JPH02170977A - Base plate holder - Google Patents

Base plate holder

Info

Publication number
JPH02170977A
JPH02170977A JP32296488A JP32296488A JPH02170977A JP H02170977 A JPH02170977 A JP H02170977A JP 32296488 A JP32296488 A JP 32296488A JP 32296488 A JP32296488 A JP 32296488A JP H02170977 A JPH02170977 A JP H02170977A
Authority
JP
Japan
Prior art keywords
substrate
base plate
medium
plasma
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32296488A
Other languages
Japanese (ja)
Inventor
Yasuhiro Suzuki
康浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP32296488A priority Critical patent/JPH02170977A/en
Publication of JPH02170977A publication Critical patent/JPH02170977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To obtain a base plate holder which is free from leak of a temp. controlling medium and drivable by constituting both a base plate placing member and a medium passage member of material small in the difference of thermal expansion coefficients. CONSTITUTION:A base plate 7 whose surface is treated by plasma is placed on a base plate placing member 8. A medium introducing member 9 is connected to the base plate placing member 8. The temp. controlling medium passages 10, 10' are formed to the inside of the medium introducing member 9. A base plate temp. controlling medium is circulated in order to control the temp. of the base plate 7. Therein both the base plate placing member 8 and the medium introducing member 9 are constituted of material small in the difference of thermal expansion coefficiencies. Thereby the temp. of the base plate can be efficiently controlled in a range within -200 to +300 deg.C by an extremely inexpensive method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空中で放電により気体プラズマを発生させ
、これを用いて被処理物表面のエツチング、薄膜形成及
び表面クリーニング等の処理を施すプラズマ処理装置の
基板ホルダーに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention generates gas plasma by electric discharge in a vacuum, and uses this to perform treatments such as etching, thin film formation, and surface cleaning on the surface of a workpiece. The present invention relates to a substrate holder for a plasma processing apparatus.

(従来の技術) 従来この種のプラズマ処理装置に用いられている基板ホ
ルダー18は、第4図の概略断面図に示すようなもので
あり、温度制御媒体通路1O1lO′を内部に形成した
ステンレス製の媒体導入部品9と、この媒体導入部品9
に接続可能な温度制御循環路19を内部に形成し、基板
7を載置するアルミニウム製の基板載置部材15と、基
板載置部材15自体を浮遊電位とするために基板1a置
部材15の周囲に設けた絶縁体11とで構成されている
。そして、上記基板!!2置部材15と媒体導入部品9
とばボルト20によって接合されるようにするとともに
、上記温度制御循環路19と上記温度制御媒体通路10
.10′との接合部はエラストマーシール部材16でシ
ールされている。
(Prior Art) The substrate holder 18 conventionally used in this type of plasma processing apparatus is as shown in the schematic cross-sectional view of FIG. The medium introduction part 9 and this medium introduction part 9
A temperature control circulation path 19 connectable to the aluminum substrate mounting member 15 on which the substrate 7 is placed is formed inside, and the substrate mounting member 15 is connected to the substrate mounting member 15 in order to set the substrate mounting member 15 itself at a floating potential. It is composed of an insulator 11 provided around the periphery. And the above board! ! 2-position member 15 and medium introduction part 9
The temperature control circulation path 19 and the temperature control medium path 10 are connected by bolts 20.
.. The joint with 10' is sealed with an elastomer seal member 16.

上記従来の装置では、基板ホルダーに循環させる温度制
御媒体として、例えば、純水やエチレングリコールと水
との混合液を使用していた。
In the above conventional apparatus, for example, pure water or a mixture of ethylene glycol and water is used as the temperature control medium to be circulated through the substrate holder.

これらの温度範囲は、−5℃〜+80℃程度であった。These temperature ranges were about -5°C to +80°C.

そのため水路の接続個所は、例えばエラストマーシール
材のようなシール材16.16−によってシールされて
いた。その理由は、上記温度制御媒体の温度範囲がエラ
ストマーシール材の使用温度範囲(例えばフッ素ゴムで
は一40℃〜+250℃)内にあったからである。
For this purpose, the waterway connections were sealed with a sealing material 16.16-, for example an elastomer sealing material. This is because the temperature range of the temperature control medium was within the operating temperature range of the elastomer sealing material (for example, -40°C to +250°C for fluororubber).

