JPH02172312A - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter

Info

Publication number
JPH02172312A
JPH02172312A JP32576588A JP32576588A JPH02172312A JP H02172312 A JPH02172312 A JP H02172312A JP 32576588 A JP32576588 A JP 32576588A JP 32576588 A JP32576588 A JP 32576588A JP H02172312 A JPH02172312 A JP H02172312A
Authority
JP
Japan
Prior art keywords
electrode
interdigital
reflector
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32576588A
Other languages
Japanese (ja)
Inventor
Hideo Onuki
大貫 秀男
Norio Hosaka
憲生 保坂
Kazushi Watanabe
一志 渡辺
Jun Yamada
純 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32576588A priority Critical patent/JPH02172312A/en
Publication of JPH02172312A publication Critical patent/JPH02172312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To reduce insertion loss at a broad band by arranging a 1st (2nd) reflector adjacent to an outside of a 1st (3rd) interdigital electrode, connecting the 1st and 3rd interdigital electrodes in parallel electrically to a load or a signal source and connecting the 2nd interdigital electrode to the signal source or the load. CONSTITUTION:The 1st, 2nd and 3rd interdigital electrodes 3, 4, 3' arranged sequentially between the reflectors 2, 2' side by side are arranged nearly in symmetry with both sides of the 2nd interdigital electrode 4 in the center of the electrode 4, the 2nd reflector 2' is arranged at the outside of the 1st reflector 2 and the 3rd interdigital electrode 3', the 1st interdigital electrode 3 and the 3rd interdigital electrode 3' are connected in parallel electrically to the load or the signal source and the 2nd interdigital electrode 4 is connected to the signal source or the load. Thus, ripple in the pass band or the like is reduced by varying slightly the electrode finger width and the electrode finger interval of the reflectors 2, 2' and the interdigital electrodes 3, 3', 4. Thus, the insertion loss at a broad band is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に、挿入損失が小さく、広帯域な弾性表面
波フィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention particularly relates to a surface acoustic wave filter with low insertion loss and a wide band.

〔従来の技術〕[Conventional technology]

従来、すだれ状電極を弾性表面波の反射器として用いる
ものは、例えば、応用物理学会等主催の第4回「超音波
エレクトロニクスの基礎と応用に関するシンポジウム」
講演予講集(1,983年12月)第81〜82項に見
易等によって論じられているように、共振器として考え
られていた。
Conventionally, the use of interdigital electrodes as surface acoustic wave reflectors has been proposed, for example, at the 4th Symposium on the Fundamentals and Applications of Ultrasonic Electronics, sponsored by the Japan Society of Applied Physics.
As discussed in paragraphs 81 and 82 of Lecture Preliminary Lecture Collection (December 1983) by Eiji et al., it was considered as a resonator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って」二記従来の技術は、広帯域化に関して配慮され
ておらず、その応用が発振器または狭帯域フィルタに限
られるという問題があった。
Therefore, the conventional technology described in Section 2 does not take into account widening the band, and has the problem that its application is limited to oscillators or narrow band filters.

本発明は、広帯域で挿入損失の少ない弾性表面波フィル
タを提供することを目的とする。
An object of the present invention is to provide a surface acoustic wave filter with a wide band and low insertion loss.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明においては、圧電基板
」二に、フィルタ通過帯域中心周波数での圧電基板上の
弾性表面波波長をλ。とする時、電極指幅と電極指間隙
が夫々ほぼλ0/4で電極指対数]−5〜40対のすだ
れ状電極の対向する電極指群をコイルで接続してなる第
1、第2反射器と、電極指幅と電極指間隔が夫々ほぼλ
0/4で両反射器間に順次互いに隣接して並ぶ第1、第
2、第3すだれ状電極とを、第2すたれ状電極の電極中
心を中心にして其の両側に略対称に、第1すだれ状電極
の外側に隣接して第1−反射器、第3すだれ状電極の外
側に隣接して第2反射器を配設し、第1すだれ状電極と
第3すだれ状電極を電気的に並列に接続して負荷または
信号源に、第2すだれ状電極を信号源または負荷に接続
するようにした。
In order to achieve the above object, in the present invention, the piezoelectric substrate' secondly, the surface acoustic wave wavelength on the piezoelectric substrate at the center frequency of the filter passband is set to λ. When the width of the electrode fingers and the gap between the electrode fingers are approximately λ0/4, respectively, and the number of pairs of electrode fingers] -5 to 40 pairs of interdigital electrodes, opposing electrode finger groups are connected by a coil. The electrode finger width and electrode finger spacing are approximately λ.
0/4, the first, second, and third interdigital electrodes arranged adjacent to each other between both reflectors are arranged approximately symmetrically on both sides of the second interdigital electrode with the electrode center of the second interdigital electrode as the center. A first reflector is disposed adjacent to the outside of the first interdigital electrode, a second reflector is disposed adjacent to the outside of the third interdigital electrode, and the first interdigital electrode and the third interdigital electrode are electrically connected. The second interdigital electrode was connected in parallel to the load or signal source, and the second interdigital electrode was connected to the signal source or load.

