JP3239168B2 - Plasma processing equipment - Google Patents

Plasma processing equipment

Info

Publication number
JP3239168B2
JP3239168B2 JP02054792A JP2054792A JP3239168B2 JP 3239168 B2 JP3239168 B2 JP 3239168B2 JP 02054792 A JP02054792 A JP 02054792A JP 2054792 A JP2054792 A JP 2054792A JP 3239168 B2 JP3239168 B2 JP 3239168B2
Authority
JP
Japan
Prior art keywords
insulating material
electrode
side wall
cylindrical body
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02054792A
Other languages
Japanese (ja)
Other versions
JPH05190500A (en
Inventor
勉 塚田
浩志 土井
勲 浅石
Original Assignee
アネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネルバ株式会社 filed Critical アネルバ株式会社
Priority to JP02054792A priority Critical patent/JP3239168B2/en
Publication of JPH05190500A publication Critical patent/JPH05190500A/en
Application granted granted Critical
Publication of JP3239168B2 publication Critical patent/JP3239168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体デバイスのエ
ッチングやCVD処理に用いるプラズマ処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus used for etching a semiconductor device or performing a CVD process.

【0002】[0002]

【従来の技術】従来、半導体デバイス製造のためのエッ
チング工程や、膜生成工程では、平行平板電極を用いた
プラズマ処理装置が一般に用いられていた。特に、処理
基板の大口径化に伴ない、処理基板を一枚一枚処理する
枚葉式プラズマ処理装置が一般的になってきた。この枚
葉式の処理装置では、生産性を上げるために、従来の多
数枚を一括処理する、いわゆるバッチ式装置に比較し、
処理速度を一桁上げる必要があった。このため、例え
ば、酸化膜のエッチング装置では、1Torr程度の比
較的高い圧力で、かつ、平行平板電極の電極間隔を10
mm程度以下にして高い高周波電力密度でエッチングす
る、いわゆるナローギャップ式エッチング装置が、従
来、良く使われていた。このナローギャップ式エッチン
グ装置では、従来のバッチ式装置に比較して約10倍ほ
どのエッチング速度が得られるため、生産性に関してほ
ぼ満足する性能が得られていた。
2. Description of the Related Art Conventionally, in an etching process and a film forming process for manufacturing a semiconductor device, a plasma processing apparatus using parallel plate electrodes has been generally used. In particular, with the increase in the diameter of the processing substrate, a single-wafer plasma processing apparatus for processing the processing substrates one by one has become common. In order to increase productivity, this single-wafer processing apparatus is compared with a conventional batch apparatus in which a large number of sheets are processed at once,
The processing speed had to be increased by an order of magnitude. For this reason, for example, in an oxide film etching apparatus, a relatively high pressure of about 1 Torr and an electrode gap of 10 parallel plate electrodes are used.
Conventionally, a so-called narrow gap type etching apparatus that performs etching at a high frequency power density of about mm or less has been widely used. In this narrow gap type etching apparatus, an etching rate about 10 times as high as that of a conventional batch type apparatus can be obtained, so that almost satisfactory performance in terms of productivity has been obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このナ
ローギャップ式エッチング装置では、前記のように、高
い電力密度で高密度プラズマを発生させ、かつ、比較的
高い圧力で、エッチングを行うため、幾つかの問題が生
じていた。
However, in this narrow gap type etching apparatus, as described above, high density plasma is generated at a high power density and etching is performed at a relatively high pressure. Problem had arisen.

【0004】すなわち、高い電力密度の高密度プラズマ
を発生させるために、非常に大きな高周波電流が接地電
極側に帰還することになり、接地電極側の取り付け構造
が、高周波電力の効率に大きく影響する問題があった。
この種の装置では、一般に、高周波印加電極側に処理の
対象である基板を保持し、高周波印加電極と対向する電
極を接地電位としている。従って接地電極を、真空処理
室を構成した容器壁に弾性ゴム製のOリングなどのシー
ル材を介在させて取り付けると、シール材の介在によっ
て接地抵抗が大きくなり、かつ、取り付け状態で接地抵
抗が変化するなどの傾向があった。この為、高周波電力
の効率が悪いばかりでなく、接地電極の取り付けの度に
効率が変化し、高周波電力効率に再現性が得られず、し
たがってエッチング特性も変化するなどの問題点が生じ
ていた。
That is, in order to generate high-density plasma with a high power density, a very large high-frequency current returns to the ground electrode side, and the mounting structure on the ground electrode side greatly affects the efficiency of high-frequency power. There was a problem.
In this type of apparatus, generally, a substrate to be processed is held on the high frequency application electrode side, and an electrode facing the high frequency application electrode is set to a ground potential. Therefore, when the ground electrode is attached to the container wall constituting the vacuum processing chamber with a sealing material such as an O-ring made of elastic rubber interposed, the grounding resistance increases due to the interposition of the sealing material, and the grounding resistance is reduced in the mounted state. Tended to change. For this reason, not only the efficiency of the high-frequency power is poor, but also the efficiency changes each time the ground electrode is attached, the reproducibility of the high-frequency power efficiency is not obtained, and thus the etching characteristics also change. .