(発明が解決しようとする問題点) しかしながら、最近では上記温度制御媒体として、エラ
ストマーシール材の使用温度範囲を超えるような媒体、
例えば、液体窒素(−194℃)フロリナートくスリー
エムの登録商標)(−110℃〜+250℃)、ガルデ
ン(モンテジソンの登録商標)(−100℃〜+260
℃)等が使用されている。従って、このような温度制御
媒体を使用するときはエラストマーシール材を使用でき
ないという問題があった。
(Problems to be Solved by the Invention) However, recently, as the temperature control medium, media whose temperature exceeds the operating temperature range of the elastomer sealing material,
For example, liquid nitrogen (-194°C) (registered trademark of Fluorinert 3M) (-110°C to +250°C), Galden (registered trademark of Montegisson) (-100°C to +260°C)
°C) etc. are used. Therefore, when using such a temperature control medium, there is a problem in that an elastomer sealing material cannot be used.

さらに、図示していない駆動手段により基板ホルダー機
構自体が上下駆動する場合にもエラストマーシール材1
6′ではシール材としての機能を充分発揮し得ないとい
う問題があった。これは、エラストマーシール材は、そ
の使用温度以下では硬化してしまうため弾力性がなくな
り、シール性が悪くなり、駆動部ではよりシール性が悪
くなるからである。
Furthermore, even when the substrate holder mechanism itself is driven up and down by a drive means (not shown), the elastomer sealing material 1
6' had a problem in that it could not sufficiently function as a sealing material. This is because the elastomer sealing material hardens below its operating temperature and loses its elasticity, resulting in poor sealing performance, and even worse sealing performance in the drive section.

また、上記のようにアルミニウム製の基板載置部材15
とステンレス製の媒体導入通路9とでは、熱伝導率の差
が大きいため、使用媒体の温度によって両者の接合部が
ずれたりし、接合部でのシール性が悪くなるという問題
があった。
In addition, as described above, the aluminum substrate mounting member 15
Since there is a large difference in thermal conductivity between the medium introduction passage 9 and the medium introduction passage 9 made of stainless steel, there is a problem in that the joint between the two may shift depending on the temperature of the medium used, resulting in poor sealing performance at the joint.

(本発明の目的) 本発明の目的は、上記従来技術の問題点を解決し、所定
の温度範囲で効率良く基板の温度制御ができ、かつ温度
制御媒体の漏れのない駆動可能な基板ホルダーを提供す
ることにある。
(Object of the present invention) An object of the present invention is to solve the problems of the prior art described above, and to provide a driveable substrate holder that can efficiently control the temperature of the substrate within a predetermined temperature range and that does not leak the temperature control medium. It is about providing.

(問題点を解決するための手段) 本発明は、上記目的を達成するために次のように構成さ
れている。すなわち、プラズマにより表面処理される基
板を載置する基板載置部材と、この基板載置部材と接合
し、基板の温度を制御するために基板温度制御媒体を循
環させる温度制御媒体通路内部に形成した媒体導入部材
とを備えた基板ホルダーにおいて、上記基板載置部材と
上記媒体通路部材が熱膨張率の差の小さな材質のものか
らなることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention is configured as follows. That is, a substrate mounting member on which a substrate to be surface-treated by plasma is placed, and a temperature control medium passage connected to this substrate mounting member and configured to circulate a substrate temperature control medium in order to control the temperature of the substrate. In the substrate holder equipped with a medium introduction member, the substrate mounting member and the medium passage member are made of materials with a small difference in coefficient of thermal expansion.

また、プラズマにより表面処理される基板を載置する基
板載置部材と、この基板載置部材と接合し、基板の温度
を制御するために基板温度制御媒体を循環させる温度制
御媒体通路内部に形成した媒体導入部材と、上記基板温
度制御媒体の漏れを防止するシール部材とを備えた駆動
可能な基板ホルダーにおいて、上記駆動部分のシール部
材としてベロー管シールを用いたことを特徴とする。
In addition, a substrate mounting member for mounting a substrate to be surface-treated by plasma, and a temperature control medium passage connected to this substrate mounting member and for circulating a substrate temperature control medium to control the temperature of the substrate are formed. A driveable substrate holder comprising a medium introducing member and a sealing member for preventing leakage of the substrate temperature control medium, characterized in that a bellows tube seal is used as the sealing member of the driving portion.

(作用) 上記構成からなる本発明に係るプラズマ処理装置では、
基板載置部材と媒体通路部材が熱膨張率の差の小さな材
質のものから構成されているため、制御媒体の温度変化
に対して接続部のシール性を向上させることができる。
(Function) In the plasma processing apparatus according to the present invention having the above configuration,
Since the substrate mounting member and the medium passage member are made of materials with a small difference in coefficient of thermal expansion, it is possible to improve the sealing performance of the connection portion against temperature changes of the control medium.

