JPH0217311B2 - - Google Patents

Info

Publication number
JPH0217311B2
JPH0217311B2 JP57023565A JP2356582A JPH0217311B2 JP H0217311 B2 JPH0217311 B2 JP H0217311B2 JP 57023565 A JP57023565 A JP 57023565A JP 2356582 A JP2356582 A JP 2356582A JP H0217311 B2 JPH0217311 B2 JP H0217311B2
Authority
JP
Japan
Prior art keywords
point
section
points
arc
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57023565A
Other languages
Japanese (ja)
Other versions
JPS58143980A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP2356582A priority Critical patent/JPS58143980A/en
Priority to US06/466,521 priority patent/US4641251A/en
Priority to DE8383300784T priority patent/DE3380117D1/en
Priority to EP83300784A priority patent/EP0086669B1/en
Publication of JPS58143980A publication Critical patent/JPS58143980A/en
Publication of JPH0217311B2 publication Critical patent/JPH0217311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Description

【発明の詳細な説明】 本発明は、ロボツト装置を制御する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a robotic device.

従来から、例えば手動や或いは倣い装置等によ
る他律的、強制的な運動が与えられると、この時
の作動プロセスを記憶して、爾後はその作動プロ
セスを随時反復し得る能力を備えたロボツト装置
が知られており、このようなロボツト装置は、人
間と同様な作業が可能なロボツトとして現在工場
等に限らず広い分野で利用されるようになつてき
ている。
Conventionally, robotic devices have been equipped with the ability to memorize the operating process at that time when a heteronomous or forced movement is applied, for example, manually or by a copying device, and then repeat that operating process at any time. These robot devices are now being used not only in factories but also in a wide range of fields as robots capable of performing tasks similar to those performed by humans.

而して、現在この種のロボツト装置の機能は従
来の装置に比べると大幅に向上しているが、その
反面、制御回路等は益々高度化され、大容量、高
速のものが要求されてきている。
Currently, the functions of this type of robotic equipment are significantly improved compared to conventional equipment, but on the other hand, control circuits, etc. are becoming increasingly sophisticated, and larger capacity and higher speeds are required. There is.

また、この種のロボツト装置では、装置を入力
で動かすことにより、プログラムを自動的に設定
するものであるため、実際の作動が必ずしも最も
合理的にかつスムースに行われるとは限らないと
いう問題があつた。
In addition, with this type of robotic equipment, the program is automatically set by operating the equipment with input, so there is a problem that the actual operation is not necessarily carried out in the most rational and smooth manner. It was hot.

本発明は叙上の観点にたつてなされたものであ
つて、その目的とするところは、ここのような人
力等の他方によつて動かすことにより動作プログ
ラムが自動的に設定されるロボツト装置の制御方
法に於て、さほど大容量、高速でない制御装置で
足り、しかも常時円滑な作動を保証し得る新規な
制御方法を提供することにある。
The present invention has been made based on the above-mentioned viewpoints, and its purpose is to develop a robot device in which an operation program is automatically set by moving it by human power or the like. The object of the present invention is to provide a new control method that requires a control device that is not very large in capacity and high speed, and that can guarantee smooth operation at all times.

而して、その要旨とするところは、この種ロボ
ツト装置の特定点の複雑な運動径路を、後述する
各工程によつて直線と円弧とにより置換、単純化
し、この単純化した径路に沿つて上記特定点を移
動せしめることにある。
The gist of this is to replace and simplify the complicated motion path of a specific point of this type of robot device with a straight line and a circular arc through each process described below, and to move along this simplified path. The purpose is to move the specific point.

以下、図面により本発明の詳細を具体的に説明
する。
Hereinafter, the details of the present invention will be specifically explained with reference to the drawings.

第1図は溶接ロボツト装置の制御に本発明方法
を適用した一実施例を示す斜視図、2図は手動で
設定された特定点の軌跡と本発明方法により設定
される移動径路との関係を示す説明図、第3図は
本発明方法を実施する際の具体的手順を示す説明
図である。
Fig. 1 is a perspective view showing an embodiment in which the method of the present invention is applied to control a welding robot device, and Fig. 2 shows the relationship between the locus of a manually set specific point and the movement path set by the method of the present invention. FIG. 3 is an explanatory diagram showing a specific procedure for carrying out the method of the present invention.

而して、図中、1は溶接ヘツド2を備えたロボ
ツト、3は溶接棒、4及び5は溶接される鋼板製
のシエル、6は溶接線であり、ロボツト1は回転
基台1a、アーム1b,1c,1d,1e、自在
継手1f,1g及び1iから成り、溶接ヘツド2
は溶接棒繰出装置2a及びアークウオツチ2bを
具備する。
In the figure, 1 is a robot equipped with a welding head 2, 3 is a welding rod, 4 and 5 are steel shells to be welded, and 6 is a welding line. 1b, 1c, 1d, 1e, universal joints 1f, 1g and 1i, welding head 2
is equipped with a welding rod feeding device 2a and an arc watch 2b.

なお、ロボツト1は、各部を作動させるアクチ
ユエータやサーボ制御装置、各種のセンサー類、
演算装置、エンコーダ、動力装置等を有し、溶接
ヘツド2は、溶接棒自動フイーダやウイービング
機構、溶接電流制御回路路等を具備するものであ
るが、本発明はそれらとは特別な関係を有しない
ものであるので、ここでは説明を省略する。
The robot 1 includes actuators and servo control devices that operate each part, various sensors,
The welding head 2 is equipped with an automatic welding rod feeder, a weaving mechanism, a welding current control circuit, etc., and the present invention has a special relationship with these. Since this is not the case, the explanation will be omitted here.

