JPH02172150A - Appearance inspection apparatus - Google Patents

Appearance inspection apparatus

Info

Publication number
JPH02172150A
JPH02172150A JP63325824A JP32582488A JPH02172150A JP H02172150 A JPH02172150 A JP H02172150A JP 63325824 A JP63325824 A JP 63325824A JP 32582488 A JP32582488 A JP 32582488A JP H02172150 A JPH02172150 A JP H02172150A
Authority
JP
Japan
Prior art keywords
sample
image
electron beam
radiated
secondary electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63325824A
Other languages
Japanese (ja)
Inventor
Yoshikazu Tanabe
義和 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63325824A priority Critical patent/JPH02172150A/en
Publication of JPH02172150A publication Critical patent/JPH02172150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To carry out highly precise inspection after development of resists by detecting secondary electrons generated from a sample when an electron beam is radiated to the sample, making an image, and at the same time making a fluorescent image based on the fluorescence radiating in the time of radiation of excited light to the sample. CONSTITUTION:At first a sample 3 is set in the position of the solid line on a sample stand 12 and an electron beam is radiated from an electrooptical mirror cylinder 1 to and at the same time brought into scanning by a scan signal from a scan signal generator 4. Secondary electrons generated from the sample 3 are detected by a secondary electron detector 5 and made into an image on an image display part 7. Then, the sample stand 12 is moved so as to move the sample to the dotted line and a light source lamp 12 is turned on. An excited light with a desired wavelength is radiated to the sample 3 and fluorescent image generated from the sample 3 is photographed by a color camera 17 and at the same time appearance inspection is carried out by an observer with the naked eye using a focusing lens 8. By this, highly precise inspection to investigate whether resist remains or not on the surface after resist development on semiconductor sample, etc., can be carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は外観検査技術に関し、特に、半導体試料等のレ
ジスト現像後の表面のレジスト残の有無等の評価に適用
して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a visual inspection technique, and in particular to a technique that is effective when applied to the evaluation of the presence or absence of resist residue on the surface of a semiconductor sample or the like after resist development.

〔従来の技術〕[Conventional technology]

例えば、半導体のコンタクトホール、スルーホール等の
深穴パターンを表面から外観検査する方法には種々あり
、その1つとしては、株式会社工業調査会発行「100
例にみる半導体評価技術」昭和63年5月刊、宇佐美晶
著、P20〜21に記載されているような走査型電子顕
微鏡(SEM:Scanning Electron 
Microscopy )がある。
For example, there are various methods for visually inspecting deep hole patterns such as contact holes and through holes in semiconductors from the surface.
A scanning electron microscope (SEM) as described in "Examples of Semiconductor Evaluation Technology" May 1986, written by Akira Usami, pages 20-21.
Microscopy).

これは、半導体材料、半導体デバイス等の試料の表面上
を小さいビーム状に絞った電子線によって走査し、試料
からの二次電子または反射電子の強度分布を一層ビーム
に同期させながら画像表示し、その画像の観測から試料
の表面の形状等を評価するものである。
This scans the surface of a sample such as a semiconductor material or semiconductor device with an electron beam focused into a small beam, and displays the intensity distribution of secondary electrons or reflected electrons from the sample as an image while further synchronizing with the beam. The shape of the surface of the sample is evaluated from the observation of the image.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、前記のような従来技術では、アスペクト比の
大きい穴パターンの底部から発生する2次電子の2次電
子検出器に到達する量が少ないために情報量が不足し、
良質のSEM像が得られず、底部のレジスト残等の判定
が極めて困難であった。
However, in the conventional technology as described above, the amount of information is insufficient because the amount of secondary electrons generated from the bottom of the hole pattern with a large aspect ratio reaching the secondary electron detector is small.
It was not possible to obtain a good quality SEM image, and it was extremely difficult to determine the presence of resist residue on the bottom.

本発明の目的は、穴パターンの底部の有機物残を明確に
判定できるようにした外観検査技術を提供することにあ
る。
An object of the present invention is to provide a visual inspection technique that enables clear determination of organic matter residue at the bottom of a hole pattern.