また、基板ホルダー機構が駆動機構によって上下に駆動
する場合に、エラストマーシールを使用せず、ベロー管
シールを使用して真空シールしているために一200℃
〜+300℃の温度変化に対して安定した真空シールが
可能である。
In addition, when the substrate holder mechanism is driven up and down by the drive mechanism, it does not use an elastomer seal and is vacuum-sealed using a bellows tube seal.
Stable vacuum sealing is possible against temperature changes of ~+300°C.

(実施例) 第1図は、本発明の第1実施例に係る基板ホルダー18
を備えたプラズマ処理装置を示す。当該装置は、いわゆ
るECR現象によってプラズマが発生するプラズマ発生
室1と基板7を処理するための基板処理室2とが隣接し
て設けられている。
(Embodiment) FIG. 1 shows a substrate holder 18 according to a first embodiment of the present invention.
This shows a plasma processing apparatus equipped with The apparatus includes a plasma generation chamber 1 in which plasma is generated by a so-called ECR phenomenon, and a substrate processing chamber 2 for processing a substrate 7, which are adjacent to each other.

そしてプラズマ発生室1の外周には空芯ソレノイドコイ
ル5が周設されている。更に、プラズマ発生室1にはプ
ラズマを生成するためのガスを導入するガス導入系6を
備えるとともに、石英ガラス、セラミック等の絶縁物か
らなるマイクロ波導入窓3が設けられている。そして、
導波管4を通じて送られてきたマイクロ波をテーバ状内
壁を備えた終端部と導入芯3を経由してプラズマ発生室
1内に導入する。
An air-core solenoid coil 5 is disposed around the outer periphery of the plasma generation chamber 1. Furthermore, the plasma generation chamber 1 is equipped with a gas introduction system 6 for introducing gas for generating plasma, and is also provided with a microwave introduction window 3 made of an insulator such as quartz glass or ceramic. and,
Microwaves sent through the waveguide 4 are introduced into the plasma generation chamber 1 via the end portion having a tapered inner wall and the introduction core 3.

また、上記プラズマ発生室1には、基板処理室2との境
界部分にプラズマ引出し窓17を設置しており、プラズ
マ発生室1内で生成したプラズマは、プラズマ引出し窓
17を通過して基板処理室2内に導かれる。
In addition, a plasma extraction window 17 is installed in the plasma generation chamber 1 at the boundary with the substrate processing chamber 2, and the plasma generated in the plasma generation chamber 1 passes through the plasma extraction window 17 to process the substrate. You will be led into room 2.