【0005】また、動作圧力が比較的高い領域で処理が
行われるために、処理対象である基板に入射するイオン
のうち、斜め方向から入射する成分が多くなる問題があ
った。半導体デバイスの高集積化によって、パターンの
微細化が進んでおり、酸化膜のエッチングにおいても、
開口径に比べてエッチング深さが開口径の2倍以上とな
るような高アスペクト比のものが多くなっているが、斜
め方向から入射するイオンが多いと、満足できるエッチ
ング形状が得られなかった。特に、開口径が0.6ミク
ロン以下になるとこの傾向が強かった。
[0005] Further, since the processing is performed in a region where the operating pressure is relatively high, there is a problem that components incident from an oblique direction among ions incident on the substrate to be processed increase. Due to the high integration of semiconductor devices, pattern miniaturization is progressing, and even when etching oxide films,
Although many of those having a high aspect ratio such that the etching depth is twice or more the opening diameter as compared with the opening diameter are large, a satisfactory etching shape cannot be obtained if there are many ions incident from oblique directions. . This tendency was particularly strong when the opening diameter was 0.6 μm or less.

【0006】前記のような問題点に対して、幾つかの試
みがなされている。一つは、動作圧力を下げてエッチン
グを行う試みである。しかしながら、圧力が下がるにし
たがって、2枚の平行平板電極の間に形成したプラズマ
が、電極間隙から外部にはみ出し、真空処理室内全体に
広がるようになり、このため、十分なプラズマ密度を電
極間隙に得ることが難しくなり、エッチング速度が著し
く低下するものであった。また、対向する電極に、位相
が180度ずれた高周波電圧を印加する試みも行われ
た。しかしながら、この試みでも、均一なプラズマを電
極間隙に閉じ込めることが難しかった。
Some attempts have been made to solve the above problems. One is an attempt to perform etching by lowering the operating pressure. However, as the pressure decreases, the plasma formed between the two parallel plate electrodes protrudes from the electrode gap to the outside and spreads throughout the vacuum processing chamber. Therefore, a sufficient plasma density is applied to the electrode gap. It is difficult to obtain, and the etching rate is significantly reduced. Attempts have also been made to apply high-frequency voltages 180 degrees out of phase to opposing electrodes. However, even in this attempt, it was difficult to confine a uniform plasma in the electrode gap.

【0007】この発明は以上のような問題点に鑑みて成
されたもので、均一、高密度のプラズマを対向電極間隙
に閉じ込めることができるプラズマ処理装置を提供する
ことを目的としている。
The present invention has been made in view of the above problems, and has as its object to provide a plasma processing apparatus capable of confining uniform and high-density plasma in a gap between opposed electrodes.

【0008】上記目的を達成するこの発明の第1のプラ
ズマ処理装置は、絶縁材料製の筒状体であって、その内
面側と外面側とを貫通する排気口を有し、当該排気口の
内面側開口部と外面側開口部との間の途中に網が設置さ
れるように内面側と外面側との間に厚みを有する絶縁材
料製筒状体からなる側壁と、当該側壁の上側と下側とに
それぞれ真空に対してシールされて接する導電材料製の
互いに平行に対向する2枚の電極とで真空処理室が構成
され、前記下側の電極は被処理基板を保持する電極とさ
れていて高周波発振器が接続されていると共に、前記上
側の電極は、反応性ガスを導入するための手段を備えた
電極とされており、前記絶縁材料製筒状体からなる側壁
の外面は接地電位の遮蔽板で覆われ、絶縁材料製筒状体
からなる側壁の上側に真空に対してシールされて接する
前記上側の電極は、当該接地電位の遮蔽板に電気的に接
触して接地電位とされ、前記絶縁材料製筒状体の内面側
と外面側とを貫通する排気口の外面側に、接地電位にあ
る排気導管が接続され、前記絶縁材料製筒状体を貫通し
ている排気口の内面側開口部と外面側開口部との間の途
に、前記2枚の電極及び排気導管から絶縁された、導
電性材料でなる網が設置してあることを特徴とするもの
である。
A first plasma processing apparatus according to the present invention for achieving the above object is a cylindrical body made of an insulating material.
An exhaust port penetrating the surface side and the outer surface side, and
A net is installed halfway between the inner opening and the outer opening.
Insulating material having a thickness between the inner surface and the outer surface so that
Side wall made of a cylindrical material, and the upper and lower sides of the side wall.
Each made of conductive material that is sealed against vacuum
A vacuum processing chamber is composed of two electrodes facing each other in parallel
The lower electrode is the same as the electrode holding the substrate to be processed.
Connected to a high-frequency oscillator and
Side electrode equipped with means for introducing a reactive gas
An electrode, and a side wall made of the insulating material cylindrical body
Is covered with a ground potential shielding plate, and a cylindrical body made of insulating material
Sealed against vacuum on the upper side of the side wall made of
The upper electrode is electrically connected to the shield plate at the ground potential.
Touch to ground potential, the inner surface of the insulating material cylindrical body
To the ground potential on the outer surface of the exhaust port that passes through the
Exhaust pipe is connected and penetrates the insulating material cylindrical body.
Between the inner opening and the outer opening of the exhaust port
A net made of a conductive material is provided therein, insulated from the two electrodes and the exhaust conduit.

