JPH02172010A - Composite type thin-film magnetic head - Google Patents

Composite type thin-film magnetic head

Info

Publication number
JPH02172010A
JPH02172010A JP32578288A JP32578288A JPH02172010A JP H02172010 A JPH02172010 A JP H02172010A JP 32578288 A JP32578288 A JP 32578288A JP 32578288 A JP32578288 A JP 32578288A JP H02172010 A JPH02172010 A JP H02172010A
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetostriction
magnetic head
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32578288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hamakawa
濱川 佳弘
Naoki Koyama
直樹 小山
Koji Takano
公史 高野
Kazuo Shiiki
椎木 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32578288A priority Critical patent/JPH02172010A/en
Publication of JPH02172010A publication Critical patent/JPH02172010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently generate magnetic fields by setting magnetostriction of a magnetic film forming the magnetic poles of the magnetic head positive. CONSTITUTION:Shielding patterns 2 tapered at the end are formed on a substrate 1. A magneto-resistance effect element 4 is then inserted and formed between insulating layers 3. A lower magnetic pole 5 and an insulating layer 6 to constitute a gap layer are laminated. Conductor coil patterns 7 and a flatting layer 61 are then formed. The layer 61 is taper-etched to form tapered parts, then an upper magnetic pole 8 and a protective film 9 are formed. An Ni-Fe alloy is used for the upper and lower magnetic poles 8, 5 and the magnetostriction thereof is set at the positive value by regulating the compsn. The optimum recording current value is low and the recording efficiency is high when the magnetostriction is positive.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は複合型の薄膜磁気ヘッドにかかわり、特に高密
度磁気記録に好適な、記録再生を分離した複合型薄膜磁
気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a composite type thin film magnetic head, and more particularly to a composite type thin film magnetic head in which recording and reproduction are separated and is suitable for high-density magnetic recording.

(従来の技術] 磁気記録の高密度化を図るため、記録、再生の機能を分
離した複合型の薄膜磁気ヘッドが提案されている。複合
型の薄膜磁気ヘッドの構造として、磁気抵抗素子を用い
た再生ヘッドの上に、誘導型薄膜磁気ヘッドを積層する
構造が知られており。
(Prior Art) In order to increase the density of magnetic recording, a composite thin-film magnetic head with separate recording and reproducing functions has been proposed.The structure of the composite thin-film magnetic head uses a magnetoresistive element. A structure in which an inductive thin film magnetic head is stacked on top of a read head is known.

第3図に示すような積層構造を持つ。It has a laminated structure as shown in Figure 3.

非磁性基板1に磁気抵抗素子のシールド層2を禮漕し、
つづいて絶縁M3を介してNi−Fe合金からなる磁気
抵抗素子4を積層する。さらに。
A shield layer 2 of a magnetoresistive element is placed on a nonmagnetic substrate 1,
Subsequently, a magnetoresistive element 4 made of a Ni--Fe alloy is laminated via an insulator M3. moreover.

絶縁層3を介して、シールドJl兼下部磁極層5を積層
し、絶縁層6中に導体コイル7を形成する。
A shield Jl/lower magnetic pole layer 5 is laminated via an insulating layer 3, and a conductor coil 7 is formed in the insulating layer 6.

最後に上部磁極8および保護膜9を積層して複合型の薄
膜磁気ヘッドとする。
Finally, the upper magnetic pole 8 and the protective film 9 are laminated to form a composite thin film magnetic head.

このような複合型薄膜磁気ヘッドにおいては、誘導型薄
膜磁気ヘッドによって媒体に記録し、磁気抵抗素子によ
って媒体に書かれた信号を読み取っている。
In such a composite thin film magnetic head, an inductive thin film magnetic head records on a medium, and a magnetoresistive element reads signals written on the medium.