一方、基板処理室2内には、プラズマ引出し窓17に対
向する位置に基板ホルダー18が設置されている。この
基板ホルダー18は基板7と接触する面、即ち基板載置
部材8を、例えば銅C1100(熱伝導率0.934 
cat/ CTII ”Csee、熱膨張係数17.7
X 10−6昨/ロ/’C)等熱伝導率の良好な材質に
よフて形成している。当該基板載置部材8の下部には、
温度制御媒体通路10.10′を内部に形成した媒体導
入部品9を圧接、溶接、ロー付は等の接合方法によフて
接合している。このため、従来に比へ上記接合部におけ
るシール性は向上し、従来の装置で用いられていたエラ
ストマーシール材16のようなシール部材は全く用いる
必要がない。そして、基板載置部材8の下部に接合され
た媒体導入部品9としては、例えば基板載置部材8と熱
膨張係数の差が少ない5US−304(17,3X 1
0’−’cm/am/ ”C)等のステンレス材質のも
のが使用されている。mcllooとステンレス5US
−304はロー付けによって接続することで温度制御循
環路19を形成し、例えば液体窒素等の超低温の冷媒(
−200℃〜−40℃)の循環が可能であり、かつ基板
7に最も効率良く温度伝導ができる。また、コスト的に
も、従来の装置で使用されているアルミニウム、例えば
A3052 (熱伝導率0.33cal/e+n″Cs
ec、熱膨張係数23 X 10−6crrr+/ a
m/ ’C)で全てを一体構造で基板ホルダーを製作す
るよりもかなり安価(約115以下)に製作できる。ま
た、材質的に上記鋼Cl100の代わりにアルミニウム
A3052を用いると、ステンレス5US304と熱膨
張係数の差が大きいため、−200℃〜+3゜0℃の温
度変化に対して接続部のシール性が悪くなる。
On the other hand, a substrate holder 18 is installed in the substrate processing chamber 2 at a position facing the plasma extraction window 17 . The surface of this substrate holder 18 that contacts the substrate 7, that is, the substrate mounting member 8, is made of copper C1100 (thermal conductivity: 0.934), for example.
cat/CTII ”Csee, coefficient of thermal expansion 17.7
It is made of a material with good thermal conductivity such as At the bottom of the substrate mounting member 8,
The medium introduction part 9 having temperature control medium passages 10, 10' formed therein is joined by a joining method such as pressure welding, welding, brazing, etc. Therefore, the sealing performance at the joint is improved compared to the conventional device, and there is no need to use a sealing member such as the elastomer sealing material 16 used in the conventional device. The medium introduction component 9 bonded to the lower part of the substrate mounting member 8 is, for example, 5US-304 (17,3X 1
Stainless steel materials such as 0'-'cm/am/"C) are used. mclloo and stainless steel 5US
-304 is connected by brazing to form a temperature control circulation path 19, for example, an ultra-low temperature refrigerant such as liquid nitrogen (
-200°C to -40°C), and temperature can be conducted to the substrate 7 most efficiently. Also, in terms of cost, aluminum used in conventional equipment, such as A3052 (thermal conductivity 0.33cal/e+n''Cs
ec, coefficient of thermal expansion 23 x 10-6crrr+/a
m/'C), it can be manufactured much cheaper (approximately 115 yen or less) than manufacturing a substrate holder with an all-in-one structure. In addition, if aluminum A3052 is used instead of the above-mentioned steel Cl100 as a material, there is a large difference in thermal expansion coefficient from stainless steel 5US304, so the sealing performance of the connection part will be poor against temperature changes from -200°C to +3°0°C. Become.

また、基板ホルダー18が駆動機構13によフて矢印a
方向に上下動する場合に、エラストマーシールを使用せ
ず、ベロー管シール12を使用して真空シールしている
ために、−200℃〜+300℃の温度変化に対して安
定した真空シールが可能となっている。
Further, the substrate holder 18 is moved by the drive mechanism 13 as shown by the arrow a.
When moving up and down in the direction, the bellows tube seal 12 is used for vacuum sealing without using an elastomer seal, making it possible to maintain a stable vacuum seal against temperature changes from -200°C to +300°C. It has become.

更に、基板ホルダー機構自体は、絶縁体11によって浮
遊電位となフており、高周波あるいは直流電圧の印加が
可能である。また、銅、例えばC1100の腐食性ガス
に対する保護は、表面にニッケルメッキすることで充分
である。
Further, the substrate holder mechanism itself is kept at a floating potential by the insulator 11, and high frequency or DC voltage can be applied thereto. Further, it is sufficient to protect copper, for example C1100, against corrosive gases by plating the surface with nickel.

第2図は本発明に係る基板ホルダーを他のプラズマ処理
装置に取り付けたときの概略断面図である。5in2、
Al2O3等の絶縁物からなる截頂円錐状内壁を備えた
プラズマ発生室1が導波管4の端部のテーパーの内部に
配置されており、基板載置部材8上にta置された基板
7がプラズマ発生室l内で生成されたプラズマに直接晒
されるように配置されている他は第1図と同様の構造を
持つ。
FIG. 2 is a schematic cross-sectional view when the substrate holder according to the present invention is attached to another plasma processing apparatus. 5in2,
A plasma generation chamber 1 having a truncated conical inner wall made of an insulator such as Al2O3 is disposed inside the tapered end of the waveguide 4, and a substrate 7 is placed on a substrate mounting member 8. It has the same structure as that in FIG. 1, except that it is arranged so as to be directly exposed to the plasma generated in the plasma generation chamber l.

なお、上記第1及び2実施例は発散磁界を利用してプラ
ズマの引出しを行う装置について説明したものであるが
、グリッドを利用してプラズマの引出しを行う加速式の
装置であってもよい。当該グリッドには直流あるいは交
流電界のいずれも印加できる。
Although the first and second embodiments described above describe an apparatus that extracts plasma using a divergent magnetic field, an acceleration type apparatus that extracts plasma using a grid may also be used. Either a direct current or an alternating electric field can be applied to the grid.

