JPH02173531A - Infrared ray detecting device - Google Patents

Infrared ray detecting device

Info

Publication number
JPH02173531A
JPH02173531A JP63328387A JP32838788A JPH02173531A JP H02173531 A JPH02173531 A JP H02173531A JP 63328387 A JP63328387 A JP 63328387A JP 32838788 A JP32838788 A JP 32838788A JP H02173531 A JPH02173531 A JP H02173531A
Authority
JP
Japan
Prior art keywords
infrared
light receiving
photodetector
fiber
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63328387A
Other languages
Japanese (ja)
Inventor
Yoshiharu Komine
小峰 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63328387A priority Critical patent/JPH02173531A/en
Publication of JPH02173531A publication Critical patent/JPH02173531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To limit back light without providing a cold shield and to miniaturize and simplify the vicinity of a photodetector by setting an infrared optical fiber in the photodetector of an infrared light receiving element. CONSTITUTION:The infrared optical fiber 11 whose diameter of core is larger than that of the photodetector 13 is provided in the photodetector 13 of the infrared light receiving element 6. In the case that the 6 is an array, the fiber 11 is provided every picture element 13 which is the photodetector. When the device is produced by changing the length of the fiber 11 and is compared with a conventional one, they exhibit nearly equal infrared signal detecting ability at 1mm length of the fiber. When the diameter of core of the fiber 11 is made smaller than that of the photodetector 13 of the infrared element 6, the infrared signal detecting ability thereof lowers. By providing the fiber 11 whose diameter of core is larger than that of the photodetector 13 in the photodetector 13 of the infrared element 6, the back light is efficiently limited and the infrared signal detecting ability is enhanced. In the case that the element 6 is an array, moreover, the infrared signal detecting ability of each picture element can be uniformized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は赤外線検出装置に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to an infrared detection device.

〔従来の技術〕[Conventional technology]

第3図は従来公知の赤外線検出装置の一例を示し、図に
おいて、lはデユワ外管、2はデユワ内管で、これらは
ステンレスでできている。外管1と内管2の間隙3は断
熱のため真空になっている。
FIG. 3 shows an example of a conventionally known infrared detection device. In the figure, 1 is an outer dewar tube, 2 is an inner dewar tube, and these are made of stainless steel. A gap 3 between the outer tube 1 and the inner tube 2 is evacuated for insulation.

4は冷媒で、通常液体窒素等が多用される。5は冷媒4
の導入口、6は赤外線受光素子、7は受光素子6へ入射
する背景光を制限するためのコールドシールド、8はコ
ールドシールド7に設けられた中空窓である。信号光1
0は赤外線透過窓9及び中空窓8を通って受光素子6へ
入射する。
4 is a refrigerant, which is usually liquid nitrogen or the like. 5 is refrigerant 4
6 is an infrared light receiving element, 7 is a cold shield for restricting background light entering the light receiving element 6, and 8 is a hollow window provided in the cold shield 7. Signal light 1
0 enters the light receiving element 6 through the infrared transmitting window 9 and the hollow window 8.