このような構造の簿膜ヘッドに関しては、特開昭50−
93127号や、アイ、イー、イー、イー トランザク
ション オン マグネティクス。
Regarding the film head with such a structure, Japanese Patent Application Laid-Open No. 1986-
93127 and I, E, E, E Transactions on Magnetics.

エム ニー ジー17(1,981年)第2890頁か
ら第2892頁(IEEE  Trans、Magna
tics、MAG17  (1981)pp。
M.N.G. 17 (1,981), pp. 2890-2892 (IEEE Trans, Magna
tics, MAG17 (1981) pp.

2890〜2892)において論じられている。2890-2892).

ところで従来、特開昭55−101124号に述べられ
ているように、単独で用いられる誘導型薄膜磁気ヘッド
の磁極には、再生効率および再生時の雑音現象低減の観
点から、磁歪負の磁性膜が用いられていた。複合型磁気
ヘッドにおいても、記録用の誘導型薄rIA磁気ヘッド
では、磁極磁性膜の磁歪を負にして用いていた。複合型
薄膜磁気ヘッドは、記録再生が分離しており、記録能力
を高めるため記録専用の誘導型薄膜磁気ヘッドのポール
厚を厚くしても、再生分解能が劣化しないという利点が
ある。そこで、記録専用誘導型411g磁気ヘッドのポ
ール厚、すなわち磁極磁性膜の膜厚を厚くしていた。し
かし、記録効率が極端に劣化するという問題があった。
By the way, as described in Japanese Unexamined Patent Application Publication No. 55-101124, the magnetic pole of an inductive thin film magnetic head used alone has been coated with a magnetostrictive negative magnetic film from the viewpoint of reproduction efficiency and noise reduction during reproduction. was used. Also in the composite magnetic head, in the induction type thin rIA magnetic head for recording, the magnetostriction of the magnetic pole magnetic film is made negative. The composite thin-film magnetic head has separate recording and reproducing functions, and has the advantage that even if the pole thickness of the recording-only inductive thin-film magnetic head is increased to increase the recording capacity, the reproducing resolution will not deteriorate. Therefore, the pole thickness of the recording-only induction type 411g magnetic head, that is, the thickness of the pole magnetic film, has been increased. However, there was a problem in that the recording efficiency was extremely degraded.

【発明が解決しようとする課題1 上記従来技術は、誘導型ヘッドすなわち記録へラドの磁
極磁性膜の磁歪についての十分な配慮がなされていない
ために、記録磁界を、効率よく発生させる上で問題があ
った。本発明の目的は、効率よく磁界が発生できる複合
型薄膜磁気ヘッドを提供することにある。
Problem to be Solved by the Invention 1 The above conventional technology has problems in efficiently generating a recording magnetic field because sufficient consideration has not been given to the magnetostriction of the magnetic pole magnetic film of the inductive head, that is, the recording head. was there. An object of the present invention is to provide a composite thin film magnetic head that can efficiently generate a magnetic field.

(課題を解決するための手段] 上記目的は、誘導型薄膜磁気ヘッドすなわち、記録ヘッ
ドの磁極磁性膜の磁歪を正にすることで達成できる。
(Means for Solving the Problems) The above object can be achieved by making the magnetostriction of the magnetic pole magnetic film of the inductive thin film magnetic head, that is, the recording head positive.

(作用] 磁極磁性膜の磁歪が負の時、磁性膜の膜厚が厚くなると
、膜面に垂直の磁気異方性が誘起される。
(Function) When the magnetostriction of the pole magnetic film is negative, as the thickness of the magnetic film increases, magnetic anisotropy perpendicular to the film surface is induced.