本発明の前記目的と新規な特徴は、本明細書の記述及び
添付図面から明らかになるであろう・〔課題を解決する
ための手段〕 本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、以下の通りである。
The above-mentioned objects and novel features of the present invention will become clear from the description of this specification and the accompanying drawings. [Means for Solving the Problems] Outline of representative inventions among the inventions disclosed in this application A brief explanation is as follows.

すなわち、試料に電子線を照射した際に前記試料から発
生する2次電子を検出して画像化する第1の観察手段と
、前記試料に励起光を照射した際に発生する蛍光に基づ
いて蛍光像を形成する第2の観察手段とを具備するもの
である。
That is, a first observation means detects and images secondary electrons generated from the sample when the sample is irradiated with an electron beam; and second observation means for forming an image.

〔作用〕[Effect]

上記した手段によれば、試料の表面に照射された電子線
による2次電子によって試料の穴パターンの形状が検査
される。そして、2次電子の2次電子検出器への到達量
の少ないレジスト深穴底部に対しては、励起光を照射し
てその際に生じる蛍光の有無または蛍光光層からレジス
ト残を検出する。このように、電子線走査による観察手
段と励起光照射による観察手段とを組合せ、夫々の長所
を用いて外観検査を行うことにより、レジスト深穴パタ
ーンの外観検査を高精度に行うことができる。
According to the above-described means, the shape of the hole pattern of the sample is inspected by secondary electrons generated by an electron beam irradiated onto the surface of the sample. Then, excitation light is irradiated to the bottom of the deep hole in the resist where a small amount of secondary electrons reach the secondary electron detector, and the presence or absence of fluorescence generated at that time or the presence or absence of resist remaining in the fluorescent light layer is detected. In this way, by combining the observation means using electron beam scanning and the observation means using excitation light irradiation and performing an appearance inspection using the advantages of each, it is possible to perform an appearance inspection of a resist deep hole pattern with high precision.

〔実施例〕〔Example〕

図は本発明の一実施例である外観検査装置の要部を示す
説明図である。
The figure is an explanatory view showing the main parts of a visual inspection device that is an embodiment of the present invention.

電子光学系鏡筒1は試料3の上部に位置するように配設
され、その中心部を電子線が試料3に向かって進行する
。電子光学系鏡筒1の下部には、電子線を偏向するため
の電子線偏向コイル2が配設されている。電子線偏向コ
イル2には、走査信号を発生するための走査信号発生器
4が接続されている。電子光学系鏡筒1からの電子線が
試料3に照射された際に試料3から発生する2次電子を
検出するために2次電子検出器5が電子線偏向コイル2
の下部に設けられ、その検出出力を増幅するだめに増幅
器6が接続されている。走査信号発生器4及び増幅器6
には画像表示部7が接続され、増幅器6の出力信号と走
査信号とに基づいて試料3からの2次電子像が表示でき
るようにされている。
The electron optical system lens barrel 1 is disposed above the sample 3, and an electron beam travels toward the sample 3 through its center. An electron beam deflection coil 2 for deflecting an electron beam is disposed at the bottom of the electron optical system barrel 1. A scanning signal generator 4 for generating a scanning signal is connected to the electron beam deflection coil 2 . A secondary electron detector 5 is connected to an electron beam deflection coil 2 to detect secondary electrons generated from the sample 3 when the sample 3 is irradiated with an electron beam from the electron optical system barrel 1.
An amplifier 6 is connected to amplify the detected output. Scanning signal generator 4 and amplifier 6
An image display section 7 is connected to the image display section 7 so that a secondary electron image from the sample 3 can be displayed based on the output signal of the amplifier 6 and the scanning signal.

