JPH0217129B2 - - Google Patents

Info

Publication number
JPH0217129B2
JPH0217129B2 JP60017607A JP1760785A JPH0217129B2 JP H0217129 B2 JPH0217129 B2 JP H0217129B2 JP 60017607 A JP60017607 A JP 60017607A JP 1760785 A JP1760785 A JP 1760785A JP H0217129 B2 JPH0217129 B2 JP H0217129B2
Authority
JP
Japan
Prior art keywords
container
steam
bottle
temperature
sterilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60017607A
Other languages
Japanese (ja)
Other versions
JPS61177928A (en
Inventor
Shiro Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUNMA NETSU KANRI SENTAA KK
Original Assignee
GUNMA NETSU KANRI SENTAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUNMA NETSU KANRI SENTAA KK filed Critical GUNMA NETSU KANRI SENTAA KK
Priority to JP60017607A priority Critical patent/JPS61177928A/en
Publication of JPS61177928A publication Critical patent/JPS61177928A/en
Publication of JPH0217129B2 publication Critical patent/JPH0217129B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mushroom Cultivation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はビン等の容器中にて栽培する栽培きの
この製造方法に関し、特に殺菌時間の短縮化、省
エネルギー化に特徴を有するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing cultivated mushrooms grown in containers such as bottles, and is particularly characterized by shortening sterilization time and saving energy.

(従来の技術) 従来はオガ屑に一定の水分を含有させ、その中
に米ぬかを相当量混入し、これをビン等の容器中
に投入した後、開放型の蒸気室又は圧力容器の中
に入れて100℃から120℃位で2時間から4時間殺
菌した後に殖菌し芽出し栽培を行つていた。
(Prior art) Conventionally, sawdust was made to contain a certain amount of moisture, a considerable amount of rice bran was mixed into it, and after being put into a container such as a bottle, it was placed in an open steam chamber or pressure vessel. After putting it in and sterilizing it at around 100℃ to 120℃ for 2 to 4 hours, the bacteria germinated and sprouted, which led to cultivation.

(発明が解決しようとする問題点) 従来のビン殺菌では蒸気による湿熱殺菌方法を
利用して、100℃前後の開放型加熱器や120℃前後
の圧力容器に入れて殺菌していたが、殺菌容器ビ
ン中には多量の空気が存在するために、圧力容器
内は120℃であつてもビン容器中には温度差を生
ずる。一方圧力容器内は高温の湿熱であつてもビ
ン容器内は乾熱である。従つて殺菌効果は極めて
悪い。すなわち、従来は湿熱殺菌と考えられてい
た殺菌方法は、ビンは冷却されたまま加温室へ入
れられ外部より加熱されていたためにビン中の空
気は膨張した分だけ排出されていたが、その後
は、一定温度のままで加熱空気となり外部に排出
されないために実質的には乾熱殺菌されていたわ
けである。
(Problem to be solved by the invention) In conventional bottle sterilization, a moist heat sterilization method using steam was used to sterilize bottles by placing them in an open heater at around 100°C or a pressure vessel at around 120°C. Because there is a large amount of air in the container, a temperature difference occurs within the container even if the temperature inside the pressure container is 120°C. On the other hand, even though the inside of the pressure vessel is high-temperature and moist heat, the inside of the bottle container is dry heat. Therefore, the bactericidal effect is extremely poor. In other words, in the sterilization method that was conventionally thought to be moist heat sterilization, the bottles were placed in a heating chamber while still being cooled and heated from the outside, so the air in the bottles was exhausted by the amount of expansion. Since the heated air remains at a constant temperature and is not discharged to the outside, it is essentially dry heat sterilized.

本発明は湿熱殺菌とすることにより好適な殺菌
効果の向上を図り理想的なきのこ栽培を行うとと
もに、併せて省エネルギー効果をも充分に発揮す
ることのできるきのこ栽培方法を提供することを
目的とする。
The purpose of the present invention is to provide a mushroom cultivation method that uses moist heat sterilization to improve the sterilization effect and perform ideal mushroom cultivation, and at the same time, can sufficiently exhibit the energy-saving effect. .