第1図に於て、シエル4及び5は図示されてい
ない治具及び取付け台により固定されており、ロ
ボツト1及び溶接ヘツド2により溶接線6に沿つ
て溶接されるものである。
In FIG. 1, shells 4 and 5 are fixed by a jig and a mounting base (not shown), and are welded along a welding line 6 by a robot 1 and a welding head 2.

而して、まず最初は、溶接に先立つて、溶接棒
3の代りに所定のダミー3′を取付け、手動でア
ーム1b,1c,1d,1eを動かし、ダミー
3′の先端の点A(溶接棒3のアーク点に相当する
点)を溶接線6に当接せしめつつ、始点Poから
終点Pzまで移動させる。
Therefore, first, prior to welding, a specified dummy 3' is attached in place of the welding rod 3, and the arms 1b, 1c, 1d, and 1e are manually moved to point A (welding) at the tip of the dummy 3'. The rod 3 (corresponding to the arc point) is brought into contact with the welding line 6, and is moved from the starting point Po to the ending point Pz.

然るときは、ロボツト1の作動状況、即ち、自
在継手1f,1g,1iの回転角変化率が図示さ
れていない記憶装置に記録されるので、爾後は随
時これと同一のプロセスを繰り返し得るようにな
る。
In such a case, the operating status of the robot 1, that is, the rotation angle change rate of the universal joints 1f, 1g, and 1i, is recorded in a storage device (not shown), so that the same process can be repeated at any time thereafter. become.

従つて、上記ダミー3′を取り去し、溶接棒3
を供給し、溶接ヘツド2を作動させれば、シエル
4,5の溶接を行わせることができる。
Therefore, the dummy 3' is removed and the welding rod 3
By supplying the welding head 2 and operating the welding head 2, the shells 4 and 5 can be welded.

実際の溶接線6は、曲率と捩率を有する三次元
曲線であるが、ここでは説明を簡略にするため、
溶接線6は第1図、第2図に示す如く、xz平面
上にある二次元曲線であるとする。
Although the actual welding line 6 is a three-dimensional curve having curvature and torsion, here, to simplify the explanation,
It is assumed that the welding line 6 is a two-dimensional curve on the xz plane, as shown in FIGS. 1 and 2.

上記溶接ヘツド2の移動は、三次元デカルト座
標が用いられるときは、装置の構成に応じて各座
標軸方向の設定単位(通常10μm乃至10mm)によ
り同時、に一軸、二軸又は三軸動作によつて行わ
れる。この設定単位はアーム部等により大小に設
定するようにしてもよい。
When three-dimensional Cartesian coordinates are used, the movement of the welding head 2 is performed simultaneously by one-, two-, or three-axis movement in the setting units (usually 10 μm to 10 mm) in each coordinate axis direction depending on the configuration of the device. It is carried out with This setting unit may be set to be large or small depending on the arm portion or the like.

また、実際には溶接ヘツド2の姿勢も制御しな
ければならないから、第2図に示すアークの中心
点に相当する点Aの軌跡、即ち、溶接線6の他、
溶接ヘツド2に設けた基準点Bの軌跡7も記録、
制御しなければならないが、ここではまず、点A
の制御に就いてのみ説明する。
In addition, since the attitude of the welding head 2 must actually be controlled, the trajectory of the point A corresponding to the center point of the arc shown in FIG.
The locus 7 of the reference point B set on the welding head 2 is also recorded.
We need to control the point A.
Only the control will be explained.

溶接棒3の代りにダミー3′を取付け、その先
端の点Aを溶接線6に沿つて手動で移動させる。
A dummy 3' is attached in place of the welding rod 3, and the point A at the tip thereof is manually moved along the welding line 6.

而して、移動中、適宜の時間間隔毎又は移動距
離毎に各自在継手1f,1g,1iの角度が図示
されていないエンコーダにより読み取られ、逐次
記録される。
During the movement, the angles of the universal joints 1f, 1g, 1i are read by an encoder (not shown) at appropriate time intervals or for each moving distance, and are sequentially recorded.

而して、実際の溶接作業を行わせるとき、従来
は、この自在継手1f,1g,1iの角度変化を
追跡再現し、溶接棒3の先端を溶接線6に沿つて
移動させていた。
Conventionally, when performing actual welding work, the angular changes of the universal joints 1f, 1g, 1i are tracked and reproduced, and the tip of the welding rod 3 is moved along the welding line 6.

勿論実際には溶接棒3は急速に消耗するから、
この方法で直接に制御されるのは溶接棒繰出装置
2aの中心線と、アークウオツチ2bの光軸の交
点であり、溶接棒繰出装置2aは常時溶接棒3の
先端アークがアークウオツチ2bの視野内に位置
するよう溶接棒3を繰り出し、その消耗を補充す
るものである。
Of course, in reality, the welding rod 3 wears out quickly, so
What is directly controlled by this method is the intersection of the center line of the welding rod feeding device 2a and the optical axis of the arc watch 2b, and the welding rod feeding device 2a always keeps the tip arc of the welding rod 3 within the field of view of the arc watch 2b. This is to feed out the welding rod 3 so that it is in the correct position, and to replenish the wear.

而して、この方法では、各自在継手1f,1
g,1iの角度を詳細に記録するため極めて大容
量の記憶装置を必要とする。
Therefore, in this method, each universal joint 1f, 1
In order to record the angles g and 1i in detail, an extremely large capacity storage device is required.