このため面内方向に磁化がしにくく、磁極先端から十分
に磁束を出せなくなったため、この磁性膜を磁極に持っ
た記録用の薄膜ヘッドでは、記録効率が低下したものと
考えられる。この垂直異方性の原因は、膜内に存在する
内部応力と磁性膜が持つ磁歪との作用による、逆磁歪効
果によるものと考えられる。従って、磁極磁性膜の磁歪
を正にすることは、磁極磁性膜の垂直磁気異方性の誘起
を抑制する作用をもち、そのために記録効率の劣化を防
げるものと考えられる。
For this reason, it is difficult to magnetize in the in-plane direction, and sufficient magnetic flux cannot be emitted from the tip of the magnetic pole, which is thought to be the reason why the recording efficiency of thin-film recording heads with this magnetic film at the magnetic pole is reduced. The cause of this perpendicular anisotropy is considered to be the inverse magnetostriction effect caused by the interaction of the internal stress present in the film and the magnetostriction of the magnetic film. Therefore, it is considered that making the magnetostriction of the pole magnetic film positive has the effect of suppressing the induction of perpendicular magnetic anisotropy in the pole magnetic film, thereby preventing deterioration of recording efficiency.

(実施例] 以下、本発明の一実施例を説明する。(Example] An embodiment of the present invention will be described below.

第3図に断面図を示す複合型薄膜磁気ヘッドを作製した
A composite thin film magnetic head whose cross-sectional view is shown in FIG. 3 was fabricated.

基板1上に、端部をテーパ状にしたシールドパターン2
を形成する。続いて、磁気抵抗効果素子4をlIA縁層
3をはさんで形成する。次に、下部磁極5.ギャップ層
となる絶縁層6を積層し、続いて、導体コイルパターン
7および平坦化M61を形成する。その後、平坦化層を
テーパエツチングして、テーバ部を形成し、上部磁極8
および保護膜9を形成する。
A shield pattern 2 with tapered ends is formed on the substrate 1.
form. Subsequently, the magnetoresistive element 4 is formed with the IIA edge layer 3 sandwiched therebetween. Next, lower magnetic pole 5. An insulating layer 6 serving as a gap layer is laminated, and then a conductive coil pattern 7 and a flattened layer M61 are formed. Thereafter, the flattening layer is taper-etched to form a tapered portion, and the upper magnetic pole 8 is
and a protective film 9 is formed.

ここで、基板lとしては、ジルコニア基板にA1□0.
を被着したものを用いた。シールド層はNi−Fe合金
で、膜厚は1.0pm、高さは10μmとした。このシ
ールド層のテーパエツチングは、テーバ状の断面をもつ
ホトレジストをマスクに、イオンミリングで加工した。
Here, the substrate l is a zirconia substrate with A1□0.
A material coated with was used. The shield layer was made of a Ni-Fe alloy, and had a thickness of 1.0 pm and a height of 10 μm. Taper etching of the shield layer was performed by ion milling using a photoresist with a tapered cross section as a mask.

磁気抵抗素子4におけるバイアス方式は、シャントバイ
アス方式とし、膜厚45nmのNi−Fe合金と膜厚2
00nmのMo膜を積層し、その高さは5μmとした。
The bias method in the magnetoresistive element 4 is a shunt bias method, and a Ni-Fe alloy with a film thickness of 45 nm and a film thickness of 2
00 nm Mo films were stacked, and the height thereof was 5 μm.

磁気抵抗素子4をはさむ絶縁層3には、Al2O3を用
い、磁気抵抗素子4をはさんだ部分における膜厚の和が
1μmとなるようにした。
The insulating layer 3 sandwiching the magnetoresistive element 4 was made of Al2O3, and the sum of the film thicknesses at the portions sandwiching the magnetoresistive element 4 was 1 μm.

上部ならびに下部の磁極8,5には、膜厚しμmのNi
−Fe合金を用いた。N i −F e合金膜の磁歪は
組成によって調整した。その時の磁歪をλSとする。上
下磁極8.5のギャップとなる絶縁層6としては、膜厚
1μmのA1□O3膜を用いた。
The upper and lower magnetic poles 8 and 5 are coated with a Ni film with a thickness of μm.
-Fe alloy was used. The magnetostriction of the Ni-Fe alloy film was adjusted by changing the composition. Let the magnetostriction at that time be λS. As the insulating layer 6 that forms the gap between the upper and lower magnetic poles 8.5, an A1□O3 film with a thickness of 1 μm was used.