(問題を解決するための手段) 以上の問題は、ビン等の容器によるきのこ栽培
方法において、容器中にオガ屑及び米ぬか等の所
要材料を収納した後、前記容器中には蒸気を挿入
し所要温度まで上昇させることにより完全脱気
し、脱気後は容器の開口部を閉じ保温庫に入れ、
これを保護することにより容器内の湿熱殺菌を継
続せしめ、その後殖菌し芽出し栽培を行うことを
特徴とするきのこ栽培方法によつて解決される。
(Means for solving the problem) The above problem is caused by the method of cultivating mushrooms using a container such as a bottle.After the required materials such as sawdust and rice bran are stored in the container, steam is inserted into the container and the required amount is Completely degas the container by raising the temperature to the desired temperature. After degassing, close the opening of the container and place it in a heat-retaining cabinet.
The problem is solved by a mushroom cultivation method characterized by continuing moist heat sterilization inside the container by protecting this, and then cultivating the bacteria by propagation and sprouting.

(本発明の実施例) 本発明の第1の実施例を第1図に基づいて説明
する。
(Embodiment of the present invention) A first embodiment of the present invention will be described based on FIG.

脱気の方法のため熱管理は、ボイラより送られ
て来た蒸気は飽和蒸気のため温水を含有している
のでセパレーター1で除去しトラツプにて排出を
すみやかに行い、乾き蒸気を作り減圧弁2にて出
来るだけ減圧し(現在の技術では0.2Kg/cm2)蒸
気分配器3の中に送るが、このとき更に減圧する
ために温度調節器4とセンサー5及び電動バルブ
6を用いて微低圧の蒸気を作り分配器7の中の圧
力を0.05Kg/cm2すなわち102〜103℃に保持する。
ビン8の中に送気するための導管9を分配器7か
ら取出し、分配器側近に電磁弁10を取付け、送
気時間はタイマー11により任意の時間、蒸気量
を挿入することができる装置とし、このとき温度
調節器4では蒸気量の変動に対応できないので、
電動バルブ6と並列に電磁弁12を取付け分配器
7後の電磁弁10と同時に作動させることにより
分配器7の圧力低下を防ぐ。又蒸気の使用が中断
した場合には分配器及び導管の放熱により圧力低
下があるが、これは温度調節器4が働き、温度を
一定に保持する機能を果たす。分配器7から出た
導管9は電磁弁10を通過して送気されるが、電
磁弁10の停止中は、送気されないので以降の導
管は冷却され導管9中の蒸気は水滴となり次回送
気されるときに水滴を挿入することになるので電
磁弁以降の導管は蒸気室13を貫通させ、送気さ
れないときも保温され冷却されない様にする。
Since the steam sent from the boiler is saturated steam and contains hot water, it is removed in separator 1 and quickly discharged in a trap to create dry steam and then the pressure reducing valve is used for heat management. 2, the pressure is reduced as much as possible (currently 0.2 kg/cm 2 ) and sent into the steam distributor 3. At this time, a temperature controller 4, a sensor 5, and an electric valve 6 are used to further reduce the pressure. Low-pressure steam is produced and the pressure in the distributor 7 is maintained at 0.05 Kg/cm 2 or 102-103°C.
A conduit 9 for supplying air into the bottle 8 is taken out from the distributor 7, a solenoid valve 10 is attached to the side of the distributor, and the air supply time is controlled by a timer 11 for an arbitrary amount of time and the amount of steam can be inserted. , at this time, the temperature regulator 4 cannot cope with the fluctuations in the amount of steam, so
By installing a solenoid valve 12 in parallel with the electric valve 6 and operating it simultaneously with the solenoid valve 10 after the distributor 7, pressure drop in the distributor 7 is prevented. Furthermore, when the use of steam is interrupted, there is a pressure drop due to heat dissipation from the distributor and the conduit, but the temperature regulator 4 works to compensate for this and maintains the temperature constant. The conduit 9 coming out of the distributor 7 passes through the solenoid valve 10 and is supplied with air, but while the solenoid valve 10 is stopped, air is not supplied, so the subsequent conduits are cooled and the steam in the conduit 9 becomes water droplets and is sent next time. Since water droplets are inserted when air is supplied, the conduit after the electromagnetic valve is passed through the steam chamber 13 so that it is kept warm and not cooled even when air is not supplied.