そこで、本発明に於ては、これら自在継手1
f,1g,1iの角度は部分的かつ一時的に記録
するだけで、全部を長時間記録せず、その部分的
かつ一時的に記録されたデータにより、溶接棒3
の先端Aの軌跡を計算し、その軌跡のうち直線で
近似できる部分があるか否かを判別し、直線近似
が可能な部分はその直線により、またそれが不可
能な部分はそれと近似する円弧により代替し、上
記軌跡の始点から終点まで連続する円弧・直線複
合曲線を得、上記自在継手1f,1g,1iの角
度データに替えてこれらの直線及び円弧の諸元を
記録しておき、実際の溶接作業を行わせるとき
は、数値制御の分野に於て公知の直線補間、円弧
補間の技法を応用してロボツト1を制御し、所期
の目的を達成するものである。
Therefore, in the present invention, these universal joints 1
The angles f, 1g, and 1i are only partially and temporarily recorded, not all of them are recorded for a long time, and the partially and temporarily recorded data allows the welding rod 3
The trajectory of the tip A of is calculated, and it is determined whether or not there is a part of the trajectory that can be approximated by a straight line.The part that can be approximated by a straight line is determined by that straight line, and the part where it is not possible is approximated by an arc. Obtain a continuous circular arc/straight line composite curve from the start point to the end point of the above trajectory, record the specifications of these straight lines and arcs in place of the angle data of the above universal joints 1f, 1g, 1i, and calculate the actual When performing the welding work, the robot 1 is controlled by applying linear interpolation and circular interpolation techniques known in the field of numerical control to achieve the desired purpose.

今、第2図に於て、点Aが溶接線6に沿つて始
点Poから終点Pzまで移動せしめられるものとす
る。
Now, in FIG. 2, it is assumed that point A is moved along welding line 6 from starting point Po to ending point Pz.

まづ始点Poに続く点Pa,Pb,Pc,Pd,……
に対応する自在継手1f,1g,1iの角度デー
タが順次記録される。これらのデータはいずれも
設定単位角度の整数倍の価であり、それらのデー
タに基づいて点Pa,Pb,Pc,Pd,……のxz座
標値が順次算出される。
First, the points following the starting point Po are Pa, Pb, Pc, Pd,...
The angle data of the universal joints 1f, 1g, and 1i corresponding to are recorded sequentially. All of these data are integral multiples of the set unit angle, and based on these data, the xz coordinate values of points Pa, Pb, Pc, Pd, . . . are sequentially calculated.

そしてこの際、最初の角度データの疎密を適宜
調節し、上記により算出する各点のxz座標値が
各座標軸方向に適宜の設定単位長さ宛離隔するよ
うにするか、又は、各点間距離が略一定となるよ
うにしておくことが推奨される。
At this time, adjust the density of the initial angle data as appropriate so that the xz coordinate values of each point calculated above are separated by an appropriate set unit length in the direction of each coordinate axis, or the distance between each point It is recommended to keep it approximately constant.

次の作業は、点Poに引続く区間が一本の直線
で近似できるか否か検定することである。
The next task is to test whether the section following point Po can be approximated by a straight line.

而して、この区間が直線で近似可能であるとき
は、所定の許容誤差範囲内で出来るだけ長い区間
をカバー出来る直線が求められる。
Therefore, when this section can be approximated by a straight line, a straight line that can cover as long a section as possible within a predetermined tolerance range is found.

これらの具体的な演算例は、後に第3図を用い
て説明される。
Specific examples of these calculations will be explained later using FIG. 3.

第2図に於ては、点Poと点Pgを結ぶ線分がこ
の区間の点Aの軌跡に代替可能な最長の線分であ
るので、この線分PoPgが採用されている。
In FIG. 2, the line segment connecting points Po and Pg is the longest line segment that can be substituted for the locus of point A in this section, so this line segment PoPg is adopted.

次の区間では、前の区間の終点Pgが新たに始
点Qoとされ、以下続く区間が直線で近似できる
か否かが検定される。このときは直線近似が不可
能とされるので、所定の許容誤差範囲内で最長区
間を近似し得る近似円弧QoQmが求められ、以下
同様にして近似円弧RoRe、SoSgが求められる。
In the next section, the end point Pg of the previous section is newly set as the starting point Qo, and it is tested whether the following sections can be approximated by a straight line. In this case, since linear approximation is impossible, an approximate circular arc QoQm that can approximate the longest section within a predetermined tolerance range is determined, and thereafter approximate circular arcs RoRe and SoSg are determined in the same manner.

ここで、これらの点について第3図によりさら
に具体的に説明する。
Here, these points will be explained in more detail with reference to FIG.

第3図には溶接線6の一部が示されており、そ
の溶接線6の上には始点Poと共に、多数の通過
点Pa,Pb,Pc,……、Qo,Qa,Qb,……、
Ro,Ra,Rb,……、So,Sa,……が示されて
いる。
A part of the welding line 6 is shown in FIG. 3, and on the welding line 6 there are many passing points Pa, Pb, Pc, ..., Qo, Qa, Qb, ... along with the starting point Po. ,
Ro, Ra, Rb, ..., So, Sa, ... are shown.

而して、各通過点においては、ロボツト1の状
態が測定され、記録されるものとする。但し、こ
こでは図を簡明ならしめるため、少数の通過点の
みを示してあるが、実際にはこの通過点は非常に
細かいピツチで多数設定されるものである。
It is assumed that the state of the robot 1 is measured and recorded at each passing point. However, in order to simplify the diagram, only a small number of passing points are shown here, but in reality, a large number of passing points are set at very fine pitches.