このフィルタの中心周波数をf。、圧電基板」二の弾性
表面波の速度を■とすると、当然■ である。
The center frequency of this filter is f. , if the velocity of the surface acoustic wave of the piezoelectric substrate 2 is , then of course .

、 3 。, 3.

また、反射器端部と隣接するすだれ状電極端部間の距離
りを狭くとり、その間を弾性表面波が往復するのに要す
る時間が、反射器の反射係数の群遅延時間(反射系数の
位相周波数特性の周波数微分で示される)τRに対し充
分小さく、例えば1 / i−0以下、すなわち下式が
成立するようにした。
In addition, the distance between the end of the reflector and the end of the adjacent interdigital electrode is kept small, and the time required for the surface acoustic wave to travel back and forth between them is determined by the group delay time of the reflector's reflection coefficient (the phase of the reflection coefficient). (expressed by the frequency differential of the frequency characteristic) is sufficiently small, for example, 1/i-0 or less, that is, the following formula holds true.

V         10 〔作用〕 実施例の項で再度説明するが、反射器の電極指対数を変
化させ、反射係数がほぼ1となる帯域幅を求め、この帯
堺幅をフィルタ中心周波数で基準化した相対帯域幅と反
射器の電極指対数の関係を図示すると第2図のようにな
る。電極指対数を]−5〜40にすれば、反射係数がほ
ぼ1で、反射の相対帯域幅が0.02以上になる。また
、反射特性の検討に際し、電極指対数それぞれに対し最
適のインダクタンスを持つコイルで反射器を形成するす
だれ状電極の対向する電極指群を接続したが、コイルで
接続した場合(b)と、コイルなしで短絡した場合(、
)を比較した一例を第3図に示す。
V 10 [Operation] As will be explained again in the Example section, the number of pairs of electrode fingers of the reflector is changed to find the bandwidth where the reflection coefficient is approximately 1, and the relative The relationship between the bandwidth and the number of electrode finger pairs of the reflector is illustrated in FIG. 2. If the number of electrode finger pairs is set to -5 to 40, the reflection coefficient will be approximately 1 and the relative bandwidth of reflection will be 0.02 or more. In addition, when examining the reflection characteristics, we connected the opposing electrode fingers of the interdigital electrodes that form the reflector with coils that have the optimal inductance for each pair of electrode fingers. In case of short circuit without coil (,
) is shown in Figure 3.

このように、コイルで終端した方が広帯域で反射係数を
ほぼ1にできる。更に、反射器の端部と隣接するすだれ
状電極の端部との間の距離を短くとったので、この間を
弾性表面波が往復するのに要する遅延時間は無視するこ
とができ、すだれ状電極で発生する表面波と反射器で反
射されて戻ってくる表面波との位相差は、反射器の反射
の群遅延時間τRでほぼ決定されるため、フィルタの通
過帯域内で余分な干渉が生しることはない。なお、前記
(2)式の中の1/10という値は本発明者が任意に定
めたものであるが、このようにすれば実際上良好な結果
が得られることを本発明者等は実験的に確認している。
In this way, terminating with a coil allows the reflection coefficient to be approximately 1 over a wide band. Furthermore, since the distance between the end of the reflector and the end of the adjacent interdigital electrode is short, the delay time required for the surface acoustic wave to travel back and forth between them can be ignored, and the interdigital electrode The phase difference between the surface wave generated by the surface wave and the surface wave reflected by the reflector and returned is almost determined by the group delay time τR of reflection from the reflector, so extra interference may occur within the passband of the filter. There's nothing to do. Note that the value of 1/10 in equation (2) was arbitrarily determined by the inventors, but the inventors have determined through experiments that good results can be obtained in practice by doing so. We have confirmed that.

