JPH02174078A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH02174078A
JPH02174078A JP63332862A JP33286288A JPH02174078A JP H02174078 A JPH02174078 A JP H02174078A JP 63332862 A JP63332862 A JP 63332862A JP 33286288 A JP33286288 A JP 33286288A JP H02174078 A JPH02174078 A JP H02174078A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
sealing plate
active material
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63332862A
Other languages
Japanese (ja)
Other versions
JP2763561B2 (en
Inventor
Toshihiko Ikehata
敏彦 池畠
Nobuharu Koshiba
信晴 小柴
Kenichi Takada
高田 堅一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63332862A priority Critical patent/JP2763561B2/en
Publication of JPH02174078A publication Critical patent/JPH02174078A/en
Application granted granted Critical
Publication of JP2763561B2 publication Critical patent/JP2763561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the deterioration in battery characteristic due to a long- term overdischarge at a high temperature by using stainless steel containing specific quantities of molybdenum and chromium respectively for the sealing plate of a battery. CONSTITUTION:A case 1 concurrently serving as a positive electrode terminal is made of stainless steel with excellent corrosion resistance, and a sealing plate 2 concurrently serving as a negative electrode terminal is made of stainless steel containing molybdenum 1-3wt.% and chromium 15-18wt.% as the material. A positive electrode active material made of a metal oxide forming an inter- layer compound with lithium ions, a negative electrode active material, and an organic electrolyte are provided. The deterioration of a battery due to the corrosion of the sealing plate 2 can be suppressed ever in long-term overdischarge.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は移動用直流電源、バックアップ用電源などに用
いる有機電解液二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an organic electrolyte secondary battery used as a mobile DC power source, a backup power source, or the like.

従来の技術 一般に有機電解液電池は高エネルギー密度を有し、小形
化、軽量化が可能であり、漏液しにくいため、他の電池
に代り、小形電卓、電子ウォッチ等の精密機器の電源と
して幅広く用いられている。
Conventional technology In general, organic electrolyte batteries have high energy density, can be made smaller and lighter, and are less prone to leakage, so they are used as a power source for precision equipment such as small calculators and electronic watches in place of other batteries. Widely used.

これら有機電解液電池には一次電池と充電可能な二次電
池がある。充電可能な二次電池として、負極にリチウム
と層間化合物を形成した金属酸化物、例えば五酸化ニオ
ブ、正極にこの負極より高い電位でリチウムと層間化合
物を形成可能な金属酸化物、例えば五酸化バナジウムを
用い、また電解液には有機溶媒にリチウム塩を溶解させ
た有機電解液を用いたものが知られている。正極、負極
ともに、リチウムと層間化合物を形成し得る金属酸化物
を用いるのは以下の理由による。
These organic electrolyte batteries include primary batteries and rechargeable secondary batteries. As a rechargeable secondary battery, the negative electrode is a metal oxide that has formed an intercalation compound with lithium, such as niobium pentoxide, and the positive electrode is a metal oxide that can form an intercalation compound with lithium at a higher potential than the negative electrode, such as vanadium pentoxide. It is also known to use an organic electrolyte solution in which a lithium salt is dissolved in an organic solvent. The reason why metal oxides capable of forming intercalation compounds with lithium are used for both the positive and negative electrodes is as follows.

すなわち、一般に負極に金属リチウムのみを用いた場合
、充電の際リチウム表面に電解液中のリチウムイオンが
樹枝状に析出し、それがセパレータを貫通して正極と接
触し、内部ショートを引き起こす。その結果、電池は劣
化し、サイクル寿命は著しく低下する。これに対し、負
極に、リチウムと層間化合物を形成した金属酸化物、例
えば五酸化ニオブを用いると、放電、充電を繰り返して
も、負極はリチウムイオンの放出と層間化合物の形成の
繰シ返し反応を行うのみで、前述の負極表面へのリチウ
ムの析出は起こらない。またこの反応は、一般にトポ化
学反応と呼ばれ、リチウムの出入シにより五酸化ニオブ
の結晶構造及び体積膨張の変化が殆んど起こらない。ま
た正極にも負極と同様の性質を持つ金属酸化物、例えば
五酸化バナジウムを用いると、充電、放電を繰り返し行
っても、正極、負極の劣化が殆んどなく、またリチウム
の消耗も殆んどない。その結果、極めてサイクル寿命の
優れたリチウム二次電池となっている。
That is, in general, when only metallic lithium is used for the negative electrode, lithium ions in the electrolyte are deposited on the lithium surface in the form of branches during charging, which penetrate the separator and come into contact with the positive electrode, causing an internal short circuit. As a result, the battery deteriorates and its cycle life is significantly reduced. On the other hand, if a metal oxide that has formed an intercalation compound with lithium, such as niobium pentoxide, is used for the negative electrode, even after repeated discharging and charging, the negative electrode will undergo a repeated reaction of releasing lithium ions and forming an intercalation compound. By simply performing this, the above-mentioned precipitation of lithium on the negative electrode surface does not occur. Further, this reaction is generally called a topochemical reaction, and the crystal structure and volume expansion of niobium pentoxide hardly change due to the addition and removal of lithium. Furthermore, if a metal oxide with similar properties to the negative electrode, such as vanadium pentoxide, is used for the positive electrode, there will be little deterioration of the positive and negative electrodes even after repeated charging and discharging, and lithium consumption will be minimal. Who? As a result, the lithium secondary battery has an extremely excellent cycle life.