導体コイル7は、膜厚2μmの銅パターンで、加工はイ
オンミリングにより行った。平坦化層61は、ポリイミ
ド系樹脂であるPIQ (日立化成社製、商品名)を用
い、テーパエツチングは、ホトレジストをマスクに、エ
チレンジアミンを主成分とする溶液による化学エツチン
グで行った。最上層の保護膜9にはAl、O,膜を用い
た。
The conductor coil 7 was a copper pattern with a film thickness of 2 μm, and was processed by ion milling. The flattening layer 61 was made of polyimide resin PIQ (manufactured by Hitachi Chemical Co., Ltd., trade name), and the taper etching was carried out by chemical etching using a solution containing ethylenediamine as a main component using a photoresist as a mask. For the uppermost protective film 9, an Al, O, film was used.

第1図に1本実施例で示した複合型薄膜磁気ヘッドの最
適記録電流値と誘導型薄膜磁気ヘッドの磁極磁性膜の磁
歪との関係を磁極磁性膜の膜厚をパラメータにして示す
。測定に用いた媒体は、保磁力が10000 eのCo
−Ni−Zrスパッタ媒体である。
FIG. 1 shows the relationship between the optimum recording current value of the composite thin film magnetic head shown in this embodiment and the magnetostriction of the pole magnetic film of the inductive thin film magnetic head, using the thickness of the pole magnetic film as a parameter. The medium used for the measurement was Co with a coercive force of 10,000 e.
-Ni-Zr sputtering medium.

ここで、最適記録電流値は以下のように定義し。Here, the optimum recording current value is defined as follows.

記録効率の指標とした。すなわち、複合型の記録用ヘッ
ドで5kPCIの信号を媒体に記録し、再生専用(磁気
抵抗素子)ヘッドで再生したときの記録電流と再生出力
との関係を調べたとき、再生出力が飽和しはじめる記録
電流値を最適記録電流値と定義しとした。膜厚が小さい
ときは、磁歪が正でも負でもほぼ同じ最適記録電流値を
示した。
This was used as an index of recording efficiency. In other words, when we examine the relationship between the recording current and playback output when a 5kPCI signal is recorded on a medium using a composite recording head and read back using a playback-only (magnetoresistive element) head, we find that the playback output begins to saturate. The recording current value was defined as the optimum recording current value. When the film thickness was small, the optimum recording current value was almost the same regardless of whether the magnetostriction was positive or negative.

膜厚が3μm以上の時は、磁歪が負の時に最適記録電流
値が急激に増大するのに対し、磁歪が正の時は最適記録
電流値が低く、記録効率が優れていることがわかる。
It can be seen that when the film thickness is 3 μm or more, the optimal recording current value increases rapidly when the magnetostriction is negative, whereas the optimal recording current value is low when the magnetostriction is positive, and the recording efficiency is excellent.

なお、磁気ヘッドに用いる磁性膜の磁歪は、加工時の応
力による磁気特性の変化をさけるため、できるだけ小さ
いことが必要であり、1×10や6以下であることが望
ましい。
Note that the magnetostriction of the magnetic film used in the magnetic head needs to be as small as possible in order to avoid changes in magnetic properties due to stress during processing, and is preferably 1×10 or 6 or less.

第2図(a)は、磁極膜厚が3μm、磁歪が3×10や
7の磁極、同図(b)は、磁極膜厚が3μm、磁歪が−
IX10+’の磁極の磁区構造を示している。磁区構造
は、ビッタ法により観察した。
Figure 2 (a) shows a magnetic pole with a magnetic pole film thickness of 3 μm and a magnetostriction of 3×10 or 7, and Figure 2 (b) shows a magnetic pole with a magnetic pole film thickness of 3 μm and a magnetostriction of -
The magnetic domain structure of the magnetic pole of IX10+' is shown. The magnetic domain structure was observed by the Bitter method.