また、第2すだれ状電極には、電極の両側から表面波が
入射するため、第2すだれ状電極に接続する負荷のイン
ピーダンスを適当に設定すれば、双方白根が無視でき、
電極端での反射波と透過波が相殺されることが知られて
いるため、第2すだれ状電極端での反射は無視5 。
Furthermore, since surface waves are incident on the second interdigital electrode from both sides of the electrode, if the impedance of the load connected to the second interdigital electrode is appropriately set, the white root on both sides can be ignored.
It is known that the reflected wave and the transmitted wave at the electrode end cancel each other out, so the reflection at the second interdigital electrode end is ignored5.

しても良い。従って両隣のすだれ状電極で発生したエネ
ルギーは、大部分が第2すだれ状電極に入射する。この
ため、低損失化を達成できる。
You may do so. Therefore, most of the energy generated in the interdigital electrodes on both sides is incident on the second interdigital electrode. Therefore, low loss can be achieved.

〔実施例〕〔Example〕

第1図は本発明の第1実施例の模式的平面図である。こ
の弾性表面波フィルタは、圧電基板1、として36度Y
回転カットのタンタル酸リチウムを用い、この圧電基板
1上に厚さ1000人程度のアルミニウム膜を成膜し、
周知のホトリソグラフ技術により、反射器2.2′及び
すだれ状電極3.3′、4を形成している。反射器2.
2′及びすだれ状電極3.3′、4の電極指幅および電
極指間隙は(1)式をほぼ満足するように定めた。
FIG. 1 is a schematic plan view of a first embodiment of the present invention. This surface acoustic wave filter has a piezoelectric substrate 1 with a Y angle of 36 degrees.
Using rotary-cut lithium tantalate, an aluminum film with a thickness of about 1000 mm was formed on this piezoelectric substrate 1,
The reflector 2.2' and the interdigital electrodes 3.3', 4 are formed using well-known photolithography techniques. Reflector 2.
The electrode finger widths and electrode finger gaps of 2' and the interdigital electrodes 3, 3', and 4 were determined so as to substantially satisfy equation (1).

反射器2.2′を構成する電極指の対数は、それぞれ1
5〜40の範囲であれば良いが、本実施例では25対と
した。反射器2.2′の対向する電極指群を夫々コイル
5.5′で接続する。電極指の対数を25対としたとき
は、コイルのインダクタンスを概略25nH程度にした
とき良好な反射特性が得られる。
The number of logarithms of the electrode fingers constituting the reflector 2.2' is 1.
The number of pairs may be in the range of 5 to 40, but in this example, it is set to 25 pairs. The opposing electrode fingers of the reflector 2.2' are each connected by a coil 5.5'. When the number of pairs of electrode fingers is 25, good reflection characteristics can be obtained when the inductance of the coil is approximately 25 nH.

すだれ状電極3.3′は、負荷または信号源に接続する
電極で、画電極は電気的に並列に接続される。反射器2
とすだれ状電極3との距離L□及び反射器2′とすだれ
状電極3′との距離L2は、それぞれ(2)式を満足す
るように定める。すだれ状電極3.3′の中間にすだれ
状電極4を設け、信号源または負荷に接続する。以上説
明したように構成し、例えばすだれ状電極3.3′を信
号源に、すだれ状電極4を負荷に接続することにより弾
性表面波フィルタとして動作させることが出来る。
The interdigital electrodes 3.3' are electrodes connected to a load or a signal source, and the picture electrodes are electrically connected in parallel. Reflector 2
The distance L□ between the interdigital electrode 3 and the distance L2 between the reflector 2' and the interdigital electrode 3' are determined so as to satisfy equation (2). An interdigital electrode 4 is provided between the interdigital electrodes 3.3' and is connected to a signal source or a load. With the configuration as described above, for example, by connecting the interdigital electrodes 3 and 3' to a signal source and the interdigital electrode 4 to a load, it can be operated as a surface acoustic wave filter.