発明が解決しようとする課題 この系の電池においては、高い電圧を取り出すのが困難
となっている。これは負極に金属酸化物を用いることに
起因している。つまり、一般に金属酸化物は一次電池に
おいては正極に用いられるものであり、その電位は責で
あるだめである。電池はエネルギー密度が高い方が優れ
ており、工業的価値も高い。エネルギー密度は電池電圧
に比例するため、電圧は高い方が有利である。そこで、
この系の電池において高い電池電圧を得るために、正極
に、負極よりさらに責な電位を持つ物質を用いている。
Problems to be Solved by the Invention In this type of battery, it is difficult to extract high voltage. This is due to the use of metal oxide for the negative electrode. In other words, metal oxides are generally used as positive electrodes in primary batteries, and their potential is a liability. Batteries with higher energy density are better and have greater industrial value. Since energy density is proportional to battery voltage, higher voltage is advantageous. Therefore,
In order to obtain a high battery voltage in this type of battery, a material with a higher potential than the negative electrode is used for the positive electrode.

この結果、高電圧を有する有機電解液−次電池と同様に
、正極と直接あるいはリードを介して電気的に接してい
るケースには、正極活物質以上に責な電位を持つ耐食性
の優れた材料を用いている。
As a result, similar to organic electrolyte secondary batteries with high voltage, the case that is in electrical contact with the positive electrode either directly or through a lead is made of a material with excellent corrosion resistance that has a higher potential than the positive electrode active material. is used.

これは、電池を保存中に、ケースが高電位のために腐食
し、その結果電池性能が劣化するのを防止するためであ
る。具体的なケース材料として、耐食性に効果のあるク
ロムを多く含み、ニッケルを殆んど含まないステンレス
鋼を用いている。これに対し負極と直接あるいはリード
を介して電気的に接触している封口板は、正極よりかな
り電位が卑な状態にあるため、耐食性については、正極
ケース程配慮する必要はなく、その構成部材として一般
的な有機電解液−次電池に多く使用されているステンレ
ス鋼、例えばCrを18重量係程度、N1を8重量多種
度含むJIS規格(7)SUS304を使用していた。
This is to prevent the case from corroding due to high potential while the battery is being stored, resulting in deterioration of battery performance. The specific case material used is stainless steel, which contains a lot of chromium, which is effective in corrosion resistance, and contains almost no nickel. On the other hand, the sealing plate, which is in electrical contact with the negative electrode either directly or through a lead, has a much lower potential than the positive electrode, so corrosion resistance does not need to be given as much consideration as the positive electrode case; Stainless steel, which is often used in general organic electrolyte secondary batteries, was used, for example, JIS standard (7) SUS304, which contains about 18% Cr by weight and 8% N1 by weight.

この従来の構成からなる有機電解液二次電池において種
々の特性評価を行った結果、例えば60℃中で、10に
Ωで定抵抗放電を2ケ月行うなど長期にわたって電池を
放電状態(電池電圧はほぼ○V)に保つ(以下長期過放
電と呼ぶ)と、充電による復帰性能が劣化し電池性能が
著しく低下することが判明した。この劣化した電池を分
解し、解析を行った結果、負極活物質と接触している側
の封口板の表面が腐食し、溶解した金属がイオン化傾向
の差から各構成材料表面に析出し、その結果、各活物質
の反応が著しく損われ、電池が劣化したことが判明した
。この腐食は以下の理由による。
As a result of various characteristic evaluations of this conventional organic electrolyte secondary battery, we found that the battery was kept in a discharged state (the battery voltage was It has been found that when the battery is maintained at approximately ○V (hereinafter referred to as long-term overdischarge), the recovery performance upon charging deteriorates and the battery performance significantly deteriorates. As a result of disassembling and analyzing this deteriorated battery, it was found that the surface of the sealing plate in contact with the negative electrode active material corroded, and dissolved metal precipitated on the surface of each component material due to the difference in ionization tendency. As a result, it was found that the reaction of each active material was significantly impaired and the battery deteriorated. This corrosion is due to the following reasons.