導管9は多数(たとえば12本)同時に使用する
ので分配器3は平均に蒸気を送るための多量の容
量を保有する。又導管9の取出しは分配器7の上
部から取出し、湿り蒸気及び水滴を送気しない様
に分配器7下部にはドレンの排出管を取付けトラ
ツプにてすみやかに排出する。
Since a large number of conduits 9 (for example 12) are used simultaneously, the distributor 3 has a large capacity for delivering steam evenly. Further, the conduit 9 is taken out from the upper part of the distributor 7, and a drain discharge pipe is installed at the lower part of the distributor 7 so as not to send in humid steam and water droplets, and the drain is quickly discharged using a trap.

ビン中に送る蒸気は一定時間に同量を送るため
に分配器7後の電磁弁10及び電磁弁10後の導
管9の長さは全て同長とする。ビン中に送る蒸気
は微低圧でないオガ屑をはき出すこともあるので
この調節は減圧弁2及び温度調節器4により自在
にすることが可能である。
The lengths of the solenoid valve 10 after the distributor 7 and the conduit 9 after the solenoid valve 10 are all made the same length so that the same amount of steam is sent into the bottle in a fixed time. Since the steam sent into the bottle may expel sawdust that is not at very low pressure, this adjustment can be made freely by the pressure reducing valve 2 and the temperature regulator 4.

また第2図に示すようにビン8中に蒸気を送気
する機械的な構造は連続機の場合は、コンベアー
14により一定方向にビン8が移動し、送気導管
9の下部で停止すると同時に導管9がビン8中に
入り、一定時間の送気終了後、導管9は上部へ上
がるとビン9はコンベア14により移動する方法
であり、手動式の場合は導管9は定位置に固定
し、ビン8が下部より導管に向かつて上がり一定
時間送気するものである。
In addition, as shown in FIG. 2, the mechanical structure for supplying steam into the bin 8 is that in the case of a continuous machine, the bin 8 is moved in a fixed direction by a conveyor 14, and is stopped at the bottom of the air supply conduit 9 at the same time. The conduit 9 enters the bottle 8, and after a certain period of air supply, the conduit 9 rises to the top and the bottle 9 is moved by a conveyor 14. In the manual type, the conduit 9 is fixed in a fixed position, A bottle 8 rises from the bottom toward the conduit and supplies air for a certain period of time.

以上述べた如く本発明にあつては、ビン等の容
器中に材料(オガ屑及び米ぬか)を入れた後、ビ
ン中の空気を排出するために蒸気を挿入するが同
時に殺菌物の温度を大気圧下の最高温度まで上昇
させることによつて完全脱気できる事を応用した
ものであり、脱気後はすみやかに開口部を閉じそ
のままの保温庫へ入れこのまま保護することによ
つてビンの中を湿熱による殺菌を継続するもので
ある。加熱温度以上に加温する場合は圧力容器を
使用し加圧することにより高温加熱を行うことが
できる。
As described above, in the present invention, after putting materials (sawdust and rice bran) into a container such as a bottle, steam is inserted to exhaust the air in the bottle, but at the same time the temperature of the sterilized material is increased. This technology takes advantage of the fact that complete deaeration can be achieved by raising the temperature to the highest temperature under atmospheric pressure.After deaeration, the opening of the bottle is immediately closed, and the contents of the bottle are protected by being placed in a heat-insulating cabinet. This method continues sterilization using moist heat. When heating to a temperature higher than the heating temperature, high-temperature heating can be achieved by applying pressure using a pressure vessel.

尚、この場合ビン容器内を一度加熱脱気したも
のは冷却された場合にビン中は真空状態が起こ
り、外部の空気を吸込みこの時点で雑菌が混入す
るので、冷却されないようすみやかに保温又は加
温する必要がある。
In this case, once the inside of the bottle is heated and degassed, a vacuum state will occur inside the bottle when it is cooled, and outside air will be sucked in and bacteria will be mixed in. Therefore, it should be kept warm or heated immediately to prevent it from cooling. It needs to be warmed up.