【0009】上記目的を達成するこの発明の第2のプラ
ズマ処理装置は、絶縁材料製の筒状体であって、その内
面側と外面側とを貫通する排気口を有し、当該排気口の
内面側開口部と外面側開口部との間の途中に網が設置さ
れるように内面側と外面側との間に厚みを有する絶縁材
料製筒状体からなる側壁と、当該側壁の上側と下側とに
それぞれ真空に対してシールされて接する導電材料製の
互いに平行に対向する2枚の電極とで真空処理室が構成
され、当該真空処理室の絶縁材料製筒状体からなる側壁
の外面は接地電位の遮蔽板で覆われており、前記下側の
電極は被処理基板を保持する電極、前記上側の電極は反
応性ガスを導入するための手段を備えた電極とされ、こ
れらの2枚の電極に高周波の位相シフト装置を介して、
高周波発振器が接続されていると共に、前記2枚の電極
の、絶縁材料製筒状体からなる側壁の上側と下側とへの
真空に対してシールされての接触は、前記遮蔽板との間
に前記絶縁材料製筒状体からなる側壁の一部が介在し
て、前記遮蔽板との間での絶縁が図られて行われるもの
であり、前記絶縁材料製筒状体の内面側と外面側とを貫
通する排気口の外面側に、接地電位にある排気導管が接
続され、前記絶縁材料製筒状体を貫通している排気口の
内面側開口部と外面側開口部との間の途中に、前記2枚
の電極及び排気導管から絶縁された、導電性材料でなる
網が設置してあることを特徴とするものである。
According to a second aspect of the present invention, which achieves the above objects,
The suma treatment apparatus is a cylindrical body made of an insulating material,
An exhaust port penetrating the surface side and the outer surface side, and
A net is installed halfway between the inner opening and the outer opening.
Insulating material having a thickness between the inner surface and the outer surface so that
Side wall made of a cylindrical material, and the upper and lower sides of the side wall.
Each made of conductive material that is sealed against vacuum
A vacuum processing chamber is composed of two electrodes facing each other in parallel
And a sidewall made of an insulating material cylindrical body of the vacuum processing chamber.
Outer surface is covered with a ground potential shielding plate, and the lower side
The electrode is an electrode for holding the substrate to be processed, and the upper electrode is a counter electrode.
An electrode provided with a means for introducing a reactive gas,
Through these two electrodes via a high frequency phase shift device,
A high-frequency oscillator is connected and the two electrodes
Of the side wall made of the insulating material cylindrical body
The sealed contact between the vacuum and the shield plate
Part of the side wall made of the insulating material cylindrical body is interposed
The insulation between the shielding plate
And penetrates the inner surface side and outer surface side of the insulating material cylindrical body.
An exhaust pipe at ground potential is connected to the outer surface of the exhaust
Connected to the exhaust port penetrating the insulating material cylindrical body.
In the middle between the inner opening and the outer opening, the two
Made of conductive material, insulated from the electrodes and exhaust conduit
It is characterized in that a net is installed.

【0010】前記において、被処理基板を保持する電極
は、上下動により絶縁材料製筒状体からなる側壁にに対
して離接可能とすることができる。
In the above, an electrode for holding a substrate to be processed
Moves up and down against the side wall made of the insulating material cylindrical body.
Can be separated.