磁歪が正の磁極は、磁性膜の容易磁化方向がトラック幅
方向をむく還流磁区構造を形成していたが、磁歪が負の
磁極は、垂直異方性を示す縞状磁区を形成していた。
The magnetic pole with positive magnetostriction formed a reflux magnetic domain structure in which the direction of easy magnetization of the magnetic film faced the track width direction, whereas the magnetic pole with negative magnetostriction formed a striped magnetic domain exhibiting perpendicular anisotropy. .

このように、磁歪が負の磁極は、膜厚が厚いときに垂直
異方性を示すために、記録効率が低減したものと考えら
れる。上記実施例では、Ni−Fe合金(パーマロイ)
の場合を示しているが、CoTaZr系のような非晶質
合金、Fe−CとNi −F e合金(パーマロイ)と
の多層膜の場合も同様な効果があった。
Thus, it is considered that the magnetic pole with negative magnetostriction exhibits perpendicular anisotropy when the film thickness is large, and thus the recording efficiency is reduced. In the above embodiment, Ni-Fe alloy (permalloy)
However, similar effects were obtained in the case of an amorphous alloy such as CoTaZr, or a multilayer film of Fe--C and Ni--Fe alloy (permalloy).

なお、従来の自己録再を行う誘導型薄膜磁気ヘッドでは
、再生分解能の点から磁極磁性膜の膜厚を3μm未満に
する必要がある。この時は、第1図に示すように、−5
X10や7からOの負の磁歪領域でも記録効率の劣化は
ない。また、磁極磁性膜の磁歪を正にすると、記録効率
の劣化はみられないが、再生信号に歪がみられ雑音の原
因になった。複合型薄膜磁気ヘッドでは、それを形成す
る誘導型薄膜磁気ヘッドによる再生は行わないので、磁
極磁性膜の磁歪が正になっても問題ない。
Note that in the conventional inductive thin film magnetic head that performs self-recording and reproducing, the thickness of the pole magnetic film must be less than 3 μm from the viewpoint of reproduction resolution. At this time, as shown in Figure 1, -5
There is no deterioration in recording efficiency even in the negative magnetostriction range from X10 and 7 to O. Furthermore, when the magnetostriction of the magnetic pole magnetic film was made positive, no deterioration in recording efficiency was observed, but distortion was observed in the reproduced signal, causing noise. In the composite thin film magnetic head, since the inductive thin film magnetic head that forms it does not perform reproduction, there is no problem even if the magnetostriction of the pole magnetic film becomes positive.

(発明の効果1 本発明によれば、磁極磁性膜の膜厚が厚くても垂直異方
性が誘起されないので、記録効率の優れた記録用ヘッド
を有する複合型磁気ヘッドが得られる。
(Effect of the Invention 1) According to the present invention, perpendicular anisotropy is not induced even if the pole magnetic film is thick, so that a composite magnetic head having a recording head with excellent recording efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、複合型薄膜磁気ヘッドを形成する誘導型薄膜
磁気ヘッドの磁極磁性膜の磁歪と最適記録電流値との関
係を磁性膜の膜厚をパラメータにして示した図、第2図
は、複合型薄III磁気ヘッドを形成する誘導型薄膜磁
気ヘッドの磁極にvA察される磁区構造と、磁極磁性膜
の磁歪との関係を示す図、第3図は、複合型薄膜磁気ヘ
ッドの断面図である。 符号の説明 1・・・基板、2・・・シールドパターン、3・・・l
I!縁層、4・・・磁気抵抗効果素子、5・・・下部磁
極。 6・・・絶縁層、7・・・導体コイル、8・・・上部磁
極、9・・・保護膜 晟 歪 λβ 第 (c。 (bつ
Figure 1 shows the relationship between the magnetostriction of the magnetic pole magnetic film and the optimum recording current value of an inductive thin film magnetic head that forms a composite thin film magnetic head, using the thickness of the magnetic film as a parameter. , a diagram showing the relationship between the magnetic domain structure vA observed in the magnetic pole of the inductive thin film magnetic head forming the composite thin III magnetic head and the magnetostriction of the magnetic pole magnetic film. Figure 3 is a cross section of the composite thin film magnetic head. It is a diagram. Explanation of symbols 1...Substrate, 2...Shield pattern, 3...l
I! Edge layer, 4... Magnetoresistive element, 5... Lower magnetic pole. 6... Insulating layer, 7... Conductor coil, 8... Upper magnetic pole, 9... Protective film strain λβth (c.