直線検定方法として推奨される一方法は、始点
Poから適宜離れた通過点、例えば、Poから三番
目の通過点Pcと始点Poとを結ぶ直線PoPcを求
め、上記二点間にある通過点Pa,Pbと上記直線
PoPcとの距離を計算し、この距離、即ち、上記
直線PoPcからの偏差が、予め求めた許容公差範
囲内にあるか否かを検査し、それらの距離Lca,
Lcbがいずれも許容公差E以下であるときは、直
線による近似が可能なものとし、然らざるとき
は、直線近似を不可とし、円弧による近似を採用
することとするものである。
One recommended method for testing a straight line is to
Find a straight line PoPc that connects a passing point appropriately distant from Po, for example, the third passing point Pc from Po, and the starting point Po, and connect the passing points Pa, Pb between the above two points and the above straight line.
Calculate the distance to PoPc, check whether this distance, that is, the deviation from the straight line PoPc, is within a predetermined tolerance range, and calculate the distance Lca,
When both Lcb are less than the allowable tolerance E, it is assumed that a straight line approximation is possible; otherwise, a straight line approximation is not possible and an arc approximation is adopted.

この公差範囲は通常は±Eとするが、場合によ
つては、上記Lに正負の記号を導入すると共に、
この公差を+Eから0とか、+Eaから−Eb等と定
めることもある。
This tolerance range is usually ±E, but in some cases, a positive or negative sign is introduced for L, and
This tolerance may be defined as +E to 0, +Ea to -Eb, etc.

而して、直線近似が可能とされたときは、置換
可能な最も長い線分を求める。
Therefore, when linear approximation is possible, the longest line segment that can be replaced is found.

この為、通過点Pc以遠の通過点Pd,Pe,……
Pi…のそれぞれと始点Poを結ぶ直線に就いて、
上記同様に各中間通過点Pjとの距離Lijが計算さ
れる。
For this reason, the passing points Pd, Pe, ... beyond the passing point Pc
For the straight line connecting each of Pi... and the starting point Po,
Similarly to the above, the distance Lij to each intermediate passing point Pj is calculated.

すべての中間通過点Piに就いて、 E≧Lij が成立する線分PoPiのうちで、最長のものが求
める解であり、第3図ではi=h、即ち、線分
PoPhがそれに相当するものとして示されており、
この区間では実際に点Aを移動せしむべき径路と
して、線分PoPhが採用される。
For all intermediate passing points Pi, the longest one among the line segments PoPi for which E≧Lij holds is the solution to be sought, and in Figure 3, i=h, that is, the line segment
PoPh is indicated as its equivalent,
In this section, the line segment PoPh is adopted as the route along which point A should actually be moved.

而して、通過点Phは次の区間の始点Qoとさ
れ、以下上記同様にして、線分QoQcが採用さ
れ、点Qcはさらに次の区間の始点Roとされる。
Thus, the passing point Ph is set as the starting point Qo of the next section, and thereafter the line segment QoQc is adopted in the same manner as above, and the point Qc is further set as the starting point Ro of the next section.

始点Ro(Qc)から始まる区間では、点RoとRc
を結ぶ線分と中間点Ra,Rbとの距離Lca,Lcb
の何れか一方が公差Eを超える為、直線近似が不
可能であるとする。
In the section starting from the starting point Ro (Qc), the points Ro and Rc
Distances Lca, Lcb between the line segment connecting and the intermediate points Ra, Rb
It is assumed that linear approximation is impossible because either one exceeds the tolerance E.

このときは、まづ、点Ro〜Rcとその中間通過
点のうちいずれか一つ、例えば、Raを通る円
(図中、中心Ocの円8)を求め、この円弧RoRc
と残余の通過点Rbとの距離Lcbを算出し、 E≧Lcb であれば、この区間の移動径路はこの円弧RoRc
で代替可能とするものである。
In this case, first, find one of the points Ro to Rc and their intermediate passing points, for example, a circle passing through Ra (circle 8 with center Oc in the figure), and this arc RoRc
Calculate the distance Lcb between and the remaining passing point Rb, and if E≧Lcb, the travel route in this section is this arc RoRc
This makes it possible to replace it with

而して、点RoとRcの間にある通過点の数を、
曲線の曲率に合せて適切に選定しておくと、この
円弧は必ず得られるものである。
Therefore, the number of passing points between points Ro and Rc is
If the selection is made appropriately according to the curvature of the curve, this arc will always be obtained.

而して、この場合でも、可能な限り長い円弧を
採用することが望ましい。
Therefore, even in this case, it is desirable to use the longest possible arc.

従つて、上記と同様にして、点Ro,Rb,Rdを
通る中心Odの円9、点Ro,Rc,Reを通る中心
Oeの円10、点Ro,Rc,Rfを通る中心Ofの円
11等の通過点Rc以降の各通過点Rd,Re,Re,
……Rk……の夫々と始点Ro及び該二点間に存在
する任意の一通過点を通る円に就いてそれぞれ残
余の通過点R1との距離LK1が計算され、それ
らが公差範囲内にある最長の円弧が選ばれる。第
3図に示た例では円弧RoRfがそれに該当するも
のである。
Therefore, in the same way as above, a circle 9 with the center Od passing through the points Ro, Rb, and Rd, and a circle 9 with the center passing through the points Ro, Rc, and Re.
Circle 10 of Oe, circle 11 of center Of passing through points Ro, Rc, Rf, each passing point Rd, Re, Re, etc. after passing point Rc,
The distance LK1 between each of Rk and the remaining passing point R1 is calculated for each circle passing through the starting point Ro and any one passing point existing between these two points, and if they are within the tolerance range. The longest arc is chosen. In the example shown in FIG. 3, the arc RoRf corresponds to this.