すなわち電池を放電した時の、正極及び負極の単極電位
は第1図のようになる。放電が進むにつれ、正極の電位
は殆んど変化しないが、負極の電位は徐々に上昇し、放
電終了時には正極同様に非常に高電位な状態になる。場
合によっては転極し、負極が正極より責な電位になる場
合もある。従って長期過放電によってこの様な状態が続
くと、耐食性の弱い5US304からなる封口板の腐食
が起こると考えられる。また、この現象は高温における
程顕著であることが判った。
That is, when the battery is discharged, the unipolar potentials of the positive and negative electrodes are as shown in FIG. As the discharge progresses, the potential of the positive electrode hardly changes, but the potential of the negative electrode gradually rises, and at the end of the discharge, it reaches a very high potential state like the positive electrode. In some cases, the polarity may be reversed, and the negative electrode may have a higher potential than the positive electrode. Therefore, if such a state continues due to long-term overdischarge, it is considered that the sealing plate made of 5US304, which has low corrosion resistance, will corrode. It was also found that this phenomenon is more pronounced at higher temperatures.

一般に高電圧を示す有機電解液−次電池においては、放
電末期に電解液が消耗し、枯渇するため、負極の電位が
上昇しても封口板の腐食が起こることはない。従って前
述の問題は、正極に非常に責な電位を有する活物質を使
用した二次電池特有の問題である。
Generally, in organic electrolyte secondary batteries exhibiting high voltage, the electrolyte is consumed and depleted at the end of discharge, so corrosion of the sealing plate does not occur even if the potential of the negative electrode increases. Therefore, the above-mentioned problem is a problem specific to secondary batteries that use an active material having a very negative potential in the positive electrode.

本発明は、前述の長期過放電による電池の劣化を改善す
ることを目的とする。
An object of the present invention is to improve the deterioration of a battery due to long-term overdischarge described above.

課題を解決するための手段 この問題を解決するだめには、負極活物質と電気的に接
触する封口板の構成部材をケースと同様に、耐食性に優
れた材料を用いる必要がある。
Means for Solving the Problem In order to solve this problem, it is necessary to use a material with excellent corrosion resistance as well as the case for the constituent members of the sealing plate that electrically contact the negative electrode active material.

具体的には、前述したケースの構成部材であるニッケル
を殆んど含まないクロム鋼で封口板を形成する必要があ
る。しかしクロムを多量に含む鋼材は硬く、加工性が悪
いという欠点がある。特に封口板は、その周辺の構造が
複雑なため不向きである。耐食性についてはクロムとと
もにモリブデンの少量添加による効果が大きいため、モ
リブデンを数係含有し、クロムの含有率が15%程度以
上あれば、ニッケルが多少存在していても耐食性におい
て殆んど問題ないことが判明した。また、クロムの含有
量を下げることができるため硬度も下がり、加工性も良
い。
Specifically, the sealing plate needs to be made of chromium steel, which is a component of the case described above and contains almost no nickel. However, steel materials containing large amounts of chromium have the disadvantage of being hard and having poor workability. In particular, sealing plates are unsuitable because the structure around them is complicated. Regarding corrosion resistance, the addition of a small amount of molybdenum along with chromium has a large effect, so as long as the molybdenum is contained in a numerical coefficient and the chromium content is about 15% or more, there is almost no problem in corrosion resistance even if some nickel is present. There was found. Furthermore, since the content of chromium can be lowered, the hardness is also lowered and the workability is also good.

以上のことから本発明は封口板材料として、モリブデン
を1〜3重量%、クロムを15〜18重量係含むステン
レス鋼を用いることを特徴としたものである。
In light of the above, the present invention is characterized by using stainless steel containing 1 to 3% by weight of molybdenum and 15 to 18% by weight of chromium as the sealing plate material.

作用 この構成によれば、正極活物質に非常に責な電位を有す
る物質を用いた有機電解液二次電池において、長期過放
電を行っても、封口板の腐食による電池の劣化を抑制す
ることができる。
Effect: According to this configuration, in an organic electrolyte secondary battery using a material having a very negative potential as a positive electrode active material, deterioration of the battery due to corrosion of the sealing plate can be suppressed even after long-term overdischarge. Can be done.