本実施例につては保温庫に対する保温は過熱空
気で行うが、保温庫内を過熱空気と蒸気で加温す
る場差は1立方米の対比で考えると空気では
0.21Kcal/m3℃であり蒸気では0.58Kcal/m3℃と
空気の方が約1/3以下の熱量で条件を満たすこと
ができ、又扉の開放による逃げの場合も蒸気の方
が軽いために早く逃げる。(高温、高圧になれば
なる程、蒸気の逃げは早くなる。)一方空気の場
合は温度差の移動のみであるから、比較的庫内の
温度変化が少ない。すなわち保温庫のエネルギー
ロスの問題にあつても、熱伝達率では蒸気の方が
抜群によい為に保温庫外壁への熱伝導がよく放熱
も多いが空気の場合は熱伝導が悪く、外壁への熱
伝導も悪いので放熱も少ない。さらに冷却方法に
ついては、乾熱の場合は空気の収縮のみであるか
ら自然放冷でも特に問題はないが湿熱殺菌の場合
は、ビン中の昇温でもふれたが、特に放冷する場
合、ビン中の蒸気は凝縮するので極端な真空状態
を起こし、ビンを密閉した状態で冷却されると内
容物は勿論、一般的なボリ容器では極端に変型す
る。このために殺菌終了後はすみやかに無菌室で
ビンの開放を行い冷却する必要がある。この場合
でも無菌空気の挿入により殺菌後の処理により均
一化、安定性を増大することができる。
In this example, the heat insulating warehouse is kept warm by superheated air, but considering the difference in heating the inside of the insulating warehouse between superheated air and steam compared to 1 cubic meter, it is much larger than air.
0.21Kcal/m 3 ℃, and steam has 0.58Kcal/m 3 ℃, which means air can satisfy the condition with less than 1/3 of the amount of heat, and steam is also lighter when escaping by opening a door. Run away quickly for the sake of it. (The higher the temperature and pressure, the faster the steam escapes.) On the other hand, in the case of air, only the temperature difference moves, so there is relatively little temperature change inside the refrigerator. In other words, when it comes to the problem of energy loss in thermal storage, steam has a much better heat transfer coefficient, so it conducts heat to the outer wall of the insulation storage well and radiates a lot of heat. Because the heat conduction is poor, there is also little heat dissipation. Furthermore, regarding the cooling method, in the case of dry heat sterilization, there is no particular problem with natural cooling as it only involves the contraction of air, but in the case of moist heat sterilization, the temperature inside the bottle may rise, but especially when cooling the bottle, there is no particular problem. As the steam inside condenses, it creates an extreme vacuum, and when the bottle is cooled in a sealed state, the contents, as well as a typical bottle container, are extremely deformed. For this reason, after sterilization, the bottles must be opened and cooled in a sterile room immediately. Even in this case, uniformity and stability can be increased by post-sterilization treatment by inserting sterile air.

(本発明の効果) しかして本発明によれば、従来湿熱と考えてい
た殺菌方法は実は乾熱殺菌であり、好適な殺菌効
果を得ることは困難であつたが、本発明によれば
完全な湿熱殺菌となつたので殺菌効果が向上し
た。これとあいまつて従来2時間から4時間も殺
菌していたものが10分〜40分で充分な殺菌効果を
上げることができ、作業能率の向上と省エネルギ
ーに多大の効果がある。
(Effects of the present invention) However, according to the present invention, the sterilization method conventionally thought to be moist heat is actually dry heat sterilization, and it has been difficult to obtain a suitable sterilization effect, but according to the present invention, it is completely The sterilization effect has been improved because it uses moist heat sterilization. Coupled with this, a sufficient sterilization effect can be achieved in 10 to 40 minutes instead of the conventional sterilization time of 2 to 4 hours, which is highly effective in improving work efficiency and saving energy.