以下、同様な演算を繰り返し実施すると、直線
と円弧から成り、かつ、第1図及び第2図に示し
た最初の始点Poから究極の終点Pzまで連なつた
移動径路が得られる。
Hereinafter, by repeating similar calculations, a moving path consisting of straight lines and circular arcs and continuous from the initial starting point Po to the ultimate ending point Pz shown in FIGS. 1 and 2 is obtained.

実際に手動でロボツトを作動させたときの特定
点の移動軌跡は、必ずしも滑らかなものではない
が、叙上の如くして得られた移動径路は実質的に
滑らかに連続した曲線となる。
Although the movement locus of a specific point when the robot is actually operated manually is not necessarily smooth, the movement path obtained as described above becomes a substantially smooth continuous curve.

また、実際に手動で操作したときは、ロボツト
各部の運動状態も不自然となることが多く、必ず
しも理想的とは言えないものである。
Furthermore, when the robot is actually operated manually, the motion state of each part of the robot is often unnatural and cannot necessarily be called ideal.

而して、本発明に於ては、これらの直線及び曲
線の諸元が記録され、ロボツトの形態、自由度に
合せて、これらの移動径路に沿つて対応する特定
点を移動させるため最も望ましい作動方法が計算
される。
Therefore, in the present invention, the specifications of these straight lines and curves are recorded, and the most desirable points are recorded in order to move the corresponding specific points along these movement paths according to the form and degree of freedom of the robot. The method of operation is calculated.

通常記録されるのは、直線に就いては始点及び
終点の座標であり、円弧の場合は始点と終点並び
に曲率中心点の座標である。
What is usually recorded are the coordinates of the starting point and ending point for a straight line, and the coordinates of the starting point, ending point, and center of curvature for a circular arc.

而して、実際の作業時に於けるロボツト操作は
これらのデータをもとにして、公知の直線補間、
円弧補間の手法により、図示されていないアクチ
ユエータを介して、アーム1b,1c,1d,1
eを作動させるものである。
Therefore, robot operations during actual work are performed using known linear interpolation,
By the method of circular interpolation, the arms 1b, 1c, 1d, 1
This is what activates e.

本発明に於ては、最初の手動設定時の自在継手
1f,1g及び1i又はアーム1b,1c,1
d,1eの状態は部分的に一時記録されるだけで
あり、作業時には記録されていない。従つて、実
際の作業時のロボツトの運動は、必ずしも手動設
定時の運動と同一ではなく、所期の目的を達成す
るため最適の運動が採用されるものである。
In the present invention, the universal joints 1f, 1g and 1i or the arms 1b, 1c, 1 at the time of initial manual setting
The states of d and 1e are only partially recorded temporarily and are not recorded during work. Therefore, the movement of the robot during actual work is not necessarily the same as the movement during manual setting, but the optimum movement is adopted to achieve the desired purpose.

叙上の説明では、簡明に説明するため二次元運
動をするものとして説明したが、三次元運動につ
いても上記同様に処理し得ることは容易に理解さ
れよう。
In the above explanation, for the sake of simplicity, the explanation has been made on the assumption that two-dimensional motion is performed, but it will be easily understood that three-dimensional motion can also be processed in the same manner as described above.

この場合の手順を要約すると次の如き諸工程と
なる。
The steps in this case can be summarized as follows.

(a) ロボツトの特定点を他方によつて所望の径路
を移動させ、この時のロボツトの運動状態を所
定の間隔を置いて順次経時的に記録し、記録さ
れたロボツトの状態記録の夫々に対応して上記
特定点の位置、即ち、通過点を算出し、一時記
録する工程。
(a) A specific point on the robot is moved along a desired path by the other hand, and the motion state of the robot at this time is sequentially recorded over time at predetermined intervals, and each of the recorded state records of the robot is recorded. Correspondingly, a step of calculating the position of the specific point, that is, a passing point, and temporarily recording it.

(b) 上記特定点の運動始点(Xo,Yo,Zo)と、
運動始点(Xo,Yo,Zo)から第i番目の通過
点Xi,Yi,Zi〔但し、iは予め定めた最小限度
値iminより大であるとする。〕と結ぶ線分であ
つて、上記二点間に存在する各通過点(Xj,
Yj,Zj)〔但し、j=1,2,………(i−
1)である。〕との距離Lijのすべてが許容誤差
Eを越えず、かつ、そのiの価が最大のものを
求める直線検定工程。
(b) The motion starting point (Xo, Yo, Zo) of the above specific point,
i-th passing points Xi, Yi, Zi from the movement starting point (Xo, Yo, Zo) [where i is assumed to be larger than a predetermined minimum value imin. ], and each passing point (Xj,
Yj, Zj) [However, j=1, 2, ......(i-
1). ] is a straight line verification process in which all of the distances Lij do not exceed the tolerance E and the value of i is the maximum.

(c) 前項直線検定工程で、解i=nが得られたと
きに於て行なう工程であつて、始点(Xo,
Yo,Zo)と点(Xn,Yn,Zn)とを結ぶ線分
を直線区間として設定し、必要に応じてその線
分の諸元を記録する直線区間設定工程。
(c) This step is performed when the solution i=n is obtained in the linear verification step in the previous section, and is performed when the starting point (Xo,
A straight line section setting process in which a line segment connecting points (Yo, Zo) and points (Xn, Yn, Zn) is set as a straight line section, and the specifications of the line segment are recorded as necessary.