室温近傍の対象物質が放出する赤外線を赤外線受光素子
で検出する場合、この赤外線(信号光)は周囲の物質(
室温)から常に放射されている赤外線(背景光)に比べ
微弱であるため、受光素子の赤外信号検出能力を上げる
には、できる限り背景光を制限する必要がある。第3図
において、コールドシールド7がない場合、室温のデユ
ワ外管1及び赤外線透過窓9が放出する背景赤外光が立
体角180’で素子6に入射するため、赤外信号の検出
能力が低い。これを向上させるため、従来ではコールド
シールド7を設けていた。コールドシールド7は受光素
子6とともに冷媒で冷やされているため、コールドシー
ルド7からの背景赤外光は無視できる。従って、入射背
景光は第3図に示す点線の範囲(角度θ)に制限され、
よって赤外信号検出能力が向上する。
When an infrared receiving element detects infrared rays emitted by a target substance near room temperature, this infrared ray (signal light) is detected by surrounding substances (
Since infrared light (background light) is weaker than the infrared light (background light) that is constantly emitted from room temperature, it is necessary to limit background light as much as possible in order to improve the infrared signal detection ability of the light receiving element. In FIG. 3, in the absence of the cold shield 7, the background infrared light emitted by the dewar outer tube 1 and the infrared transmitting window 9 at room temperature enters the element 6 at a solid angle of 180', which reduces the ability to detect infrared signals. low. In order to improve this, a cold shield 7 has conventionally been provided. Since the cold shield 7 is cooled with a refrigerant together with the light receiving element 6, the background infrared light from the cold shield 7 can be ignored. Therefore, the incident background light is limited to the range (angle θ) shown by the dotted line in Figure 3,
Therefore, the infrared signal detection ability is improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の赤外線検出装置では、上記のようにコールドシー
ルドを設けているため、受光部近傍が大型化し、複雑に
なるという問題点があった。
In the conventional infrared detection device, since the cold shield is provided as described above, there is a problem that the area near the light receiving section becomes large and complicated.

また、第4図に示すように、受光部(画素)がアレイ状
に並んだアレイ素子6′の場合は、アレイ素子6′の中
心部の画素が中空窓8を見る角度θ1と、端部の画素が
中空窓8を見る角度θ2は、θ、〉θ2と異なるため、
中心部と端部の画素の赤外信号検出能力が異なってしま
うという問題点があった。
In addition, as shown in FIG. 4, in the case of an array element 6' in which light receiving parts (pixels) are arranged in an array, the angle θ1 at which the central pixel of the array element 6' looks at the hollow window 8 and the end Since the angle θ2 at which the pixel looks at the hollow window 8 is different from θ, 〉θ2,
There was a problem in that the infrared signal detection abilities of the pixels at the center and at the edges were different.

この発明は上記のような従来のものの問題点を解〆肖す
るためになされたもので、コールドシールド傍を小型化
、単純化することのできる赤外線検出装置を得ることを
目的とする。
The present invention has been made to solve the problems of the conventional ones as described above, and its object is to obtain an infrared detection device that can miniaturize and simplify the area around the cold shield.

また、受光素子がアレイ状のものである場合、各画素の
赤外信号検出能力を均一にできる赤外線検出装置を得る
ことを目的とする。
Another object of the present invention is to obtain an infrared detection device that can make the infrared signal detection ability of each pixel uniform when the light receiving elements are arranged in an array.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る赤外線検出装置は、赤外線受光素子の受
光部に、該受光部より大きなコア径を持つ赤外光ファイ
バを設けるようにしたものである。
In the infrared detection device according to the present invention, an infrared optical fiber having a core diameter larger than that of the light receiving portion is provided in the light receiving portion of the infrared light receiving element.

また、赤外線受光素子がアレイの場合は、受光部である
各画素ごとに赤外光ファイバを設けるようにしたもので
ある。
Further, when the infrared light receiving element is an array, an infrared optical fiber is provided for each pixel which is a light receiving section.

〔作用〕[Effect]

この発明における赤外線検出装置は、赤外線受光素子の
受光部に赤外光ファイバを設けるようにしたので、背景
光を効率よく制限でき、赤外信号検出能力を向上させる
ことができる。
In the infrared detection device according to the present invention, since the infrared optical fiber is provided in the light receiving section of the infrared light receiving element, background light can be efficiently restricted and the infrared signal detection ability can be improved.