次に反射器2.2′の反射特性について説明する。反射
器2の電極対数Nを変化させて、反射係数がほぼ1とな
る帯域幅を求めた。この帯域幅を中心周波数で基準化し
た相対帯域幅を第2図に示す。この結果から、反射係数
がほぼ]で、反射の相対帯域幅が0.02以」二の条件
を満たすためには、電極対数Nを15以」二40以下に
する必要がある。この反射特性の検討は、各Nに対して
最適のインダクタンスを持つコイルですだれ状電極の、
 7 。
Next, the reflection characteristics of reflector 2.2' will be explained. By changing the number N of electrode pairs of the reflector 2, a bandwidth where the reflection coefficient becomes approximately 1 was determined. FIG. 2 shows the relative bandwidth obtained by normalizing this bandwidth with the center frequency. From this result, in order to satisfy the conditions that the reflection coefficient is approximately 0.02 and the relative bandwidth of reflection is 0.02 or more, the number N of electrode pairs must be 15 or more and 240 or less. The study of this reflection characteristic was carried out using a coil with an optimal inductance for each N, and a soaring electrode.
7.

対向する電極指群を接続して行った。N−25の場合に
、25nHのインダクタンスを有するコイルで終端した
場合(線b)と、コイルをつけないで短絡した場合(線
a)の反射特性を第3図に示す。これからコイルで終端
した方が広帯域で反射係数をほぼ1に出来ることが判る
This was done by connecting opposing electrode finger groups. In the case of N-25, the reflection characteristics are shown in FIG. 3 when it is terminated with a coil having an inductance of 25 nH (line b) and when it is short-circuited without a coil (line a). From this it can be seen that terminating with a coil allows the reflection coefficient to be approximately 1 over a wide band.

次に、すだれ状電極3.3′ を信号源に接続し、すだ
れ状電極4を負荷に接続した場合の動作について説明す
る。すだれ状電極3で発生する表面波と反射器2で反射
して戻ってくる表面波との位相差は、距離り、を十分小
さくしであるので、距離L1を表面波が往復するのに要
する遅延時間は無視することができ、反射器2の反射の
群遅延時間でアでほぼ決定されるため、フィルタの通過
帯域内で余分な干渉が生ずることがない。また、すだれ
状電極4には、両側から表面波が入射するため、負荷の
インピーダンスを適当に設定すれば、電極端での反射波
と、他の電極端からの透過波ば相殺されるため、電極端
での反射はないと考えて良い。
Next, the operation when the interdigital electrodes 3 and 3' are connected to a signal source and the interdigital electrode 4 is connected to a load will be described. The phase difference between the surface wave generated by the interdigital electrode 3 and the surface wave reflected by the reflector 2 is such that the distance L1 is sufficiently small, so that the distance L1 required for the surface wave to travel back and forth is The delay time can be ignored and is almost determined by the group delay time of the reflection from the reflector 2, so that no extra interference occurs within the passband of the filter. In addition, since surface waves are incident on the interdigital electrode 4 from both sides, if the impedance of the load is set appropriately, the reflected wave at the electrode end and the transmitted wave from the other electrode end can be canceled out. It can be assumed that there is no reflection at the electrode end.

このため、すだれ状電極3.3′から発生した表、 8 面波のエネルギーは、殆どがすだれ状電極で電気信号に
変換されて負荷に供給されるので、挿入損失が少ない。
Therefore, most of the energy of the plane waves generated from the interdigital electrodes 3 and 3' is converted into an electrical signal by the interdigital electrodes and supplied to the load, so that the insertion loss is small.