(d) b項直線検定工程で、解が得られないときに
於て行なう工程であつて、運動始点(Xo,
Yo,Zo)と、運動始点(Xo,Yo,Zo)から
k番目の通過点(Xk,Yk,Zk)〔但し、kは
予め定めた最小限度値kminより大であるとす
る。〕と、上記二点間に存在する任意の一通過
点(Xs,Ys,Zs)とにより定められる円弧で
あつて、上記二点間に存在する他の各通過点
(X1,Y1,Z1)〔但し、1=1,2,……、
(k−1)である。〕との距離Lk1のすべてが許
容誤差Eを越えず、かつ、そのkの価が最大で
ある円弧を求める円弧検定工程 (e) 前項円弧検定工程で、解k=mが得られたと
きに於て、始点(Xo,Yo,Zo)と、通過点
(Xs,Ys,Zs)及び(Xm,Ym,Zm)とを結
ぶ円弧を円弧区間として設定し、必要に応じて
上記円弧の諸元を記録する円弧区間設定工程。
(d) This is a process performed when a solution cannot be obtained in the b-term linear verification process, and is performed when the motion starting point (Xo,
Yo, Zo) and the k-th passing point (Xk, Yk, Zk) from the movement starting point (Xo, Yo, Zo) [However, k is assumed to be larger than a predetermined minimum value kmin. ] and any one passing point (Xs, Ys, Zs) that exists between the above two points, and each other passing point (X1, Y1, Z1) that exists between the above two points. [However, 1=1, 2,...
(k-1). ] Arc verification step (e) to find the arc whose distance Lk1 does not exceed the tolerance E and whose value of k is maximum Then, set the arc connecting the starting point (Xo, Yo, Zo) and the passing points (Xs, Ys, Zs) and (Xm, Ym, Zm) as the arc section, and adjust the specifications of the above arc as necessary. Arc section setting process to record.

(f) c項記載の直線区間設定工程又は前項記載の
円弧区間設定工程により得られた区間終点
(Xn,Yn,Zn)又は(Xm,Ym,Zm)を新
たな始点としてb項記載の直線検定工程と同様
な演算を行ない、以下同様にして最終運動終点
(Xz,Yz,Zz)に至るまで上記b項乃至e項
記載の工程を順次繰り返し、全区間にわたる連
続した移動径路を設定する反復演算工程。
(f) Straight line as described in paragraph b, with the section end point (Xn, Yn, Zn) or (Xm, Ym, Zm) obtained by the straight line section setting step described in paragraph c or the arc section setting step described in the previous paragraph as a new starting point The same calculations as in the verification step are performed, and the steps described in sections b to e are sequentially repeated until the final movement end point (Xz, Yz, Zz) is reached, and a continuous movement path is set over the entire interval. calculation process.

(g) 上記各項記載の工程により設定された移動径
路に沿つて上記特定点を移動させる工程。
(g) A step of moving the specific point along the movement path set by the steps described in each section above.

なお、上記では、座標をデカルト座標系の如く
説明したが、これは説明の便宜のためそのように
表現したものであつて、極座標系、円筒座標系そ
の他、これらと変換可能なすべての座標系を含む
ものであること勿論である。
Note that although the coordinates have been explained above as being in the Cartesian coordinate system, this is only for the convenience of explanation. Of course, it includes

また、上記では、単一の特定点の位置のみを制
御する様説明したが、実際には溶接棒繰出装置2
a等の姿勢を制御する必要があるから、少なくと
も二つの特定点を設け、それらの位置を同時に制
御することとなる。その場合、それぞれの特定点
ごとに公差を定め、両特定点間の拘束条件を満た
しつつ制御を行うものである。
Furthermore, in the above explanation, only the position of a single specific point is controlled, but in reality, the welding rod feeding device 2
Since it is necessary to control the posture of point a, etc., at least two specific points are provided and their positions are controlled simultaneously. In that case, a tolerance is determined for each specific point, and control is performed while satisfying the constraint conditions between both specific points.

また、本発明は上記溶接ロボツトの他、あらゆ
る種類のロボツト装置の制御に応用できるもので
あり、さらに、上記の直線区間及び円弧区間の設
定計算方法に加えて最小自乗法その他の公知の統
計学的データ処理方法やロボツトの使用目的に応
じた修正計算等を導入し、より高次の区間設定を
行うことも容易に考案し得るものであつて、本発
明はそれらのすべてを包摂するものである。
Furthermore, the present invention can be applied to the control of all kinds of robot equipment in addition to the welding robot described above, and furthermore, in addition to the method of calculating the setting of the straight line section and circular arc section, the method of least squares and other known statistics can be used. It is also possible to easily devise a higher-order interval setting by introducing a data processing method or a corrective calculation according to the purpose of use of the robot, and the present invention does not encompass all of them. be.