実施例 以下、本発明を図及び表を参照して説明する。Example The present invention will be explained below with reference to figures and tables.

第2図は本発明の有機電解液二次電池の断面図である。FIG. 2 is a sectional view of the organic electrolyte secondary battery of the present invention.

図中1は正極端子を兼ねるケースで前述の耐食性の優れ
たステンレス鋼から成っている。
Reference numeral 1 in the figure denotes a case which also serves as a positive terminal, and is made of the aforementioned stainless steel with excellent corrosion resistance.

2は負極端子を兼ねる封口板で前述した本発明による組
成からなっている。その組成の一例を重量百分率で示せ
ば表1のムに示す通りで、これはJIS規格におけるス
テンレス鋼の5US444に相当する。3はケースと封
口板を絶縁するポリプロピレン製ガスケット、4は正極
で、五酸化バナジウムと導電材であるアセチレンブラッ
ク、及び7ノ素系樹脂の粉末を混合し、ペレット状に加
圧成型し、200℃の真空下で12時間乾燥した。
Reference numeral 2 denotes a sealing plate which also serves as a negative electrode terminal and is made of the composition according to the present invention described above. An example of its composition in weight percentage is as shown in Table 1, which corresponds to 5US444 of stainless steel in the JIS standard. 3 is a polypropylene gasket that insulates the case and the sealing plate, 4 is a positive electrode, which is made by mixing vanadium pentoxide, acetylene black, which is a conductive material, and 7-based resin powder, and press-molding it into a pellet. Dry under vacuum at 0C for 12 hours.

5は負極で、五酸化ニオブと導電材であるアセチレンプ
ラック、及びフッ素系樹脂の粉末を混合し、正極と同様
にベレット状に成型し、200℃の真空下で12時間乾
燥した。6はポリプロピレン製不織布からなるセパレー
タ、7は金属リチウムで5の負極と6のセパレータの間
にある。このリチウムは電池を構成後、負極との接触(
ショート)により、負極活物質である五酸化ニオブと層
間化合物を形成する。8,9はそれぞれ正極及び負極の
集電体で、導電性カーボン被膜である。また電解ild
、プロピレンカーボネートと、12−ジメトキシエタン
との等容量混合溶媒に、過塩素酸リチウムを1モル/l
の割合で溶解したものを用いた。
5 is a negative electrode, in which niobium pentoxide, acetylene plaque as a conductive material, and fluororesin powder were mixed, formed into a pellet shape in the same way as the positive electrode, and dried under vacuum at 200° C. for 12 hours. 6 is a separator made of polypropylene nonwoven fabric, and 7 is metal lithium, which is located between the negative electrode 5 and the separator 6. After forming the battery, this lithium comes into contact with the negative electrode (
(short circuit), an intercalation compound is formed with niobium pentoxide, which is the negative electrode active material. Reference numerals 8 and 9 represent current collectors for the positive and negative electrodes, respectively, which are conductive carbon films. Also electrolytic ild
, 1 mol/l of lithium perchlorate was added to an equal volume mixed solvent of propylene carbonate and 12-dimethoxyethane.
A solution dissolved at the following ratio was used.

この電池を人とした。また比較としてJIS規格のS 
U S 304のステンレス鋼(表中巳に組成を示す)
からなる封口板を用いた従来構成の電池をBとした。ま
た、表中Cに示す組成のステンレス鋼からなる封口板を
用いた構成の電池をCとした。
This battery was made into a person. For comparison, the JIS standard S
US 304 stainless steel (composition shown in table middle)
A battery with a conventional configuration using a sealing plate made of B was designated as B. Further, a battery having a configuration using a sealing plate made of stainless steel having the composition shown in C in the table was designated as C.

尚、いずれの電池も直径20mm、厚さ2.5mmで容
量は、2vから1vの範囲で約20 mAhである。
Each battery has a diameter of 20 mm, a thickness of 2.5 mm, and a capacity of approximately 20 mAh in the range of 2 V to 1 V.