第3図は本発明に係る基板ホルダーを他のプラズマ処理
装置に取り付けたときの概略断面図である。プラズマ室
1内に基板ホルダーと対向して接地電位の電極14を設
けており、プラズマの発生方式としてECR現象を利用
せず、当該電極14と基板ホルダー15との間の高周波
放電によってプラズマが発生する(いわゆるカソードカ
ップル式リアクティブイオンエツチングRIE)方式を
採用している以外は第1図と同様の構造を持つ。
FIG. 3 is a schematic cross-sectional view when the substrate holder according to the present invention is attached to another plasma processing apparatus. An electrode 14 at ground potential is provided in the plasma chamber 1 facing the substrate holder, and plasma is generated by high-frequency discharge between the electrode 14 and the substrate holder 15 without using the ECR phenomenon as a plasma generation method. The structure is the same as that shown in FIG. 1 except that a so-called cathode couple reactive ion etching RIE method is adopted.

なお、上記実施例でプラズマ発生方式として、基板ホル
ダーを接地電位とし、電極14に高周波を印加するいわ
ゆるアノードカップル方式でもよいし、特開昭61−5
9822号公報に示されているような交番磁界を用いた
放電あるいは特開昭61−86942号公報に示されて
いるような回転磁界を用いた放電による方式でも良いこ
とはいうまでもない、また、上記説明では主に基板ホル
ダーが一200℃〜−40℃の低温について述べたが2
50℃〜300℃等の高温についても同様である。
In the above embodiment, the plasma generation method may be a so-called anode couple method in which the substrate holder is grounded and a high frequency is applied to the electrode 14, or the method disclosed in Japanese Patent Laid-Open No. 61-5
Needless to say, a discharge method using an alternating magnetic field as shown in Japanese Patent Publication No. 9822 or a discharge method using a rotating magnetic field as shown in Japanese Patent Application Laid-Open No. 61-86942 may also be used. , In the above explanation, we mainly talked about the low temperature of the substrate holder between 1200℃ and -40℃, but 2
The same applies to high temperatures such as 50°C to 300°C.

(発明の効果) 請求項に係る発明によれば、極めて安価な方法で一20
0℃〜+300℃の温度範囲で効率良く基板を温度制御
でき、かつ温度制御媒体の漏れのない駆動可能な基板ホ
ルダーを提供できるものである。
(Effect of the invention) According to the claimed invention, 120
It is possible to provide a substrate holder that can efficiently control the temperature of a substrate in a temperature range of 0° C. to +300° C. and that can be driven without leakage of a temperature control medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る基板ホルダーを取り付けたプラズ
マ処理装置要部の概略断面図、第2図は本発明に係る基
板ホルダーを取り付けた他のプラズマ処理装置要部の概
略断面図、第3図は本発明に係る基板ホルダーを取り付
けた他のプラズマ処理装置要部の概略断面図、第4図は
従来のプラズマ処理装置の基板ホルダー概略断面図であ
る。 8・・・基板載置部材、9・・ 10.10′ ・・・温度制御媒 ・・絶縁体、12・・・ベロー管 ・・上下駆動機構、18・・・基 94・・温度制御循環路。 7・・・基板、 ・媒体導入部品、 体通路、1ト シール、 13φ 板ホルダー 1 特許出願人 日電アネルバ株式会社 尤1図 ヤ3図 ヤ4図
FIG. 1 is a schematic cross-sectional view of a main part of a plasma processing apparatus equipped with a substrate holder according to the present invention, FIG. 2 is a schematic cross-sectional view of another main part of a plasma processing apparatus equipped with a substrate holder according to the present invention, and FIG. The figure is a schematic cross-sectional view of the main parts of another plasma processing apparatus to which a substrate holder according to the present invention is attached, and FIG. 4 is a schematic cross-sectional view of the substrate holder of a conventional plasma processing apparatus. 8... Substrate mounting member, 9... 10.10'... Temperature control medium... Insulator, 12... Bellows tube... Vertical drive mechanism, 18... Base 94... Temperature control circulation Road. 7...Substrate, ・Medium introduction part, body passage, 1 seal, 13φ plate holder 1 Patent applicant Nichiden Anelva Co., Ltd. Fig. 1, Fig. 3, Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマにより表面処理される基板を載置する基
板載置部材と、この基板載置部材と接合し、基板の温度
を制御するために基板温度制御媒体を循環させる温度制
御媒体通路内部に形成した媒体導入部材とを備えた基板
ホルダーにおいて、上記基板載置部材と上記媒体通路部
材が熱膨張率の差の小さな材質のものからなることを特
徴とする基板ホルダー。
(1) A substrate mounting member on which a substrate to be surface-treated by plasma is mounted, and a temperature control medium passage connected to this substrate mounting member and through which a substrate temperature control medium is circulated to control the temperature of the substrate. What is claimed is: 1. A substrate holder comprising a medium introducing member formed thereon, wherein the substrate mounting member and the medium passage member are made of a material having a small difference in coefficient of thermal expansion.
(2)プラズマにより表面処理される基板を載置する基
板載置部材と、この基板載置部材と接合し、基板の温度
を制御するために基板温度制御媒体を循環させる温度制
御媒体通路内部に形成した媒体導入部材と、上記基板温
度制御媒体の漏れを防止するシール部材とを備えた駆動
可能な基板ホルダーにおいて、上記駆動部分のシール部
材としてベロー管シールを用いたことを特徴とする基板
ホルダー。
(2) A substrate mounting member on which a substrate to be surface-treated by plasma is mounted, and a temperature control medium passage connected to this substrate mounting member and through which a substrate temperature control medium is circulated to control the temperature of the substrate. A driveable substrate holder comprising a formed medium introduction member and a sealing member for preventing leakage of the substrate temperature control medium, characterized in that a bellows tube seal is used as the sealing member of the driving portion. .
JP32296488A 1988-12-21 1988-12-21 Base plate holder Pending JPH02170977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32296488A JPH02170977A (en) 1988-12-21 1988-12-21 Base plate holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32296488A JPH02170977A (en) 1988-12-21 1988-12-21 Base plate holder