本発明では、反射器2.2″及びすだれ状電極3.3′
、4の電極指幅と電極指間隙を夫々僅かに変化させるこ
とにより1通過帯域内でのリップルなどを減少させるこ
とが出来る。本実施例においては、反射器2.2″の電
極指幅、電極指間防去々の平均値より、すだれ状電極3
.3′の電極指幅、電極指間防去々の平均値を小さくす
ることにより、通過帯域内での肩特性を改善できた。
In the invention, the reflector 2.2'' and the interdigital electrode 3.3'
, 4, by slightly changing the electrode finger width and the electrode finger gap, it is possible to reduce ripples within one pass band. In this embodiment, from the average value of the electrode finger width of the reflector 2.2'' and the distance between the electrode fingers, the interdigital electrode 3
.. By reducing the average value of the 3' electrode finger width and the distance between the electrode fingers, the shoulder characteristics within the passband could be improved.

以上説明したように、本発明を実施すれば、広帯域で挿
入損失の少ない弾性表面波フィルタを実現できる。また
、反射器に用いるすだれ状電極の対数が少ないため、必
要な圧電基板の面積が少なくて済む利点がある。
As described above, by implementing the present invention, a surface acoustic wave filter with a wide band and low insertion loss can be realized. Furthermore, since the number of pairs of interdigital electrodes used in the reflector is small, there is an advantage that the required area of the piezoelectric substrate is small.

なお、本実施例では、特に電極の重み付けに言及してい
ないが、周知の重み付は技術、例えばアポダイズ法、間
引き法、位相重み付けなどが適用できることは言うまで
もない。また、圧電基板1として、同じタンタル酸リチ
ウムで、他のカット角、伝搬方向の組合せでも同様の結
果が得られるものが存在する。また、圧電基板1−とし
てニオブ酸リチウムなど他の材料も使うことが出来る。
Although this embodiment does not specifically refer to the weighting of the electrodes, it goes without saying that well-known weighting techniques such as the apodization method, thinning method, phase weighting, etc. can be applied. In addition, there are piezoelectric substrates 1 that can be made of the same lithium tantalate and have similar results with other combinations of cut angles and propagation directions. Further, other materials such as lithium niobate can also be used as the piezoelectric substrate 1-.

第4図は本発明第2実施例の模式的平面図である。この
実施例では、反射器]−2に用いるすだれ状電極の電極
指幅と電極指間隙を、夫々、すだれ状電極13に近づく
に従って除々に小さくなるようにパターン化した。同様
に1反射器12′に用いるすだれ状電極の電極指幅と電
極指間隙を、夫々、すだれ状電極13″に近づくに従っ
て除々に小さくなるようにパターン化している。以上述
べたように、所謂チャープ形電極を反射器」−2,12
′に用いているため、特に反射係数の位相周波数特性を
制御するのに有効である。例えば、反射器12は、すだ
れ状電極13側から入射する表面波に対して高周波数域
で反射係数の群遅延時間が小さくなり、従って反射する
表面波の位相遅れが緩やかになる周波数帯域を作ること
が出来る。このため、すだれ状電極13で電気信号から
変換された表面波と、反射器1zで反射されて戻ってく
る表面波とが干渉するときに、はぼ同相で重なり合う帯
域を高周波数域側へ伸ばすことができ、広帯域化できる
FIG. 4 is a schematic plan view of a second embodiment of the present invention. In this example, the width of the electrode fingers and the gap between the electrode fingers of the interdigital electrodes used in the reflector]-2 were patterned so that they gradually became smaller as they approached the interdigital electrodes 13. Similarly, the electrode finger width and electrode finger gap of the interdigital electrode used in one reflector 12' are patterned so that they gradually become smaller as they approach the interdigital electrode 13''. Chirp-shaped electrode reflector”-2,12
', it is particularly effective for controlling the phase frequency characteristics of the reflection coefficient. For example, the reflector 12 creates a frequency band in which the group delay time of the reflection coefficient is small in the high frequency range for the surface waves incident from the interdigital electrode 13 side, and therefore the phase delay of the reflected surface waves is gentle. I can do it. For this reason, when the surface wave converted from an electrical signal by the interdigital electrode 13 interferes with the surface wave reflected and returned by the reflector 1z, the overlapping band in approximately the same phase is extended toward the high frequency region. It is possible to achieve wide bandwidth.