(以 下 余 白) これら電池の組立直後と、60℃温度雰囲気中で10に
Ωの定抵抗放電を2ケ月行った後に室温で各特性を測定
し表2に示した。尚、放電容量は電池を2vの電圧で2
4時間、定電圧充電を行った後、10にΩの定抵抗放電
を行い、1vカツトで測定した電気容量である。
(Left below) Characteristics of these batteries were measured at room temperature immediately after assembly and after two months of constant resistance discharge of 10Ω in an atmosphere at 60° C., and are shown in Table 2. In addition, the discharge capacity of the battery is 2V at a voltage of 2V.
After performing constant voltage charging for 4 hours, constant resistance discharge of 10 Ω was performed, and the capacitance was measured with a 1 V cut.

(以 下 余 白) また、各位は電池20個の平均値である。(Hereafter, extra white) Moreover, each value is an average value of 20 batteries.

表から明らかなようにクロムとモリブデンを含むステン
レス鋼からなる封口板を用いた本発明の電池人は、高温
で長期過放電を行った後でも、従来品Bに比べ、内部抵
抗の異常増加もなくまた、充電により、初期と同等の放
電容量を得ることができる。また電池人、B、Q各電池
を上記試験後、分解調査を行った結果、電池B、Cの封
口板の内面が腐食していた。しかし電池人については封
口板の腐食はみられなかった。また電池人とCの比較か
ら耐食性においてモリブデンの添加効果が大きいことが
わかる。
As is clear from the table, the battery of the present invention using a sealing plate made of stainless steel containing chromium and molybdenum has no abnormal increase in internal resistance compared to conventional product B even after long-term overdischarge at high temperatures. Moreover, by charging, it is possible to obtain a discharge capacity equivalent to that at the initial stage. Further, after the above tests, batteries B and Q were disassembled and investigated, and the inner surfaces of the sealing plates of batteries B and C were found to be corroded. However, no corrosion of the sealing plate was observed for the battery man. Furthermore, from the comparison between Battery Man and C, it can be seen that the addition of molybdenum has a large effect on corrosion resistance.

次に第3図にモリブデン及びクロムの含有量が異なる鋼
を前述の電解液において、リチウムに対し2.5vの電
圧を印加した状態で、7o℃雰囲気中に1ケ月保存した
場合の腐食度について示す。
Next, Figure 3 shows the degree of corrosion when steels with different contents of molybdenum and chromium are stored in the above-mentioned electrolyte in an atmosphere of 7oC for one month with a voltage of 2.5V applied to lithium. show.

第3図ではモリブデンの添加量を0〜1.6重量%で示
したが、3重量%を越えると非常にもろくなり、鋼材の
圧延等の加工が非常に困難となる。この結果、モリブデ
ンの好ましい添加量は1〜3重量%であった。
In FIG. 3, the amount of molybdenum added is shown as 0 to 1.6% by weight, but if it exceeds 3% by weight, the steel becomes extremely brittle and processing such as rolling of the steel material becomes extremely difficult. As a result, the preferred amount of molybdenum added was 1 to 3% by weight.

尚、この試験に用いた鋼は市場から得られるステンレス
鋼あるいは試作的に作られた鋼を用いたモノで、クロム
、モリブデン以外の不純物、例えばマンガン、炭素、ニ
ッケル、ンリコンその他の不純物の量は同じではなく、
わずかに異っているものである。
The steel used in this test was commercially available stainless steel or prototype steel, and the amount of impurities other than chromium and molybdenum, such as manganese, carbon, nickel, and licon, was small. not the same,
They are slightly different.

発明の効果 以上の説明から明らかなように、電池の封口板にケース
の構成材料と同様に耐食性の強いもの、特にモリブデン
を1〜3重量係含有し、かつクロムを15〜18重量%
含有したステンレス鋼を用いることにより、長期過放電
、特に高温中での長期過放電による電池特性の劣化を防
止することができる。
Effects of the Invention As is clear from the above explanation, the battery sealing plate contains a highly corrosion-resistant material similar to the case constituent material, particularly molybdenum in an amount of 1 to 3% by weight, and chromium in an amount of 15 to 18% by weight.
By using stainless steel containing stainless steel, it is possible to prevent deterioration of battery characteristics due to long-term overdischarge, especially long-term overdischarge at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は定抵抗放電における電池の各単極の電位変化を
示す図、第2図は本発明の実施例における電池の縦断面
図、第3図は本発明の実施例における電池の試験結果を
示す図である。 1・・・・・ケース、2・・・・・・封口板、3・・川
・ガスケット、4・・・・・・正極、6・・・・・・負
極、6・・印・セバレ・−タ、7・・・・・・リチウム
、8・・・・・・正極集電体、9・・・・・・負極集電
体。 代理人の氏名 弁理士 粟 野 重 孝 はが1名筆 図 1−ケース 2−−一打口木に 3−J’スケ、Y 6’−−−ビハ′L−夕 7− リtウム
Fig. 1 is a diagram showing the potential change of each single pole of the battery during constant resistance discharge, Fig. 2 is a vertical cross-sectional view of the battery in the embodiment of the present invention, and Fig. 3 is the test result of the battery in the embodiment of the present invention. FIG. 1...Case, 2...Sealing plate, 3...River/Gasket, 4...Positive electrode, 6...Negative electrode, 6...Mark/Severe... -ta, 7...Lithium, 8...Positive electrode current collector, 9...Negative electrode current collector. Name of agent Patent attorney Shigetaka Awano 1 hand drawing 1-Case 2--3-J'ske on one stroke, Y 6'--Biha'L-Y7- Lithium

