram depending on the xenon gas filling pressure in the device, and Fig. 3 is a startup diagram based on the xenon gas filling pressure. Voltage characteristic diagram, Figure 4 is a lamp efficiency characteristic diagram according to pulse energization time of a xenon gas filled lamp, Figure 5 is a lamp efficiency characteristic diagram according to pulse intermittent ratio of a xenon gas filled lamp, and Figure 6 is a pulse diagram of a xenon gas filled lamp. Life characteristic diagram by intermittent ratio, Figure 7 is cl.
) Figure 8 shows the lamp efficiency characteristic diagram depending on the krypton gas filling pressure, and Figure 8 shows the starting voltage characteristic diagram depending on the krypton gas filling pressure.
Figure 9 is a lamp efficiency characteristic diagram of a krypton gas filled lamp depending on the pulse energization time, Figure 10 is a lamp efficiency characteristic diagram of a krypton gas filled lamp depending on the pulse intermittent ratio, and Figure 11 is
The figure shows a life characteristic diagram of a krypton gas filled lamp depending on the pulse intermittent ratio, Figure 12 shows a lamp efficiency characteristic diagram depending on the argon gas filling pressure, Figure 13 shows a starting voltage characteristic diagram depending on the argon gas filling pressure, and Fig. 141! f is a lamp efficiency characteristic diagram of an argon gas-filled lamp according to the pulse energization time, Fig. 15 is a lamp efficiency characteristic diagram of an argon gas-filled lamp according to the pulse intermittency ratio, and Fig. 16 is a life characteristic diagram of the argon gas-filled lamp according to the pulse intermittency ratio. , FIG. 17 is an overall configuration diagram of a conventional rare gas discharge fluorescent lamp device, and FIG. 18 is a longitudinal sectional view of the lamp. In the figure, (3a) and (3b) are electrodes. (10) is a rare gas discharge fluorescent lamp, (11) is a glass bulb, (1
2) is a DC power supply. (13) is a current limiting element, (14)
is a series circuit, (15) is a switching element, and (16) is a pulse signal source.

Claims (2)

【特許請求の範囲】[Claims] (1)内面に蛍光体層が形成され、両端に、陰極陽極か
らなり少なくとも陰極がフィラメントコイルである一対
の電極を有するガラスバルブの内部にキセノンガス或は
クリプトンガスを封入してなる希ガス放電蛍光ランプ、
この希ガス放電蛍光ランプの上記陽極と上記陰極フィラ
メントコイルの一端との間に接続される直流電源と電流
制限素子とからなる直列回路、上記希ガス放電蛍光ラン
プの上記陽極と上記陰極フィラメントコイルの他端との
間に接続されるスイッチング素子、及びこのスイッチン
グ素子に、これを一周期に対する割合が5%以上70%
以下、一周期中150μsec以下の期間開放するパル
ス信号を印加するパルス信号源を備えたことを特徴とす
る希ガス放電蛍光ランプ装置。
(1) A rare gas discharge made by sealing xenon gas or krypton gas inside a glass bulb that has a phosphor layer formed on its inner surface and a pair of electrodes at both ends, each consisting of a cathode and anode, at least the cathode being a filament coil. fluorescent lamp,
A series circuit comprising a DC power supply and a current limiting element connected between the anode of the rare gas discharge fluorescent lamp and one end of the cathode filament coil; The switching element connected between the other end and the switching element, and the ratio of this switching element to one cycle is 5% or more and 70%.
Hereinafter, a rare gas discharge fluorescent lamp device is characterized in that it is equipped with a pulse signal source that applies a pulse signal that is open for a period of 150 μsec or less in one cycle.
(2)内面に蛍光体層が形成され、両端に、陰極陽極か
らなり、少なくとも陰極がフィラメントコイルである一
対の電極を有するガラスバルブの内部にアルゴンガスを
封入してなる希ガス放電蛍光ランプ、この希ガス放電蛍
光ランプの上記陽極と上記陰極フィラメントコイルの一
端との間に接続される直流電源と電流制限素子とからな
る直列回路、上記希ガス放電蛍光ランプの上記陽極と上
記陰極フィラメントコイルの他端との間に接続されるス
イッチング素子、及びこのスイッチング素子に、これを
一周期に対する割合が5%以上80%以下、一周期中1
50μsec以下の期間開放するパルス信号を印加する
パルス信号源を備えたことを特徴とする希ガス放電蛍光
ランプ装置。
(2) A rare gas discharge fluorescent lamp comprising a glass bulb having a phosphor layer formed on its inner surface and a pair of electrodes at both ends, each consisting of a cathode and anode, at least the cathode being a filament coil, with argon gas sealed inside; A series circuit comprising a DC power supply and a current limiting element connected between the anode of the rare gas discharge fluorescent lamp and one end of the cathode filament coil; The switching element connected between the other end, and the switching element at a rate of 5% or more and 80% or less per cycle, once per cycle.
A rare gas discharge fluorescent lamp device comprising a pulse signal source that applies a pulse signal that is open for a period of 50 μsec or less.
JP22964789A 1989-05-22 1989-09-05 Rare gas discharge fluorescent lamp device Pending JPH0393195A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22964789A JPH0393195A (en) 1989-09-05 1989-09-05 Rare gas discharge fluorescent lamp device
US07/525,962 US5072155A (en) 1989-05-22 1990-05-11 Rare gas discharge fluorescent lamp device
CA002017129A CA2017129A1 (en) 1989-05-22 1990-05-18 Rare gas discharge fluorescent lamp device
EP19900109581 EP0399428A3 (en) 1989-05-22 1990-05-21 Rare gas discharge fluorescent lamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22964789A JPH0393195A (en) 1989-09-05 1989-09-05 Rare gas discharge fluorescent lamp device