Claims (1)

【特許請求の範囲】 1、磁気抵抗効果型薄膜磁気ヘッドと誘導型薄膜磁気ヘ
ッドを備えた複合型薄膜磁気ヘッドにおいて、誘導型薄
膜磁気ヘッドの磁極を形成する磁性膜の磁歪が正である
ことを特徴とする複合型薄膜磁気ヘッド。 2、前記誘導型薄膜磁気ヘッドの磁極を形成する磁性膜
の膜厚が3μm以上、磁歪が0以上1×10_+^6以
下であることを特徴とする請求項第1項記載の複合型薄
膜磁気ヘッド。
[Claims] 1. In a composite thin film magnetic head comprising a magnetoresistive thin film magnetic head and an inductive thin film magnetic head, the magnetostriction of the magnetic film forming the magnetic pole of the inductive thin film magnetic head is positive. A composite thin-film magnetic head featuring: 2. The composite thin film magnetic head according to claim 1, wherein the magnetic film forming the magnetic pole of the inductive thin film magnetic head has a thickness of 3 μm or more and a magnetostriction of 0 or more and 1×10_+^6 or less. head.
JP32578288A 1988-12-26 1988-12-26 Composite type thin-film magnetic head Pending JPH02172010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32578288A JPH02172010A (en) 1988-12-26 1988-12-26 Composite type thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32578288A JPH02172010A (en) 1988-12-26 1988-12-26 Composite type thin-film magnetic head

Publications (1)

Publication Number Publication Date
JPH02172010A true JPH02172010A (en) 1990-07-03

Family

ID=18180551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32578288A Pending JPH02172010A (en) 1988-12-26 1988-12-26 Composite type thin-film magnetic head

Country Status (1)

Country Link
JP (1) JPH02172010A (en)

Similar Documents

Publication Publication Date Title
KR100319035B1 (en) Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them
JP2728487B2 (en) Recording / playback separation type magnetic head
JP2947621B2 (en) Thin film magnetic head
JP2001176028A (en) Thin film magnetic head and method of producing the same
JP3388685B2 (en) Magnetic head
JPH0778858B2 (en) Thin film magnetic head
JP2001155313A (en) Thin film magnetic head and its manufacturing method
JPH10149513A (en) Magneto-resistive composite head
JP3475868B2 (en) Magnetoresistive thin-film magnetic head
JPH02172010A (en) Composite type thin-film magnetic head
JP2788403B2 (en) Magnetoresistive head
JPH0498608A (en) Magnetic head
JP3280057B2 (en) Thin film magnetic head
JP3082003B2 (en) Method of manufacturing magnetoresistive head
JP2001250205A (en) Thin film magnetic head and of its manufacturing method
JP3210139B2 (en) Magnetoresistive magnetic head
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JPS63129511A (en) Magnetoresistance effect type thin film magnetic head
JPS5971124A (en) Magneto-resistance effect magnetic head
JPH11296820A (en) Magnetic head of magnetoresistance type
JPH0198110A (en) Production of thin film magnetic head
JPH0546943A (en) Thin film magnetic head
JP3384494B2 (en) Magnetoresistive material and magnetic field sensor using the same
JP2948182B2 (en) Recording / playback separation type magnetic head
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same