又設備的にも従来は容器内をすべて湿熱にして
いたがビン中を100℃内で殺菌する場合は、容器
内は乾熱でよく、100℃以上の場合は圧力容器で
湿熱を使用するが、すでに100℃以内ではビン中
の温度は昇温はしているので容器内は保温するた
めの熱量で充分でありエネルギーは極めて少量で
よく、圧力容器の湿熱にあつてもビン中に与える
エネルギーは、従来の冷却状態から過温する場合
に比べて、すでに100℃位まで昇温してあるので
100℃以上の10〜20℃の加温でよく、その後は保
温状態を維持すればよく、従来圧力装置内及びビ
ン中の空気を排出するための逃がし弁の開放は一
切不用である。
In terms of equipment, conventionally everything inside the container was heated using moist heat, but if the inside of the bottle is to be sterilized at 100℃, dry heat can be used inside the container, but if the temperature is over 100℃, moist heat is used in a pressure vessel. , the temperature inside the bottle has already risen within 100℃, so the amount of heat needed to keep the inside of the container warm is sufficient, and only a very small amount of energy is required. Since the temperature has already risen to about 100℃ compared to the case of overheating from the conventional cooling state,
It is sufficient to heat the product to 10 to 20°C above 100°C, and after that, it is sufficient to maintain the heat-retaining state, and there is no need to open the relief valve to discharge the air in the conventional pressure device and the bottle.

また加水の方法についても、従来は材料をビン
詰する以前に相当量の加水を行い、したがつて殺
菌中には材料表面の水分を空気が奪い、膨張した
空気は一部排出されるので水分量は減少の傾向に
あつた。また本来原材料が含水していた水分とビ
ン詰直前の水分では、含水が平均加せず殺菌状態
はもとより一定化せず栽培に当たつても均一化が
計れない原因ともなつていたが、本発明にあつて
は、ビン詰以前ではほとんど加水は行われず、蒸
気を入れることによつて全重量の10%〜15%の加
水は簡単に加水することができ、又送気時間の延
長によ増量することは自在であり、又蒸煮中に加
水するので材料の含水状態が一定化し、殺菌状態
も均一化し均一な栽培が可能となつた。
Regarding the method of adding water, conventionally, a considerable amount of water is added to the material before bottling it. Therefore, during sterilization, air removes moisture from the surface of the material, and some of the expanded air is expelled. The amount tended to decrease. In addition, between the moisture originally contained in the raw materials and the moisture immediately before bottling, the moisture content was not averaged, and the sterilization state was not constant, which caused it to be impossible to achieve uniformity during cultivation. In the case of the invention, almost no water is added before bottling, and 10% to 15% of the total weight can be easily added by adding steam, and by extending the air supply time. The amount can be increased freely, and since water is added during steaming, the water content of the material becomes constant, the sterilization state becomes uniform, and uniform cultivation becomes possible.

以上述べた如く、本発明のきのこ栽培方法によ
れば、効率よく充分な湿熱殺菌を行うことができ
るため、雑菌等が入りこみ繁殖する余地はなく省
エネルギーの下、経済的で好適なきのこ栽培を行
うことが可能となつた。
As described above, according to the mushroom cultivation method of the present invention, it is possible to carry out efficient and sufficient moist heat sterilization, so there is no room for bacteria to enter and multiply, and mushroom cultivation can be carried out economically and favorably while saving energy. It became possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のきのこ栽培方法に使用される
ビン等の容器に対する湿熱殺菌工程を示す説明
図、第2図は本発明のきのこ栽培方法に使用され
るビン等の容器に対する他の実施例に係る湿熱殺
菌工程を示す概略側面図である。 1……セパレーター、2……減圧弁、3……蒸
気分配器、4……温度調節器、5……センサー、
6……電動バルブ、7……分配器、8……ビン、
9……導管、10……電磁弁、11……タイマ
ー、12……電磁弁、13……蒸気室、14……
コンベアー。
FIG. 1 is an explanatory diagram showing a moist heat sterilization process for containers such as bottles used in the mushroom cultivation method of the present invention, and FIG. 2 is another example of containers such as bottles used in the mushroom cultivation method of the present invention. It is a schematic side view showing the wet heat sterilization process concerning. 1... Separator, 2... Pressure reducing valve, 3... Steam distributor, 4... Temperature controller, 5... Sensor,
6...Electric valve, 7...Distributor, 8...Bin,
9... Conduit, 10... Solenoid valve, 11... Timer, 12... Solenoid valve, 13... Steam room, 14...
conveyor.