Publications (1)

Publication Number Publication Date
JPH0393195A true JPH0393195A (en) 1991-04-18

Family

ID=16895475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22964789A Pending JPH0393195A (en) 1989-05-22 1989-09-05 Rare gas discharge fluorescent lamp device

Country Status (1)

Country Link
JP (1) JPH0393195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012481A1 (en) * 2002-07-25 2004-02-05 Harison Toshiba Lighting Corporation Discharge lamp device, discharge lamp lighting method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004012481A1 (en) * 2002-07-25 2004-02-05 Harison Toshiba Lighting Corporation Discharge lamp device, discharge lamp lighting method and device

Similar Documents

Publication Publication Date Title
EP0460641B1 (en) A rare gas discharge fluorescent lamp device
HU182651B (en) Method for operating miniature high-pressure metal-vapour discharge lamp and miniature high-pressure lamp arrangement
JPH10208702A (en) Compact fluorescent lamp
US5072155A (en) Rare gas discharge fluorescent lamp device
CA2006034C (en) Rare gas discharge fluorescent lamp device
JPH079796B2 (en) Discharge lamp
US5729095A (en) High frequency lighting apparatus having an intermediate potential applied to the trigger electrode to reduce leakage current
US6903518B2 (en) Discharge lamp device and backlight using the same
JPH0393195A (en) Rare gas discharge fluorescent lamp device
JP3540333B2 (en) Fluorescent lamp device
JPH0393196A (en) Rare gas discharge fluorescent lamp device
JPH06181050A (en) Rare gas discharge lamp apparatus
JPH02174097A (en) Rare gas discharge fluorescent lamp lighting system
JPH02174096A (en) Rare gas discharge fluorescent lamp lighting method
EP0948030A2 (en) Rare gaseous discharge lamp, lighting circuit, and lighting device
JPH10289791A (en) Lighting circuit for rare gas fluororescent lamp with external electrode and lighting system
JPH05242870A (en) Discharge lamp
JPH02306596A (en) Rare gas discharging fluorescent lamp device
JPH06188087A (en) Lighting device for rare gas discharge lamp
JPH06283137A (en) Pulse lighting type rare gas discharge lamp device
JPH1125909A (en) Rare gas discharge lamp device
JPH02312192A (en) Rare gas discharge fluorescent lamp device
JPH07118396B2 (en) Noble gas discharge fluorescent lamp device
JPS60202695A (en) Fluorescent lamp unit
JPS5838447A (en) Neon gas discharge lamp for optical device