試料3は、試料室ll内の試料台12に載置されて評価
測定が行われるが、試料台12は試料3を図の実線位置
から破線位置へ移動可能に配設されている。この試料台
12は、試料台制御部9によって制御される。破線位置
の上部の試料室11の天井部には透光可能に開口窓が開
けられ、この開口窓の上部にハーフミラ−13が配設さ
れ、このハーフミラ−13の上方に励起光吸収フィルタ
14、光路切替えミラー15、結像レンズ16及びカラ
ーカメラ17が順次同一光軸上に配設されている。また
、光路切替えミラー15の分岐光軸上には、結像レンズ
18が配設され、その結像部に操作者の眼がくるように
されている。更に、ハーフミラ−13の分岐光軸上には
、順次減光用NDフィルタ19、励起光波長選択フィル
タ20及び光源ランプ21が配設され、光源を破線位置
における試料3へ供給する。光源ランプ21は可視光線
を発生するものであるが、紫外線を発生するものであっ
てもよい。
The sample 3 is placed on a sample stand 12 in the sample chamber 11 for evaluation and measurement, and the sample stand 12 is arranged so that the sample 3 can be moved from the solid line position to the broken line position in the figure. This sample stage 12 is controlled by a sample stage control section 9. An opening window is opened in the ceiling of the sample chamber 11 above the broken line position to allow light to pass through, a half mirror 13 is disposed above the opening window, and an excitation light absorption filter 14 is placed above the half mirror 13. An optical path switching mirror 15, an imaging lens 16, and a color camera 17 are sequentially arranged on the same optical axis. Further, an imaging lens 18 is disposed on the branching optical axis of the optical path switching mirror 15, and the operator's eyes are positioned at the imaging portion of the imaging lens 18. Further, on the branching optical axis of the half mirror 13, an ND filter 19 for attenuation, an excitation light wavelength selection filter 20, and a light source lamp 21 are sequentially arranged, and a light source is supplied to the sample 3 at the position of the broken line. Although the light source lamp 21 emits visible light, it may also emit ultraviolet light.

走査信号発生器4、試料台制御部9及び蛍光波長分析部
10は、装置全体の管理を行う中央制御処理部8によっ
て制御されている。
The scanning signal generator 4, sample stage control section 9, and fluorescence wavelength analysis section 10 are controlled by a central control processing section 8 that manages the entire apparatus.

次に、以上の構成による実施例の動作について説明する
Next, the operation of the embodiment with the above configuration will be explained.

はじめに試料3は試料台12の実線位置にセットされ、
この状態で電子光学系鏡筒lから試料3の表面に照射す
ると共に、走査信号発生器4から走査信号を電子線偏向
コイル2に印加して電子線を走査する。この走査によっ
て試料3から2次電子が発生し、その2次電子が2次電
子検出器5で検出され、更に増幅器6によって増幅され
る。増幅器6で増幅された信号は、走査信号発生器4よ
り出力される走査信号に基づいて画像表示部7で処理さ
れ、試料3よりの2次電子を画像表示する。
First, the sample 3 is set at the solid line position on the sample stage 12,
In this state, the surface of the sample 3 is irradiated from the electron optical system barrel 1, and a scanning signal is applied from the scanning signal generator 4 to the electron beam deflection coil 2 to scan the electron beam. Secondary electrons are generated from the sample 3 by this scanning, and the secondary electrons are detected by the secondary electron detector 5 and further amplified by the amplifier 6. The signal amplified by the amplifier 6 is processed by the image display unit 7 based on the scanning signal output from the scanning signal generator 4, and the secondary electrons from the sample 3 are displayed as an image.

以上により、SEMによる測定が終了する。With the above steps, the measurement by SEM is completed.

次に、試料台制御部9は、試料3が破線位置になるよう
に試料台12を移動させる。そして、光源ランプ21を
点灯させると、この点灯による励起光は励起光波長選択
フィルタ20を通過することによって所望の励起光波長
になり、さらに減光用NDフィルタ19によって所望の
光量にされる。
Next, the sample stage control unit 9 moves the sample stage 12 so that the sample 3 is at the position shown by the broken line. When the light source lamp 21 is turned on, the excitation light generated by this lighting becomes a desired excitation light wavelength by passing through an excitation light wavelength selection filter 20, and is further adjusted to a desired light intensity by a dimming ND filter 19.