【0011】[0011]

【作用】この発明のプラズマ処理装置によれば、絶縁材
料製の筒状体であって、その内面側と外面側とを貫通す
る排気口を有し、当該排気口の内面側開口部と外面側開
口部との間の途中に網が設置されるように内面側と外面
側との間に厚みを有する絶縁材料製筒状体からなる側壁
と、当該側壁の上側と下側とにそれぞれ真空に対してシ
ールされて接する導電材料製の互いに平行に対向する2
枚の電極とで真空処理室が構成され、前記絶縁材料製筒
状体を貫通している排気口の内面側開口部と外面側開口
部との間の途中に、2枚の電極および接地電位から絶縁
されて、浮遊電位となる、導電性材料の網を設けたの
で、2枚の電極間で発生させたプラズマは、排気口を通
して接地電位にある排気導管側に漏れることがなく、完
全に2枚の電極間に閉じ込めることが可能である。この
ため、非常に均一な高密度のプラズマを2枚の電極間に
得ることができる。排気口の開口面積を大きくして排気
速度を大きくした場合も同様で、低圧領域でも均一、高
密度のプラズマを2枚の電極間に閉じ込めることができ
る。また、このように真空処理室を構成する絶縁材料製
の筒状体の内面側と外面側とを貫通するように排気口が
設けられているので、真空処理室内への被処理基板の搬
入、搬出を、被処理基板の上下方向への移動によって行
うことが可能になる。すなわち、真空処理室への被処理
基板の搬入、搬出を、真空処理室を構成する側壁の上下
方向から行えるようにするべく、当該側壁に排気口を設
けなければならない場合であっても、本発明のプラズマ
処理装置によれば、2枚の電極間で発生させたプラズマ
が、側壁に設けた排気口を通して接地電位にある排気導
管側に漏れることがなくなる。
SUMMARY OF] According to flop plasma processing apparatus of the invention, the insulating material
Cylindrical body, penetrating its inner surface and outer surface
Exhaust port, the inner side opening and the outer side opening of the exhaust port.
Inner side and outer side so that the net is installed halfway between the mouth
Side wall made of insulating material cylindrical body having a thickness between sides
And vacuum on the upper and lower sides of the side wall, respectively.
Parallel made of conductive materials
A vacuum processing chamber is constituted by the two electrodes and the insulating material cylinder
Inner opening and outer opening of the exhaust port penetrating the body
On the way between the two electrodes, a net of conductive material is provided which is insulated from the two electrodes and the ground potential and becomes a floating potential, so that the plasma generated between the two electrodes passes through the exhaust port. It is possible to completely confine between two electrodes without leaking to the exhaust conduit side at the ground potential. Therefore, very uniform high-density plasma can be obtained between the two electrodes. The same applies when the exhaust area is increased by increasing the opening area of the exhaust port. Even in a low-pressure region, uniform and high-density plasma can be confined between two electrodes. Also, the insulating material constituting the vacuum processing chamber is made of
The exhaust port extends through the inner and outer surfaces of the cylindrical body of
Is provided to transport substrates to be processed into the vacuum processing chamber.
Loading and unloading are performed by moving the substrate up and down.
It becomes possible. That is, the processing target to the vacuum processing chamber
The loading and unloading of substrates are performed on the upper and lower sides of the side walls that constitute the vacuum processing chamber.
An exhaust port is provided on the side wall to allow
The plasma of the present invention should be
According to the processing apparatus, plasma generated between two electrodes
Is at the ground potential through the exhaust port on the side wall.
No leakage to the tube side.

【0012】側壁は絶縁物であるので、側壁の大気側の
面からは高周波が漏洩するが、側壁の外面を接地電位の
遮蔽板が覆っているので、高周波の外部への漏洩を防止
することができる。また、この発明の第1のプラズマ処
理装置によれば、この接地電位の遮蔽板と、接地電位に
おかれる対向電極との間には、真空をシールする部材を
必要としないので、両部材の電気的な接触を十分にとる
ことが可能で、高周波の帰還電流の回路の電気抵抗を小
さくすることができる。したがって、高周波電力のプラ
ズマ処理に対する効率を高くすることができ、かつ、電
極の取り付け状態によって、電気抵抗が変化することも
ないので、高周波電力効率の再現性も良くすることがで
きる。
Since the side wall is an insulator, the side wall on the air side is
Although high frequencies leak from the surface, the outer surface of the side wall is
Prevents high frequency leakage to the outside because the shielding plate covers
It can be. In addition, the first plasma processing of the present invention.
According to the control device, since a member for sealing vacuum is not required between the shield plate at the ground potential and the counter electrode at the ground potential, sufficient electrical contact between both members is required. It is possible to reduce the electric resistance of the high-frequency feedback current circuit. Therefore, the efficiency of the high-frequency power for the plasma processing can be increased, and the electrical resistance does not change depending on the mounting state of the electrodes, so that the reproducibility of the high-frequency power efficiency can be improved.