第5図は本発明第3実施例の模式的平面図である。この
実施例では反射器2に接続するコイル5J) + 55
 ’ を圧電基板]」二に設けている。コイル55を形
成するパターンの線幅は、反射器2の電極指幅より広く
しである。このため、コイル自身でのQを高めることが
でき、圧電基板1上にコイルを設けても、コイルを外付
けする場合に比べて性能が劣化することかない。以−に
のように、この実施例においては、コイルを圧電基板上
に設けるので、弾性表面波フィルタを構成する部品数を
減らすことができ、経済的である。また、圧電基板上の
コイルは、反射器やすだれ状電極を形成するのと同一プ
ロセスで形成できるため経済的である。
FIG. 5 is a schematic plan view of a third embodiment of the present invention. In this example, the coil 5J) + 55 connected to the reflector 2
' is provided on the piezoelectric substrate]'2. The line width of the pattern forming the coil 55 is wider than the electrode finger width of the reflector 2. Therefore, the Q of the coil itself can be increased, and even if the coil is provided on the piezoelectric substrate 1, the performance will not deteriorate compared to when the coil is attached externally. As described above, in this embodiment, since the coil is provided on the piezoelectric substrate, the number of components constituting the surface acoustic wave filter can be reduced, which is economical. Also, the coil on the piezoelectric substrate is economical because it can be formed in the same process as forming the reflector and the interdigital electrode.

第6図は本発明第4実施例の模式的平面図である。この
実施例では、第」実施例フィルタを同一圧電基板」二に
3段平行に酉装置している。すだれ状電極3、.3−2
.3−3.a’ 、,3’’l、:3’−3は、電気的
に並列に接続され、また、すだれ状電極4、.4−2.
71I−3,も同様に並列に接続されている。このよう
な構成にすることにより、それぞれの電極指の電気抵抗
か挿入損失に及ぼす影響を最小限に抑えることが出来る
FIG. 6 is a schematic plan view of a fourth embodiment of the present invention. In this embodiment, the filters of the third embodiment are arranged in parallel in three stages on the same piezoelectric substrate. Interdigital electrodes 3, . 3-2
.. 3-3. a',,3''l,:3'-3 are electrically connected in parallel, and the interdigital electrodes 4, . 4-2.
71I-3 are also connected in parallel. With such a configuration, the influence on the electrical resistance or insertion loss of each electrode finger can be minimized.

第7図は本発明第5実施例の様式的平面図である。この
実施例も、第1実施例フィルタを同一圧電基板−ヒに:
(段平行に配置しているが、反射器21.2−2.2−
3に用いるすだれ状電極を並列に接続してコイル75で
終端している。反射器2’、,2’−2,2’ −3も
同様にコイル75′で終端した。このような構成とする
ことにより、部品点数を低減できる利点かある。
FIG. 7 is a stylistic plan view of a fifth embodiment of the present invention. This embodiment also uses the same piezoelectric substrate as the filter of the first embodiment:
(Although they are arranged parallel to each other, reflectors 21.2-2.2-
3 are connected in parallel and terminated with a coil 75. The reflectors 2', 2'-2, 2'-3 were similarly terminated with coils 75'. This configuration has the advantage of reducing the number of parts.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、広帯域でリップル
が小さく、挿入損失の少ない弾性表面波フィルタを実現
できる。
As described above, according to the present invention, it is possible to realize a surface acoustic wave filter with a wide band, small ripples, and low insertion loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例図、第2図は反射器の反射
係数をほぼ1にしたときの電極指対数とフィルタとの相
対帯域幅の関係を示す図、第二3図は反射器を形成する
すだれ状電極の対向する電極指群を最適インダクタンス
値のコイルで接続した場合(b線)とコイル無しで短絡
した場合(a線)の相対反射率と相対周波数との関係を
示す図、第4図は第2実施例図、第5図は第3実施例図
、第6図は第4実施例図、第7図は第5実施例図である
。 ]・圧電基板、2・・反射器、;3.4・・すだれ状電
極、5.5′ ・コイル。
FIG. 1 is a diagram showing the first embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the number of electrode finger pairs and the relative bandwidth of the filter when the reflection coefficient of the reflector is approximately 1, and FIG. The relationship between the relative reflectance and the relative frequency when the opposing electrode fingers of the interdigital electrodes forming the reflector are connected with a coil with the optimum inductance value (b line) and when they are short-circuited without a coil (a line). 4 is a diagram of the second embodiment, FIG. 5 is a diagram of the third embodiment, FIG. 6 is a diagram of the fourth embodiment, and FIG. 7 is a diagram of the fifth embodiment. ]・Piezoelectric substrate, 2.Reflector; 3.4.Interdigital electrode, 5.5′・Coil.