減光用NDフィルタ19を出射した励起光は、ハーフミ
ラ−13で反射した後、試り3に照射される。この照射
により、試料3からは有機物であるレジストの組成特有
の蛍光を発する。
The excitation light emitted from the attenuation ND filter 19 is reflected by the half mirror 13 and then irradiated onto the trial 3. Due to this irradiation, sample 3 emits fluorescence unique to the composition of the resist, which is an organic substance.

この蛍光は、ハーフミラ−13を通過し、更に、励起光
吸収フィルタ14で励起光波長が除去されたのち光路切
替えミラー15で2方向に分岐される。光路切替えミラ
ー15を直進した蛍光像は、結像レンズ16を経てカラ
ーカメラ17に撮像される。一方、光路切替えミラー1
5で反射した蛍光像は、結像レンズ18によって観察者
の眼の位置に結像される。これにより、観察者は肉眼に
より試料3の外観検査が行える。
This fluorescence passes through a half mirror 13, and further, the excitation light wavelength is removed by an excitation light absorption filter 14, and then branched into two directions by an optical path switching mirror 15. The fluorescent image that has passed straight through the optical path switching mirror 15 is captured by a color camera 17 via an imaging lens 16. On the other hand, the optical path switching mirror 1
The fluorescent image reflected by 5 is formed by an imaging lens 18 at the position of the observer's eyes. This allows the observer to inspect the appearance of the sample 3 with the naked eye.

カラーカメラ17で撮像した画像情報は、蛍光波長分析
部IOによって蛍光波長分析がなされ、カラーベクトル
として検出し、試料3からの蛍光色を認識する。
The image information captured by the color camera 17 is subjected to fluorescence wavelength analysis by the fluorescence wavelength analysis unit IO, detected as a color vector, and the fluorescence color from the sample 3 is recognized.

以上のように、本実施例では、電子線走査による観察手
段に、光学式の観察手段を併用したことにより、前者で
はレジスト表面部の観察を高分解能で行え、後者では電
子線走査が不得意とするレジスト深穴底部のレジスト残
を蛍光発生の有無または蛍光光量から検出できる。なお
、シリコン酸化膜、窒化膜等の無機物に励起光を照射し
ても蛍光を発生することは無いので、この観察には電子
線走査による観察手段を用いることになる。このように
、2つの観察手段が相互に補完するように機能する結果
、レジスト深穴パターンの外観検査を高精度に行うこと
ができる。
As described above, in this example, by using an optical observation means in combination with an observation means based on electron beam scanning, the former allows observation of the resist surface area with high resolution, while the latter is not suitable for electron beam scanning. Resist residue at the bottom of a deep resist hole can be detected from the presence or absence of fluorescence or the amount of fluorescence light. Note that even if an inorganic substance such as a silicon oxide film or a nitride film is irradiated with excitation light, no fluorescence is generated, so an observation means using electron beam scanning is used for this observation. As a result of the two observation means functioning to complement each other in this way, the appearance of the resist deep hole pattern can be inspected with high precision.

以上、本発明によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のでは無く、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
As above, the invention made by the present invention has been specifically explained based on the examples, but it goes without saying that the present invention is not limited to the above-mentioned examples and can be modified in various ways without departing from the gist thereof. Nor.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、下記の通りであ
る。
Among the inventions disclosed in this application, the effects obtained by typical ones are as follows.

すなわち、試料に電子線を照射した際に前記試料から発
生する2次電子を検出して画像化する第1の観察手段と
、前記試料に励起光を照射した際に発生する蛍光に基づ
いて蛍光像を形成する第2の観察手段とを設けたので、
レジスト穴パターン及び水底部のレジスト残の検査を高
精度及び高信頼に行うことができる。
That is, a first observation means detects and images secondary electrons generated from the sample when the sample is irradiated with an electron beam; Since a second observation means for forming an image is provided,
The resist hole pattern and the resist residue at the bottom of the water can be inspected with high accuracy and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例である外観検査装置の要部を示す
説明図である。 l・・・電子光学系鏡筒、2・・・電子線偏向コイル、
3・・・試料、4・・・走査信号発生器、5・・・2次
電子検出器、7・・・画像表示部、10・・・蛍光波長
分析部、12・・・試料台、13.15・・・ハーフミ
ラ−14・・・励起光吸収フィルタ、17・・・カラー
カメラ、  2O・・・励起光波長選択フィルタ、21
・・・光源ランプ。
The figure is an explanatory view showing the main parts of a visual inspection device that is an embodiment of the present invention. l...electron optical system barrel, 2...electron beam deflection coil,
3... Sample, 4... Scanning signal generator, 5... Secondary electron detector, 7... Image display section, 10... Fluorescence wavelength analysis section, 12... Sample stage, 13 .15... Half mirror 14... Excitation light absorption filter, 17... Color camera, 2O... Excitation light wavelength selection filter, 21
...Light source lamp.