【0013】高周波の位相シフト装置を介して、2枚の
電極に、それぞれ高周波を印加した場合も、均一、高密
度のプラズマを閉じ込めることが可能である。
[0013] Even when a high frequency is applied to each of the two electrodes via a high frequency phase shifter, uniform and high density plasma can be confined.

【0014】[0014]

【0015】[0015]

【実施例】以下、この発明の実施例を図面を参照して説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1は、酸化膜のエッチング装置に実施し
た例で、真空処理室は、それぞれアルミニウム製で内部
が、水その他の冷媒により冷却できるようにした試料載
置電極1および対向電極2と、絶縁性材料であるアクリ
ル樹脂製の筒状の側壁3により構成されている。試料載
置電極1は、下側に高周波導入パイプ4が接続されてお
り、高周波電源5よりコンデンサ6を介して高周波電力
が供給できるようになっている。試料載置電極1の上に
は被処理基板であるシリコンウェーハ7が載置される。
シリコンウェーハ7の周りにはエッチング速度の均一性
を改善し、かつ試料載置電極1のシリコンウェーハ7を
載置していない部分を保護するためにウェーハリング8
が置かれる。エッチング中は、試料載置電極1の内部は
冷媒によって冷却され、シリコンウェーハ7は試料載置
電極1に静電チャックにより吸着することが可能で、シ
リコンウェーハ7は所定の温度に保たれる。前記試料載
置電極1の下側は、電極絶縁体15を介し接地電位であ
る電極シールド16により覆われている。
FIG. 1 shows an embodiment in which the present invention is applied to an oxide film etching apparatus. The vacuum processing chambers are made of aluminum, and the interior of the vacuum processing chamber is provided with a sample mounting electrode 1 and a counter electrode 2 which can be cooled by water or other refrigerant. And a cylindrical side wall 3 made of an acrylic resin as an insulating material. A high-frequency introduction pipe 4 is connected to the lower side of the sample mounting electrode 1, and high-frequency power can be supplied from a high-frequency power supply 5 via a capacitor 6. A silicon wafer 7 which is a substrate to be processed is mounted on the sample mounting electrode 1.
A wafer ring 8 is provided around the silicon wafer 7 to improve the uniformity of the etching rate and to protect the portion of the sample mounting electrode 1 where the silicon wafer 7 is not mounted.
Is placed. During the etching, the inside of the sample mounting electrode 1 is cooled by the coolant, and the silicon wafer 7 can be attracted to the sample mounting electrode 1 by the electrostatic chuck, and the silicon wafer 7 is kept at a predetermined temperature. The lower side of the sample mounting electrode 1 is covered by an electrode shield 16 at a ground potential via an electrode insulator 15.

【0017】対向電極2の大気側には、ガス導入管9が
接続されている。対向電極2の真空側の試料載置電極1
と対向する面には微細なガス穴を多数あけたカーボン製
のガス吹出板10が取付けられており、ガス導入管9か
ら真空処理室へガスを供給できるようになっている。絶
縁材料であるアクリル製の側壁3には排気口11が設け
られ、排気口の内部には導電性のカーボン網で構成され
たシールド12が設置されている。更に、排気口11は
ステンレス鋼製の排気導管13が接続され、真空処理室
側を排気できるようにしてある。側壁3は試料載置電極
1および対向電極2とそれぞれOリング14を介して接
しており、真空に対してシールされている。更に、側壁
3の大気側はステンレス鋼製の遮蔽筒18で側壁3の周
囲を覆っており、前記対向電極2は遮蔽筒18に電気的
接触が充分とれるよう接続されており、接地電位に保持
されている。
A gas introduction pipe 9 is connected to the atmosphere side of the counter electrode 2. Sample mounting electrode 1 on the vacuum side of counter electrode 2
A gas blowing plate 10 made of carbon and having many fine gas holes is attached to the surface facing the above, so that gas can be supplied from the gas introduction pipe 9 to the vacuum processing chamber. An exhaust port 11 is provided on an acrylic side wall 3 made of an insulating material, and a shield 12 made of a conductive carbon net is installed inside the exhaust port. Further, the exhaust port 11 is connected to an exhaust conduit 13 made of stainless steel so that the vacuum processing chamber side can be exhausted. The side wall 3 is in contact with the sample mounting electrode 1 and the counter electrode 2 via O-rings 14, respectively, and is sealed against vacuum. Further, the atmosphere side of the side wall 3 is covered around the side wall 3 by a stainless steel shielding cylinder 18, and the counter electrode 2 is connected to the shielding cylinder 18 so as to make sufficient electrical contact, and is maintained at the ground potential. Have been.