また、赤外線受光素子がアレイである場合、各画素ごと
に赤外光ファイバを設けるようにしたので、上記効果に
加え、各画素の赤外信号検出能力を均一にできる。
Further, when the infrared receiving element is an array, an infrared optical fiber is provided for each pixel, so in addition to the above effects, the infrared signal detection ability of each pixel can be made uniform.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による赤外線検出装置の受
光素子近傍を示す図である。第1図において、第3図と
同一符号は同一部分を示す。赤外線受光素子6は、Cd
HgTeからなるカットオフ波長10μmの光導電型受
光素子で、その受光部13は50μm×50μmである
。11は赤外光ファイバで、そのコアはZnSeからな
り、クラッドはZnSeの表面にZnSを蒸着、熱拡散
することにより形成される。コア径は80μmであり、
上記受光部13全体を覆っている。12は赤外光ファイ
バ11を固定するための接着剤である。
FIG. 1 is a diagram showing the vicinity of a light receiving element of an infrared detection device according to an embodiment of the present invention. In FIG. 1, the same reference numerals as in FIG. 3 indicate the same parts. The infrared light receiving element 6 is made of Cd
It is a photoconductive type light receiving element made of HgTe and has a cutoff wavelength of 10 μm, and its light receiving portion 13 is 50 μm×50 μm. Reference numeral 11 denotes an infrared optical fiber, the core of which is made of ZnSe, and the cladding is formed by depositing and thermally diffusing ZnS on the surface of ZnSe. The core diameter is 80 μm,
The light receiving section 13 is entirely covered. 12 is an adhesive for fixing the infrared optical fiber 11.

次に、作用効果について説明する。Next, the effects will be explained.

赤外光ファイバ11の開口数(NA)に応じ、ファイバ
端面の法線からα□. = sin −’  (NA)
以下の入射角で入射する赤外光以外はファイバll中を
伝搬しないため、受光素子6に達する赤外光の入射角度
は最大2α□8となる。波長10μmでのコアの屈折率
n1は2.407である。ここで、クランドの屈折率n
2を2.383に調整すると、α□,ーsin日 <0
.  34)=19.  9  。
Depending on the numerical aperture (NA) of the infrared optical fiber 11, α□. = sin −' (NA)
Since only infrared light that enters at the following incident angles does not propagate through the fiber 11, the incident angle of the infrared light that reaches the light receiving element 6 is 2α□8 at maximum. The refractive index n1 of the core at a wavelength of 10 μm is 2.407. Here, the crand refractive index n
2 to 2.383, α□,−sin days <0
.. 34)=19. 9.

2α□.−39.8’ と計算される。ファイバ11の長さを変えてデバイスを
作製し、第3図の従来装置において角度θ(−2α□.
)=40°とした場合と比較したところ、ファイバ長1
龍でほぼ同等の赤外信号検出能力を示した。
2α□. -39.8' is calculated. Devices were fabricated by changing the length of the fiber 11, and the angle θ (-2α□.
)=40°, the fiber length is 1
It showed almost the same infrared signal detection ability as Ryu.

また、ファイバ11のコア径を受光素子6の受光部13
より小さくしたところ、予想通り赤外信号検出能力は低
下した。
In addition, the core diameter of the fiber 11 is determined by the light receiving part 13 of the light receiving element 6.
When the size was made smaller, the infrared signal detection ability decreased as expected.

第2図はこの発明の第2の実施例による赤外線検出装置
の受光素子近傍を示し、本実施例は、受光部(画素)1
31,132.・・・がアレイ状に並んだ受光素子6′
に赤外光ファイバiii,z2、・・・を設置したもの
である。
FIG. 2 shows the vicinity of a light receiving element of an infrared detection device according to a second embodiment of the present invention.
31,132. ... are arranged in an array 6'
Infrared optical fibers iii, z2, .

各画素の面積は50μm×50μmで、ピッチは100
77mの1次元アレイである。各画素ごとに、上記第1
の実施例で使用したコア径が80μmの光ファイバ11
と同様の光ファイバ111゜112、・・・を設置した
ところ、上記第1の実施例とほぼ同様の効果が認められ
た。
The area of each pixel is 50 μm x 50 μm, and the pitch is 100
It is a 77m one-dimensional array. For each pixel, the first
Optical fiber 11 with a core diameter of 80 μm used in the example
When similar optical fibers 111, 112, . . . were installed, almost the same effect as in the first embodiment was observed.