Claims (6)

【特許請求の範囲】[Claims] 1.圧電基板上に、フィルタ通過帯域中心周波数での圧
電基板上の弾性表面波長をλ_0とする時、電極指幅と
電極指間隙が夫々ほぼλ_0/4で電極指対数15〜4
0対のすだれ状電極の対向する電極指群をコイルで接続
してなる第1、第2反射器と、電極指幅と電極指間隙が
夫々ほぼλ_0/4で上記両反射器の間に順次互いに隣
接して並ぶ第1、第2、第3すだれ状電極とを、第2す
だれ状電極の電極中心の両側にほぼ対称に、前記3すだ
れ状電極を内側にして、第1すだれ状電極の外側に隣接
して第1反射器、第3すだれ状電極の外側に隣接して第
2反射器を配列設置し、第1すだれ状電極と第3すだれ
状電極を電気的に並列に接続して負荷または信号源に、
第2すだれ状電極を信号源または負荷に接続するように
した弾性表面波フィルタ。
1. When the elastic surface wavelength on the piezoelectric substrate at the center frequency of the filter passband is λ_0, the electrode finger width and the electrode finger gap are each approximately λ_0/4, and the number of electrode finger pairs is 15 to 4.
A first and second reflector formed by connecting a group of opposing electrode fingers of 0 pairs of interdigital electrodes with a coil, and an electrode finger width and an electrode finger gap of approximately λ_0/4, respectively, are arranged between the two reflectors. The first, second, and third interdigital electrodes arranged adjacent to each other are arranged symmetrically on both sides of the electrode center of the second interdigital electrode, with the three interdigital electrodes on the inside, and the first interdigital electrode A first reflector is arranged adjacent to the outside, a second reflector is arranged adjacent to the outside of the third interdigital electrode, and the first interdigital electrode and the third interdigital electrode are electrically connected in parallel. load or signal source,
A surface acoustic wave filter having a second interdigital electrode connected to a signal source or a load.
2.請求項1記載の弾性表面波フィルタにおいて、各反
射器の電極指幅と電極指間隙を、夫々、各すだれ状電極
の電極指幅、電極指間隙より大きくしたことを特徴とす
る弾性表面波フィルタ。
2. 2. The surface acoustic wave filter according to claim 1, wherein the electrode finger width and electrode finger gap of each reflector are made larger than the electrode finger width and electrode finger gap of each interdigital electrode, respectively. .
3.請求項1記載の弾性表面波フィルタにおいて、各反
射器の電極指幅と電極指間隙が、夫々、隣接するすだれ
状電極に近づくにつれて、漸次小さくなるようにしたこ
とを特徴とする弾性表面波フィルタ。
3. 2. The surface acoustic wave filter according to claim 1, wherein the electrode finger width and the electrode finger gap of each reflector are made to gradually become smaller as they approach adjacent interdigital electrodes. .
4.請求項1記載の弾性表面波フィルタにおいて、同じ
圧電基板上に配設した、パターン線幅が電極指幅よりも
広いコイルパターンで、反射器の対向する電極指群を接
続したことを特徴とする弾性表面波フィルタ。
4. 2. The surface acoustic wave filter according to claim 1, wherein groups of opposing electrode fingers of the reflector are connected by a coil pattern having a pattern line width wider than the electrode finger width and arranged on the same piezoelectric substrate. Surface acoustic wave filter.
5.請求項1記載の弾性表面波フィルタを同一圧電基板
上に複数組平行に配列して並列に接続したことを特徴と
する弾性表面波フィルタ。
5. A surface acoustic wave filter comprising a plurality of surface acoustic wave filters according to claim 1 arranged in parallel and connected in parallel on the same piezoelectric substrate.
6.反射器端部と隣接するすだれ状電極端部の間を弾性
表面波が往復するのに要する時間が反射器の反射係数の
群遅延時間の1/(10)以下であることを特徴とする
請求項1記載の弾性表面波フィルタ。
6. A claim characterized in that the time required for a surface acoustic wave to travel back and forth between the end of the reflector and the end of an adjacent interdigital electrode is 1/(10) or less of the group delay time of the reflection coefficient of the reflector. Item 1. The surface acoustic wave filter according to item 1.
JP32576588A 1988-12-26 1988-12-26 Surface acoustic wave filter Pending JPH02172312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32576588A JPH02172312A (en) 1988-12-26 1988-12-26 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32576588A JPH02172312A (en) 1988-12-26 1988-12-26 Surface acoustic wave filter