Publications (1)

Publication Number Publication Date
JPH02170977A true JPH02170977A (en) 1990-07-02

Family

ID=18149613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32296488A Pending JPH02170977A (en) 1988-12-21 1988-12-21 Base plate holder

Country Status (1)

Country Link
JP (1) JPH02170977A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625562A (en) * 1985-06-28 1987-01-12 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead-acid battery
JPS6293379A (en) * 1985-10-17 1987-04-28 Canon Inc Deposited film forming device
JPS6255562B2 (en) * 1981-12-23 1987-11-20 Rairii Sutookaa Corp
JPS6381863A (en) * 1986-09-25 1988-04-12 Toshiba Corp Manufacture of semiconductor device
JPS63114976A (en) * 1986-11-01 1988-05-19 Ulvac Corp Substrate electrode mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6255562B2 (en) * 1981-12-23 1987-11-20 Rairii Sutookaa Corp
JPS625562A (en) * 1985-06-28 1987-01-12 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead-acid battery
JPS6293379A (en) * 1985-10-17 1987-04-28 Canon Inc Deposited film forming device
JPS6381863A (en) * 1986-09-25 1988-04-12 Toshiba Corp Manufacture of semiconductor device
JPS63114976A (en) * 1986-11-01 1988-05-19 Ulvac Corp Substrate electrode mechanism

Similar Documents

Publication Publication Date Title
KR0184677B1 (en) Plasma processing apparatus including condensation preventing means
CN101979705B (en) Improved pvd target
TWI789585B (en) Substrate support carrier with improved bond layer protection
US4569745A (en) Sputtering apparatus
TW202044478A (en) Placing table and substrate processing apparatus
JPH0213026B2 (en)
JP3892996B2 (en) Magnetron plasma processing equipment
TW201911976A (en) Plasma processing device and gas shower head
CN103915310A (en) Plasma processing container and plasma processing device
US5554249A (en) Magnetron plasma processing system
JP3798039B2 (en) Magnetron cathode electrode of sputtering equipment
JPH02170977A (en) Base plate holder
KR960011245B1 (en) Sputtering apparatus
JP5853487B2 (en) Discharge electrode and discharge method
JP2000106298A (en) Plasma processing unit
JP3157551B2 (en) Workpiece mounting device and processing device using the same
TW201447005A (en) Sputtering device
WO2020158272A1 (en) Target, film formation device, and method for manufacturing object on which film is to be formed
JP3399467B2 (en) Plasma processing apparatus and cleaning method
KR102384274B1 (en) A cooling structure improvement of plasma reactor
JP3239168B2 (en) Plasma processing equipment
JPS607132A (en) Dry etching device
JPH1161405A (en) Sputtering device
JP2001104774A (en) Plasma treatment apparatus
KR102423951B1 (en) Bonding structure and bonding method for bonding first conductive member and second conductive member, and substrate processing apparatus