Claims (1)

【特許請求の範囲】[Claims] 1 ビン等の容器によるきのこ栽培方法におい
て、容器中にオガ屑及び米ぬか等の所要材料を収
納した後、前記容器中には蒸気を挿入し所要温度
まで上昇させることにより完全脱気し、脱気後は
容器の開口部を閉じ保温庫に入れ、これを保護す
ることにより容器内の湿熱殺菌を継続せしめ、そ
の後殖菌し芽出し栽培を行うことを特徴とするき
のこ栽培方法。
1. In a mushroom cultivation method using a container such as a bottle, after storing necessary materials such as sawdust and rice bran in the container, steam is inserted into the container and the temperature is raised to the required temperature to completely degas the container. The mushroom cultivation method is characterized in that the opening of the container is then closed and the container is placed in a heat insulating chamber to protect the container to continue moist heat sterilization inside the container, after which the bacteria propagate and sprout.
JP60017607A 1985-01-31 1985-01-31 Culture of mushroom Granted JPS61177928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60017607A JPS61177928A (en) 1985-01-31 1985-01-31 Culture of mushroom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017607A JPS61177928A (en) 1985-01-31 1985-01-31 Culture of mushroom

Publications (2)

Publication Number Publication Date
JPS61177928A JPS61177928A (en) 1986-08-09
JPH0217129B2 true JPH0217129B2 (en) 1990-04-19

Family

ID=11948569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017607A Granted JPS61177928A (en) 1985-01-31 1985-01-31 Culture of mushroom

Country Status (1)

Country Link
JP (1) JPS61177928A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221733A (en) * 1991-02-22 1993-06-22 Donlar Corporation Manufacture of polyaspartic acids

Also Published As

Publication number Publication date
JPS61177928A (en) 1986-08-09

Similar Documents

Publication Publication Date Title
US5732478A (en) Forced air vacuum drying
WO2019085736A1 (en) Food vacuum freeze-drying and sterilization method and device
WO2007004320A1 (en) Method of heating treatment for food and food heating treatment apparatus
CN208724556U (en) A kind of edible mushroom culture sterilized system of bacterium bag
CN206675745U (en) A kind of efficient quick bactericidal unit of Plant Tissue Breeding utensil
CN110072380A (en) For cultivating the sterilizing methods and device of the growth substrate of mushroom
CN206634508U (en) A kind of storeroom for pickling pork
CN209135344U (en) Food vacuum freeze-drying and sterilizing installation
RO125073B1 (en) Process and plant for the thermal processing of milk
JPH0217129B2 (en)
KR102001802B1 (en) Energy saving type retort sterilization apparatus
CN213281355U (en) Degassing unit is used in processing of lactic acid bacteria beverage
CN207369997U (en) A kind of energy-efficient board-like sterilization machine
CN108657641A (en) A kind of food insulation box with moisture-keeping functions
US20110027123A1 (en) Method and apparatus for sterilizing contact lenses
JP2009207456A (en) Method and apparatus for sterilizing mushroom medium
CN210963152U (en) Vertical pressure steam sterilizer
CN211241585U (en) A sterilization treatment device for litchi juice
JP2779870B2 (en) Retort sterilizer
KR20060094391A (en) Treatment apparatus for steam sterilization and dryness
JPH04144673A (en) Water saving-type sterilizer for cooking with high-temperature water
CN215295571U (en) Freeze dryer and laminar flow steam mixing system thereof
JPH0298522A (en) Drying of film packaging container and can of retort food
CN220404500U (en) Constant temperature reduction device in disinfection pond
CN207963272U (en) A kind of cooling instant freezer that can solve the problems, such as food safety and sanitation