Claims (1)

【特許請求の範囲】 1、試料に電子線を照射した際に前記試料から発生する
2次電子を検出して画像化する第1の観察手段と、前記
試料に励起光を照射した際に発生する蛍光に基づいて蛍
光像を形成する第2の観察手段とを具備することを特徴
とする外観検査装置。 2、前記励起光は、可視光または紫外光であることを特
徴とする請求項1記載の外観検査装置。 3、前記蛍光像の形成は、蛍光像の蛍光波長の分析によ
りカラーベクトル化して蛍光色を認識するものであるこ
とを特徴とする請求項1記載の外観検査装置。
[Scope of Claims] 1. A first observation means for detecting and imaging secondary electrons generated from the sample when the sample is irradiated with an electron beam; and second observation means for forming a fluorescent image based on the fluorescent light. 2. The appearance inspection device according to claim 1, wherein the excitation light is visible light or ultraviolet light. 3. The appearance inspection apparatus according to claim 1, wherein the formation of the fluorescent image is performed by analyzing the fluorescence wavelength of the fluorescent image to convert it into a color vector to recognize the fluorescent color.
JP63325824A 1988-12-26 1988-12-26 Appearance inspection apparatus Pending JPH02172150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325824A JPH02172150A (en) 1988-12-26 1988-12-26 Appearance inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325824A JPH02172150A (en) 1988-12-26 1988-12-26 Appearance inspection apparatus

Publications (1)

Publication Number Publication Date
JPH02172150A true JPH02172150A (en) 1990-07-03

Family

ID=18181011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325824A Pending JPH02172150A (en) 1988-12-26 1988-12-26 Appearance inspection apparatus

Country Status (1)

Country Link
JP (1) JPH02172150A (en)

Similar Documents

Publication Publication Date Title
US5648849A (en) Method of and device for in situ real time quantification of the morphology and thickness of a localized area of a surface layer of a thin layer structure during treatment of the latter
US6614031B2 (en) Method for examining a specimen, and confocal scanning microscope
US20050122508A1 (en) Method and apparatus for reviewing defects
US4800282A (en) Apparatus and method for detecting residual organic compounds
JP5265070B2 (en) Light source device for illumination in scanning microscope inspection, and scanning microscope
US6553323B1 (en) Method and its apparatus for inspecting a specimen
GB2197499A (en) High spatial and time resolution measuring apparatus
JPH05264468A (en) Method and apparatus for detecting internal
US20090316981A1 (en) Method and device for inspecting a disk-shaped object
Wilke Laser scanning in microscopy
JPH05228671A (en) Excimer laser machine
JPH02172150A (en) Appearance inspection apparatus
JP2000077019A (en) Electron microscope
JP2602523B2 (en) Cathodoluminescence measuring device
JPH01137547A (en) Focused energy beam processing device and processing method
JP2007096011A (en) Sample inspection method
JPH04343003A (en) Detecting apparatus of fluorescence of semiconductor/ mask
JP3644997B2 (en) Laser processing equipment
KR100807254B1 (en) Defect inspecting apparatus
JPH06194319A (en) Method and equipment for analyzing sample
JPH01149354A (en) Electron microscope
JP2002340990A (en) Estimation method and equipment of semiconductor device
JPH0464245A (en) Electron microscope with optical microscope and appearance inspection device using it
JP2000292360A (en) Foreign matter inspection method
JPH0412254A (en) Method and device for inspecting internal defect