なお、この第2の実施例では、受光素子が1次元アレイ
の場合について述べたが、受光素子は2次元アレイであ
ってもよい。
In this second embodiment, the case where the light-receiving elements are one-dimensional arrays has been described, but the light-receiving elements may be two-dimensional arrays.

このように、上記両実施例では、赤外線受光素子6の受
光部に、該受光部より大きなコア径を持つ赤外光ファイ
バを設けるようにしたので、背景光を効率よく制限でき
、赤外信号検出能力を向上できる。また、従来の装置に
比して受光素子6近傍を小型化、単純化できるので、製
造コストの低減を図ることができる。さらに、赤外線受
光素子がアレイの場合は、各画素ごとに赤外光ファイバ
を設けるようにしたので、上記の効果に加えて、各画素
の赤外信号検出能力を均一化することができる。
In this way, in both of the above embodiments, the light receiving part of the infrared light receiving element 6 is provided with an infrared optical fiber having a core diameter larger than that of the light receiving part, so that the background light can be efficiently restricted and the infrared signal Detection ability can be improved. Furthermore, since the vicinity of the light receiving element 6 can be made smaller and simpler than in conventional devices, manufacturing costs can be reduced. Further, when the infrared receiving element is an array, an infrared optical fiber is provided for each pixel, so in addition to the above effects, the infrared signal detection ability of each pixel can be made uniform.

なお、上記両実施例では、受光素子がCdHgTeの場
合について述べたが、InSb等からなる受光素子を用
いてもよく、上記と同様の効果を奏する。
In both of the above embodiments, the case where the light receiving element is made of CdHgTe has been described, but a light receiving element made of InSb or the like may also be used, and the same effects as described above can be obtained.

さらに、上記両実施例では、赤外光ファイバはZn5e
としたが、この赤外光ファイバはCdTeまたはTlB
r−置系(KR3−5)等を用いてもよく、上記と同様
の効果を奏する。
Furthermore, in both of the above embodiments, the infrared optical fiber is made of Zn5e.
However, this infrared optical fiber is made of CdTe or TlB.
An r-position system (KR3-5) or the like may also be used, and the same effects as above can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る赤外線検出装置によれば
、赤外線受光素子の受光部に赤外光ファイバを設置した
ので、赤外背景光を効率よく制限でき、赤外信号検出能
力の向上を図ることができる効果がある。また、受光部
近傍の小型化、単純化により、製造コストを低減できる
効果がある。
As described above, according to the infrared detection device according to the present invention, since the infrared optical fiber is installed in the light receiving part of the infrared receiving element, the infrared background light can be efficiently restricted, and the infrared signal detection ability can be improved. There are effects that can be achieved. Further, by downsizing and simplifying the vicinity of the light receiving section, manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例による、赤外線検出装
置の受光素子近傍を示す図、第2図はこの発明の第2の
実施例による、赤外線検出装置の一次元アレイ受光素子
近傍を示す図、第3図は従来の赤外線検出装置を示す図
、第4図は第3図の装置の受光素子近傍を示す図である
。 図において、1はデユワ外管、2はデユワ内管、3は真
空断熱部、4は冷媒、5は冷媒導入口、6は赤外線受光
素子、6′はアレイ状の赤外線受光素子、7はコールド
シールド、8は中空窓、9は赤外透過窓、10は入射赤
外線、11,111゜112、・・・は赤外光ファイバ
、13,131,132、・・・は受光素子の受光部(
画素)、12は接着剤である。 なお図中同一符号は同−又は相当部分を示す。 第1図
FIG. 1 is a diagram showing the vicinity of a light-receiving element of an infrared detector according to a first embodiment of the present invention, and FIG. 2 is a diagram showing the vicinity of a one-dimensional array light-receiving element of an infrared detector according to a second embodiment of the present invention. 3 is a diagram showing a conventional infrared detection device, and FIG. 4 is a diagram showing the vicinity of a light receiving element of the device in FIG. 3. In the figure, 1 is the dewar outer tube, 2 is the dewar inner tube, 3 is the vacuum insulation part, 4 is the refrigerant, 5 is the refrigerant inlet, 6 is the infrared receiving element, 6' is the array-shaped infrared receiving element, 7 is the cold 8 is a hollow window, 9 is an infrared transmitting window, 10 is an incident infrared ray, 11, 111° 112, . . . are infrared optical fibers, 13, 131, 132, .
(pixel), 12 is an adhesive. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)赤外線検出装置において、 赤外線受光素子の受光部に、該受光部よりも大きなコア
径を持つ赤外光ファイバを、該受光部を覆うように設置
してなることを特徴とする赤外線検出装置。
(1) An infrared detection device, characterized in that an infrared optical fiber having a core diameter larger than the light receiving part is installed in the light receiving part of the infrared receiving element so as to cover the light receiving part. Device.
(2)アレイ状の赤外線受光素子を有する赤外線検出装
置において、 上記アレイ状の赤外線受光素子の各受光部に、該受光部
よりも大きなコア径を持つ赤外光ファイバを、該受光部
を覆うように設置してなることを特徴とする赤外線検出
装置。
(2) In an infrared detection device having an array of infrared light receiving elements, each light receiving part of the array of infrared light receiving elements is covered with an infrared optical fiber having a core diameter larger than that of the light receiving part. An infrared detection device characterized by being installed as follows.
JP63328387A 1988-12-26 1988-12-26 Infrared ray detecting device Pending JPH02173531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63328387A JPH02173531A (en) 1988-12-26 1988-12-26 Infrared ray detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63328387A JPH02173531A (en) 1988-12-26 1988-12-26 Infrared ray detecting device