本発明は叙上の如く構成されるから、本発明に
よるときは、ロボツトの特定点を手動等によつて
所望の径路を移動させた時に所定の間隔を置いて
順次経時的に記録されるロボツトの状態記録に基
づいて、移動径路の各部を直線で置換することが
可能か或いは円弧で置換する方が適当であるかが
自動的に適切に検定され、実際にロボツトを動作
させる際の特定点の移動径路が、直線と円弧とに
より単純化されてスムースに連続する移動径路
に、しかも手動等で動かした時の所望の径路に近
似する作業目的に最も適合した移動径路に設定さ
れたるため、人力等の他方によつて動かすことに
より動作プログラムが自動的に設定されるロボツ
ト装置に於ける動作プログラムの設定を、容易且
つ短時間にしかも最適に行なうことができると共
に、上記ロボツト装置を、さほど大容量、高速で
ない制御装置によつて極めて円滑に作動させるこ
とができる。
Since the present invention is configured as described above, when the present invention is used, the robot can record data sequentially over time at predetermined intervals when a specific point on the robot is moved along a desired path manually or the like. Based on the status record, it is automatically and appropriately verified whether each part of the movement path can be replaced with a straight line or whether it is more appropriate to replace it with a circular arc, and the specific points when actually operating the robot are automatically verified. The movement path is simplified by straight lines and circular arcs to a smoothly continuous movement path, and is set to a movement path that is most suitable for the purpose of work and approximates the desired path when moving manually etc. The operation program of a robot device whose operation program is automatically set by being moved by human power or the like can be easily and quickly set optimally, and the robot device can be easily and optimally set. It can be operated very smoothly with a large-capacity, low-speed control device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接ロボツト装置の制御に本発明方法
を適用した一実施例を示す斜視図、第2図は手動
で設定された特定点の軌跡と本発明方法により設
定される移動径路との関係を示す説明図、第3図
は本発明方法を実施する際の具体的手順を示す説
明図である。 1……ロボツト、2……溶接ヘツド、3……溶
接棒、3′……ダミー、4,5……シエル、6…
…溶接線、7……点Bの軌跡、8,9,10,1
1……円。
Fig. 1 is a perspective view showing an embodiment in which the method of the present invention is applied to control a welding robot device, and Fig. 2 is a relationship between the locus of a manually set specific point and the movement path set by the method of the present invention. FIG. 3 is an explanatory diagram showing a specific procedure for carrying out the method of the present invention. 1...Robot, 2...Welding head, 3...Welding rod, 3'...Dummy, 4, 5...Ciel, 6...
...Welding line, 7... Locus of point B, 8, 9, 10, 1
1... yen.

Claims (1)

【特許請求の範囲】 1 下記a項乃至g項記載の工程から成ることを
特徴とするロボツト装置の制御方法。 (a) ロボツトの特定点を他力によつて所望の径路
を移動させ、この時のロボツトの運動状態を所
定の間隔を置いて順次経時的に記録し、記録さ
れたロボツトの状態記録の夫々に対応して上記
特定点の位置(以下「通過点」と言う)を算出
し、一時記録する工程。 (b) 運動始点(Xo,Yo,Zo)と、運動始点
(Xo,Yo,Zo)から終点(Xz,Yz,Zz)に
至る移動径路上に順次整列する通過点の内第i
番目の通過点(Xi,Yi,Zi)〔但し、iは予
め定めた最小限度値i minより大であるとす
る。〕と結ぶ線分であつて、上記二点間に存在
する各通過点(Xj,Yj,Zj)〔但し、j=1,
2,………(i−1)である。〕との距離Lijの
すべてが許容誤差Eを越えず、かつ、そのiの
価が最大のものを求める直線検定工程。 (c) 前項直線検定工程で、解i=nが得られたと
きに於て行なう工程であつて、始点(Xo,
Yo,Zo)と点(Xn,Yn,Zn)とを結ぶ線分
を直線区間として設定し、必要に応じてその線
分の緒元を記録する直線区間設定工程。 (d) b項直線検定工程で、解が得られないときに
於て行なう工程であつて、運動始点(Xo,
Yo,Zo)と、運動始点(Xo,Yo,Zo)から
K番目の通過点(Xk,Yk,Zk)〔但し、kは
予め定めた最小限度値k minより大であると
する。〕と、上記二点間に存在する任意の一通
過点(Xs,Ys,Zs)とにより定められる円弧
であつて、上記二点間に存在する他の各通過点
(X1,Y1,Z1)〔但し、1=1,2,………、
(k−1)である。〕との距離Lk1の全てが許容
誤差Eを超えず、かつ、そのkの価が最大であ
る円弧を求める円弧検定工程。 (e) 前項円弧検定工程で、理解k=mが得られた
ときに於て、始点(Xo,Yo,Zo)と、通過点
(Xs,Ys,Zs)及び(Xm,Ym,Zm)とを結
ぶ円弧を円弧区間として設定し、必要に応じて
上記円弧の緒元を記録する円弧区間設定工程。 (f) c項記載の直線区間設定工程又はe項記載の
円弧区間設定工程により得られた区間終点
(Xn,Yn,Zn)又は(Xm,Ym,Zm)を新
たな始点としてb項記載の直線検定工程と同様
な演算を行ない、以下同様にして最終運動終点
(Xz,Yz,Zz)に至るまで上記b項乃至e項
記載の工程を順次繰返し、全区間にわたる連続
した移動径路を設定する反復演算工程。 (g) 上記各項記載の工程により設定された移動径
路に沿つて上記特定点を移動させる工程。 2 特定点が複数設けられ、すべての演算及び作
動が、上記特定点間の拘束条件を満たしつつ、上
記全ての特定点について行なわれる特許請求の範
囲第1項記載のロボツト装置の制御方法。
[Scope of Claims] 1. A method for controlling a robot device, characterized by comprising the steps described in items a to g below. (a) A specific point on the robot is moved along a desired path by external force, and the state of motion of the robot at this time is sequentially recorded over time at predetermined intervals, and each recorded state of the robot is recorded. The process of calculating and temporarily recording the position of the specific point (hereinafter referred to as "passing point") in response to the above. (b) The movement starting point (Xo, Yo, Zo) and the i-th passing point sequentially arranged on the movement path from the movement starting point (Xo, Yo, Zo) to the ending point (Xz, Yz, Zz).
th passing point (Xi, Yi, Zi) [However, it is assumed that i is larger than a predetermined minimum limit value i min. ] and each passing point (Xj, Yj, Zj) between the above two points [where j=1,
2, ......(i-1). ] is a straight line verification process in which all of the distances Lij do not exceed the tolerance E and the value of i is the maximum. (c) This step is performed when the solution i=n is obtained in the linear verification step in the previous section, and is performed when the starting point (Xo,
A straight line section setting process in which a line segment connecting points (Yo, Zo) and points (Xn, Yn, Zn) is set as a straight line section, and the specifications of the line segment are recorded as necessary. (d) This is a process performed when a solution cannot be obtained in the b-term linear verification process, and is performed when the motion starting point (Xo,
Yo, Zo) and the K-th passing point (Xk, Yk, Zk) from the movement starting point (Xo, Yo, Zo) [where k is greater than a predetermined minimum value k min. ] and any one passing point (Xs, Ys, Zs) that exists between the above two points, and each other passing point (X1, Y1, Z1) that exists between the above two points. [However, 1=1, 2,......
(k-1). ] is an arc verification process for finding an arc whose distance Lk1 does not exceed the tolerance E and whose value of k is maximum. (e) When understanding k=m is obtained in the arc verification step in the previous section, the starting point (Xo, Yo, Zo), passing point (Xs, Ys, Zs) and (Xm, Ym, Zm) An arc section setting step in which an arc connecting the is set as an arc section, and the specifications of the arc are recorded as necessary. (f) Using the section end point (Xn, Yn, Zn) or (Xm, Ym, Zm) obtained by the straight line section setting step described in section c or the arc section setting step described in section e as a new starting point, perform the process described in section b. Perform the same calculation as the straight line verification step, and repeat the steps described in sections b to e in the same manner until the final movement end point (Xz, Yz, Zz) is reached, and set a continuous movement path over the entire section. Iterative calculation process. (g) A step of moving the specific point along the movement path set by the steps described in each section above. 2. The method of controlling a robot device according to claim 1, wherein a plurality of specific points are provided, and all calculations and operations are performed for all of the specific points while satisfying constraint conditions between the specific points.
JP2356582A 1982-02-16 1982-02-18 Method of controlling robot device having learning function Granted JPS58143980A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2356582A JPS58143980A (en) 1982-02-18 1982-02-18 Method of controlling robot device having learning function
US06/466,521 US4641251A (en) 1982-02-16 1983-02-15 Robot
DE8383300784T DE3380117D1 (en) 1982-02-16 1983-02-16 A robot
EP83300784A EP0086669B1 (en) 1982-02-16 1983-02-16 A robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2356582A JPS58143980A (en) 1982-02-18 1982-02-18 Method of controlling robot device having learning function