【0018】前記真空処理室を構成した筒状の側壁3
は、導電性材料で箱状に構成した搬送室17上に、Oリ
ング14を介して搭載され、側壁3の外壁を覆った遮蔽
筒18は搬送室17と電気的に接続されている。そし
て、電極シールド16の下側筒状部が搬送室17側に設
けた軸受体22に挿通され、試料載置電極1は、高周波
導入パイプ4および電極シールド16と共に、矢示23
のように昇降できるようになっている。真空処理室およ
び搬送室17の真空を維持する為に、シールが必要な部
分には夫々Oリングその他のシール材が介在してあり、
図中、それらは符号14で示してある。
A cylindrical side wall 3 constituting the vacuum processing chamber
Is mounted on a transfer chamber 17 made of a conductive material in a box shape via an O-ring 14, and a shielding tube 18 covering the outer wall of the side wall 3 is electrically connected to the transfer chamber 17. Then, the lower cylindrical portion of the electrode shield 16 is inserted into a bearing body 22 provided on the transfer chamber 17 side, and the sample mounting electrode 1 is moved together with the high-frequency introduction pipe 4 and the electrode shield 16 by arrows 23.
It can be moved up and down like In order to maintain the vacuum in the vacuum processing chamber and the transfer chamber 17, O-rings and other sealing materials are interposed in the parts that need to be sealed, respectively.
In the figure, they are denoted by reference numeral 14.

【0019】上記実施例のプラズマ処理装置を動作する
には、まず試料載置電極1を電極シールド16ごと搬送
室17内部に下げ、真空処理室と搬送室17で構成され
る空間をあらかじめ真空に排気する。次に図示されてい
ないロードロック機構を通しシリコンウェーハ7を試料
載置電極1の上に図示していない搬送機構により搬送す
る。シリコンウェーハ7が載置されたら試料載置電極1
と電極シールド16で構成された試料電極を上部に引き
上げ、側壁3の下部に接触させOリング14をつぶすと
試料載置電極1、対向電極2および側壁3で構成される
真空処理室が形成され、搬送室17とは分離される。次
に、この真空処理室にガス導入管9より、例えばCHF
3 とCF4 の混合ガスのような、エッチング処理に必要
なガスを導入する。排気導管13の途中に取り付けたス
ロットバルブ(図示していない)のコンダクタンスを調
整して、真空処理室の圧力を所定の作業圧力(例えば
0.5Torr程度)に保つ。次に高周波電源5よりコ
ンデンサ6と高周波導入パイプ4を通して高周波電圧を
試料載置電極1に印加すると、CHF3 とCF4 の混合
ガスのプラズマが真空容器内に生成し、プラズマによっ
て得られたイオンと、反応性ラジカルによりシリコンウ
ェーハ7上の酸化膜のエッチングが進行する。
In order to operate the plasma processing apparatus of the above embodiment, first, the sample mounting electrode 1 is lowered together with the electrode shield 16 into the transfer chamber 17, and the space formed by the vacuum processing chamber and the transfer chamber 17 is previously evacuated. Exhaust. Next, the silicon wafer 7 is transferred onto the sample mounting electrode 1 by a transfer mechanism (not shown) through a load lock mechanism (not shown). When the silicon wafer 7 is mounted, the sample mounting electrode 1
When the sample electrode composed of the sample and the electrode shield 16 is lifted up and brought into contact with the lower part of the side wall 3 and the O-ring 14 is crushed, a vacuum processing chamber composed of the sample mounting electrode 1, the counter electrode 2 and the side wall 3 is formed. , From the transfer chamber 17. Next, for example, CHF is introduced into the vacuum processing chamber through a gas introduction pipe 9.
A gas necessary for the etching process such as a mixed gas of 3 and CF 4 is introduced. By adjusting the conductance of a slot valve (not shown) attached in the middle of the exhaust conduit 13, the pressure in the vacuum processing chamber is maintained at a predetermined working pressure (for example, about 0.5 Torr). Next, when a high-frequency voltage is applied to the sample mounting electrode 1 from the high-frequency power supply 5 through the condenser 6 and the high-frequency introducing pipe 4, plasma of a mixed gas of CHF 3 and CF 4 is generated in the vacuum vessel, and ions obtained by the plasma are generated. Then, the etching of the oxide film on the silicon wafer 7 proceeds by the reactive radical.