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムイオンと層間化合物を形成し得る金属酸
化物から成る正極活物質及び負極活物質と、有機電解液
を有し、前記負極活物質と直接あるいは間接的に接する
封口板構成部材としてモリブデンを1〜3重量%及びク
ロムを15〜18重量%含む鋼を用いた有機電解液二次
電池。
(1) Molybdenum is used as a sealing plate component that has a positive electrode active material and a negative electrode active material made of a metal oxide capable of forming an interlayer compound with lithium ions, and an organic electrolyte, and is in direct or indirect contact with the negative electrode active material. An organic electrolyte secondary battery using steel containing 1 to 3% by weight of chromium and 15 to 18% by weight of chromium.
(2)前述の正極活物質と負極活物質がそれぞれ五酸化
バナジウムと五酸化ニオブである特許請求の範囲第1項
記載の有機電解液二次電池。
(2) The organic electrolyte secondary battery according to claim 1, wherein the positive electrode active material and the negative electrode active material are vanadium pentoxide and niobium pentoxide, respectively.
JP63332862A 1988-12-27 1988-12-27 Organic electrolyte secondary battery Expired - Lifetime JP2763561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332862A JP2763561B2 (en) 1988-12-27 1988-12-27 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332862A JP2763561B2 (en) 1988-12-27 1988-12-27 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH02174078A true JPH02174078A (en) 1990-07-05
JP2763561B2 JP2763561B2 (en) 1998-06-11

Family

ID=18259633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332862A Expired - Lifetime JP2763561B2 (en) 1988-12-27 1988-12-27 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2763561B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147368A (en) * 1980-04-18 1981-11-16 Yuasa Battery Co Ltd Organic electrolyte secondary battery
JPS6293868A (en) * 1985-10-17 1987-04-30 Bridgestone Corp Secondary battery
JPS63124358A (en) * 1986-11-12 1988-05-27 Matsushita Electric Ind Co Ltd Battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147368A (en) * 1980-04-18 1981-11-16 Yuasa Battery Co Ltd Organic electrolyte secondary battery
JPS6293868A (en) * 1985-10-17 1987-04-30 Bridgestone Corp Secondary battery
JPS63124358A (en) * 1986-11-12 1988-05-27 Matsushita Electric Ind Co Ltd Battery

Also Published As

Publication number Publication date
JP2763561B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JP2680685B2 (en) Non-aqueous electrolyte secondary battery
EP0364626B1 (en) Lithium secondary battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH02174078A (en) Organic electrolyte secondary battery
JPH02204976A (en) Electrochenical battery and its manufacture
JPWO2017081834A1 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery member
JP2006164527A (en) Flat type nonaqueous electrolytic solution battery
JPH04104468A (en) Nonaqueous electrolyte battery
JPH02174070A (en) Organic electrolyte secondary battery
JPH02174053A (en) Organic electrolyte secondary battery
JP3891188B2 (en) Non-aqueous electrolyte battery and battery case material
JPH02236972A (en) Polyaniline battery
JPS63198260A (en) Nonaqueous electrolyte battery
JPH0794212A (en) Organic electrolyte secondary battery
JPS62274556A (en) Nonaqueous electrolyte battery
JP2002063906A (en) Flat nonaqueous electrolyte secondary battery
JPS63124358A (en) Battery
JPH08222209A (en) Nonaqueous electrolyte battery and manufacture of its positive electrode
JPH0574464A (en) Sealed lead-acid storage battery
JPS62272458A (en) Non-aqueous electrolytic solution cell
JPS59191259A (en) Cell
JP2003253400A (en) Austenitic stainless steel for button-type lithium secondary battery case, and battery case using the same
JPS6012677A (en) Solid electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11