Publications (2)

Publication Number Publication Date
JPS58143980A JPS58143980A (en) 1983-08-26
JPH0217311B2 true JPH0217311B2 (en) 1990-04-20

Family

ID=12114046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2356582A Granted JPS58143980A (en) 1982-02-16 1982-02-18 Method of controlling robot device having learning function

Country Status (1)

Country Link
JP (1) JPS58143980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218733A (en) * 1993-01-25 1994-08-09 Sumitomo Rubber Ind Ltd Production of tire and device therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662783A (en) * 1979-10-19 1981-05-28 Fujikoshi Kk Multiple joint type continuous course controlling robot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662783A (en) * 1979-10-19 1981-05-28 Fujikoshi Kk Multiple joint type continuous course controlling robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06218733A (en) * 1993-01-25 1994-08-09 Sumitomo Rubber Ind Ltd Production of tire and device therefor

Also Published As

Publication number Publication date
JPS58143980A (en) 1983-08-26

Similar Documents

Publication Publication Date Title
EP1728600B1 (en) Controlling the trajectory of an effector
US4380696A (en) Method and apparatus for manipulator welding apparatus with vision correction for workpiece sensing
FI83176B (en) FOERFARANDE FOER STYRNING AV ROERELSER HOS EN ROBOT OCH EN STYCKEMANIPULATOR UNDER EN ROBOTCELLS INLAERNINGSSKEDE.
CA1191235A (en) Transitional command position modification for a controller
US4967125A (en) Tool posture control method for a robot
CN111687838A (en) Online compensation method and system for manipulator track following error and storage medium
GB2226425A (en) Method of correcting and playing back positional instruction data in a robot
EP0035282A2 (en) Apparatus for programmed control of a robot
JP2691985B2 (en) Robot trajectory control method
US5782401A (en) Automated system and method for welding a first metal part to a second metal part
JPH0217311B2 (en)
CN116529035A (en) Numerical controller and numerical control system
CN111699079B (en) Coordination system, operation device and method
JPS60127987A (en) Method and device for controlling profiling
CN112873208A (en) Anti-noise and dynamic constraint robot real-time motion planning method and device
JP3444313B2 (en) Industrial robot controller
US20240149472A1 (en) Micromanipulator
GB2364575A (en) Generating positioning instructions for apparatus to process an object
JPH05505893A (en) How to control the robot cell path
JPH0420203B2 (en)
CN114174009B (en) Method, device, system, storage medium and terminal for controlling robot
WO2022039245A1 (en) Robot control device
JPH09128024A (en) Method for optimizing operation program of robot having redundant axis
JPS6236243B2 (en)
JP2000167789A (en) Control device for articulated robot