【0020】側壁3の唯一の接地電位に通じる排気口1
1は、浮遊電位によるシールド12により電気的にシー
ルドされているため、プラズマは、排気口11から接地
電位の排気導管13の方へ流れ出ることはなく、全て対
向電極2と試料載置電極1で構成される空間内に閉じ込
められる。このため、この空間にプラズマを閉じ込める
ことが可能であり、プラズマ密度を高くすることができ
る。しかも両電極の間の間隔が広がっても、圧力が下が
っても、また、低圧でかつガス流量を大きく取ろうとし
て排気口11の開口径を大きくしても、シールド12の
効果により、プラズマ側からみて電極は試料載置電極1
と対向電極2に限られるため、プラズマが両電極間に閉
じ込められる状態はほとんど変化しない。従って、高周
波電力が両電極間で有効に消費されると共に、高周波電
力が比較的小さくとも、低い圧力で高速のエッチングが
実現できる。開口径0.5ミクロン以下でアスペクト比
4の微細なコンタクトホールを垂直から順テーパ形状に
エッチングすることも可能であった。
Exhaust port 1 to the only ground potential on side wall 3
1 is electrically shielded by the shield 12 by the floating potential, so that the plasma does not flow out from the exhaust port 11 toward the exhaust conduit 13 at the ground potential, and all of the plasma flows between the counter electrode 2 and the sample mounting electrode 1. It is confined in the constituted space. Therefore, plasma can be confined in this space, and the plasma density can be increased. In addition, even if the distance between the electrodes is widened, the pressure is reduced, or even if the opening diameter of the exhaust port 11 is increased at a low pressure and the gas flow rate is increased, the plasma side From the viewpoint, the electrode is the sample mounting electrode 1
And the counter electrode 2, the state in which the plasma is confined between the electrodes hardly changes. Therefore, high-frequency power is effectively consumed between the two electrodes, and high-speed etching can be realized at a low pressure even when the high-frequency power is relatively small. It was also possible to etch a fine contact hole having an opening diameter of 0.5 μm or less and an aspect ratio of 4 into a forward tapered shape from vertical.

【0021】側壁3は絶縁物であるため、側壁3の大気
側の面からは高周波が漏洩するが、側壁3の周囲に設け
た遮蔽筒18を接地電位とすることにより、高周波の外
部への漏洩を防止することができるばかりでなく、この
遮蔽筒18は大気側にあるため、通常のプラズマ処理装
置でみられるような、接地電位のシールドと電極の間で
放電するような現象も起こらない。さらには、対向電極
2の真空シールを接地電位に対して行う必要がないた
め、遮蔽筒18と対向電極2との電気的な接触を充分に
取ることが可能であり、従来問題にされた、対向電極2
の高周波電流の帰還抵抗の変化による高周波電力効率の
変動によるエッチング特性の変化を極力小さく抑え、再
現性の良いエッチングを実現することができる。
Since the side wall 3 is an insulating material, high frequency leaks from the surface of the side wall 3 on the atmosphere side. However, by setting the shielding cylinder 18 provided around the side wall 3 to the ground potential, the high frequency Not only can leakage be prevented, but since the shielding cylinder 18 is on the atmosphere side, there is no occurrence of a phenomenon such as a discharge between a ground potential shield and an electrode, which is observed in a normal plasma processing apparatus. . Further, since it is not necessary to perform vacuum sealing of the counter electrode 2 with respect to the ground potential, it is possible to sufficiently make electrical contact between the shielding cylinder 18 and the counter electrode 2, which has been a problem in the past. Counter electrode 2
The change in the etching characteristics due to the change in the high-frequency power efficiency due to the change in the feedback resistance of the high-frequency current can be suppressed as small as possible, and etching with good reproducibility can be realized.

【0022】図2は、この発明をエッチング装置に適用
した第2の実施例である。図で、高周波発振器21は、
位相シフタ19に接続されており、高周波発振器21で
発生した高周波電力を2つに分割し、更にそれぞれの位
相を可変できる構造となっている。真空処理室および搬
送室17の構成は、前記実施例とほぼ同様であるが、対
向電極2と遮蔽筒18は接続されることなく、側壁3を
介して絶縁されている。位相シフタ19により2つに分
割された高周波電力は、それぞれ高周波増幅器20によ
り適切な大きさに増幅され、試料載置電極1と対向電極
2にそれぞれ印加される。
FIG. 2 shows a second embodiment in which the present invention is applied to an etching apparatus. In the figure, the high frequency oscillator 21
The high frequency power generated by the high frequency oscillator 21 is connected to the phase shifter 19, and the high frequency power is divided into two, and each phase can be varied. The configurations of the vacuum processing chamber and the transfer chamber 17 are almost the same as those in the above-described embodiment, but the counter electrode 2 and the shielding tube 18 are not connected but are insulated via the side wall 3. The high-frequency power divided into two by the phase shifter 19 is amplified to an appropriate size by the high-frequency amplifier 20, and is applied to the sample mounting electrode 1 and the counter electrode 2, respectively.