Publications (1)

Publication Number Publication Date
JPH02173531A true JPH02173531A (en) 1990-07-05

Family

ID=18209681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328387A Pending JPH02173531A (en) 1988-12-26 1988-12-26 Infrared ray detecting device

Country Status (1)

Country Link
JP (1) JPH02173531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680540B2 (en) * 2003-01-28 2014-03-25 Sony Corporation Optical semiconductor apparatus having a bidirectional communication system employing a single-core optical fiber
JP2014149263A (en) * 2013-02-04 2014-08-21 Toshiba Corp Temperature measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680540B2 (en) * 2003-01-28 2014-03-25 Sony Corporation Optical semiconductor apparatus having a bidirectional communication system employing a single-core optical fiber
JP2014149263A (en) * 2013-02-04 2014-08-21 Toshiba Corp Temperature measuring device

Similar Documents

Publication Publication Date Title
US4820923A (en) Uncooled reflective shield for cryogenically-cooled radiation detectors
US4087688A (en) Infrared radiation-burglary detector
US4742236A (en) Flame detector for detecting phase difference in two different wavelengths of light
US5254858A (en) System having non-imaging concentrators for performing IR transmission spectroscopy
KR920005443B1 (en) Optical sensor
US4962311A (en) Device for determining the direction of incident laser radiation
JPH07117619B2 (en) Multi-directional non-imaging device and multi-directional non-imaging system
US4876445A (en) Intrusion detection device with extended field of view
US4058726A (en) Radiation detector
US5479009A (en) Highly efficient collection optical systems for providing light detectors such as photodetectors and the like with hemispherical fields of view
EP1145064B1 (en) Ultra-wide field of view concentric sensor system
US4315279A (en) Color image detecting device
JPH02173531A (en) Infrared ray detecting device
EP1618424B1 (en) Infrared imaging system comprising monolithic lens/reflector optical component
US5378892A (en) Angle filter for use in an infrared optical system
US4429223A (en) Infrared intrusion detector
JPH0282122A (en) Infrared image pickup device
US3348058A (en) Radiation detection system having wide field of view
JPH01155220A (en) Infrared optical system
US4585937A (en) High efficiency fiber-shaped detector
JPH03243834A (en) Infrared detector
JP2531197B2 (en) Compound optical system device
JPH04263206A (en) Optical circuit
US6382555B1 (en) Fiber optics assembly
SU1040290A1 (en) Solar plant tracking system transducer