Publications (1)

Publication Number Publication Date
JPH02172312A true JPH02172312A (en) 1990-07-03

Family

ID=18180374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32576588A Pending JPH02172312A (en) 1988-12-26 1988-12-26 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JPH02172312A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000914A1 (en) * 1996-06-28 1998-01-08 Kabushiki Kaisha Toshiba Surface acoustic wave device
JP2002305427A (en) * 2001-04-05 2002-10-18 Murata Mfg Co Ltd Surface acoustic wave device
US6894588B2 (en) * 2002-02-15 2005-05-17 Epcos Ag Resonator filter with improved adjacent channel selectivity
US7002438B2 (en) * 2002-02-27 2006-02-21 Fujitsu Media Devices Limited Surface acoustic wave device with reflection electrodes having pitches that vary
JP2011249879A (en) * 2010-05-21 2011-12-08 Denso Corp Surface acoustic wave oscillator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000914A1 (en) * 1996-06-28 1998-01-08 Kabushiki Kaisha Toshiba Surface acoustic wave device
JP2002305427A (en) * 2001-04-05 2002-10-18 Murata Mfg Co Ltd Surface acoustic wave device
US6894588B2 (en) * 2002-02-15 2005-05-17 Epcos Ag Resonator filter with improved adjacent channel selectivity
US7002438B2 (en) * 2002-02-27 2006-02-21 Fujitsu Media Devices Limited Surface acoustic wave device with reflection electrodes having pitches that vary
JP2011249879A (en) * 2010-05-21 2011-12-08 Denso Corp Surface acoustic wave oscillator
US8368474B2 (en) 2010-05-21 2013-02-05 Denso Corporation Surface acoustic wave oscillator

Similar Documents

Publication Publication Date Title
US6661313B2 (en) Surface acoustic wave devices using optimized cuts of lithium niobate (LiNbO3)
JP3345609B2 (en) Acoustic wave transducer
EP0569977B1 (en) Elastic surface wave filter
US11764755B2 (en) Elastic wave device, radio-frequency front-end circuit, and communication apparatus
JP2000031552A (en) Lateral mode suppression of semiconductor bulk acoustic resonator(sbar) device using tapered electrode and electrode edge part attenuation material
JP2560991B2 (en) Surface acoustic wave filter
JPH03222512A (en) Polarized type saw resonator filter
EP0026114B1 (en) Surface acoustic wave device
KR100397743B1 (en) Surface acoustic wave device
US6346761B1 (en) Surface acoustic wave device capable of suppressing spurious response due to non-harmonic higher-order modes
US4160219A (en) Transducer electrodes for filters or delay lines utilizing surface wave principles
JP4014630B2 (en) Surface acoustic wave device
JPH02172312A (en) Surface acoustic wave filter
CA2062463C (en) Surface acoustic wave device for band-pass filter having small insertion loss and predetermined pass-band characteristics for broad band
JPH02150107A (en) Cross finger type converter and surface acoustic wave filter
JPS6231860B2 (en)
US4237432A (en) Surface acoustic wave filter with feedforward to reduce triple transit effects
JP2685537B2 (en) Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
JP2000091869A (en) Surface acoustic wave filter and communication equipment using the same
JP2000091869A5 (en)
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
JPH0370933B2 (en)
US6781282B1 (en) Longitudinally coupled resonator-type surface acoustic wave device
JP3835872B2 (en) Surface acoustic wave resonator
JP3073185B2 (en) Single-phase unidirectional converter