【0023】この実施例においては、位相シフタ19に
より、両電極の位相差を適切に調整することにより、プ
ラズマを両電極の間に効率よく閉じ込めることができ
る。この時、側壁3は絶縁体で出来ていると共に、浮遊
電位であるシールド12が排気口11の途中に設けてあ
るため、プラズマが側壁3の方向に広がることもない
し、また、排気口11を通して、金属性の接地電位であ
る排気導管13と両電極の間で放電することもない。こ
のため、低圧力領域でも更に効率よく高周波電力を利用
できるため、高速でアスペクト比の高い異方性エッチン
グが実現できる。
In this embodiment, by appropriately adjusting the phase difference between the two electrodes by the phase shifter 19, the plasma can be efficiently confined between the two electrodes. At this time, since the side wall 3 is made of an insulator and the shield 12 having a floating potential is provided in the middle of the exhaust port 11, plasma does not spread in the direction of the side wall 3, and Also, there is no discharge between the exhaust conduit 13 which is a metallic ground potential and both electrodes. For this reason, high-frequency power can be used more efficiently even in a low pressure region, so that anisotropic etching with a high aspect ratio and a high aspect ratio can be realized.

【0024】なお各実施例では、シリコン酸化膜のエッ
チングを例に説明したが、エッチング材料はこれに限定
されることはなく、ポリシリコンであっても、アルミニ
ウム合金膜であっても良いことはいうまでもない。さら
には、処理ガスも前記の混合ガスに限定することはな
く、他のフッ化炭化水素系のガスであっても、塩素や臭
素が含まれたガスであっても良いことはいうまでもな
い。また、プラズマ処理すべきシリコンウェーハ7は試
料載置電極1上でなくても、接地電位である対向電極2
側に保持しても良いことはいうまでもない。更に、この
発明の構成要素に用いた材料は、これに限定することは
なく、例えばアルミニウムの代りにステンレス鋼など、
他の導電性材料を用いてもよく、また、アクリル樹脂製
の側壁3の代りに他の絶縁材料、例えば、ポリイミドや
アルミナ、石英等を用いても良いことはいうまでもな
い。また、実施例では、シリコンウェーハの搬送を真空
処理室の下部の搬送室17で行っているが、シリコンウ
ェーハの搬送方法はこれに限定することなく、例えばゲ
ードバルブを用いて側壁3に搬入口を形成し、該部を通
して搬送しても良いことはいうまでもない。
In each of the embodiments, the etching of the silicon oxide film has been described as an example. However, the etching material is not limited to this, and may be polysilicon or an aluminum alloy film. Needless to say. Further, the processing gas is not limited to the above-mentioned mixed gas, and it is needless to say that another fluorocarbon-based gas or a gas containing chlorine or bromine may be used. . Further, even if the silicon wafer 7 to be subjected to the plasma processing is not on the sample mounting electrode 1,
Needless to say, it may be held on the side. Further, the material used for the components of the present invention is not limited to this, for example, stainless steel instead of aluminum, etc.
Needless to say, another conductive material may be used, and another insulating material, for example, polyimide, alumina, quartz, or the like may be used instead of the acrylic resin side wall 3. Further, in the embodiment, the transfer of the silicon wafer is performed in the transfer chamber 17 below the vacuum processing chamber. However, the transfer method of the silicon wafer is not limited to this. Needless to say, it may be formed and transported through the section.

【0025】次に、プラズマを対向電極間に閉じ込める
ようにしたこの発明の更に別の実施例について説明す
る。
Next, another embodiment of the present invention in which the plasma is confined between the opposing electrodes will be described.

【0026】図3のプラズマ処理装置は、真空処理室が
アルミニウム製の試料載置電極1と対向電極2と、これ
らの電極1、2から絶縁材製のスペーサ24、25で電
気的に絶縁されたアルミニウム製の側壁3で構成したも
ので、排気口が、前記2枚の電極1、2のいずれか一方
と同電位にて、当該いずれか一方の電極に接続されてい
る実施形態のものである。側壁3は電気的に浮いた状態
としてある。高周波電源5とコンデンサ6は対向電極2
に接続され、試料載置電極1が接地電位としてあるが、
前記の実施例と同様に対向電極2を接地し、試料載置電
極1側に高周波電源5とコンデンサ6を接続するように
しても良い。
In the plasma processing apparatus of FIG. 3, the vacuum processing chamber is electrically insulated from the sample mounting electrode 1 and the counter electrode 2 made of aluminum and the electrodes 1 and 2 by spacers 24 and 25 made of insulating material. And an exhaust port provided by one of the two electrodes 1 and 2.
Connected to either one of the electrodes at the same potential as
It is an embodiment of the present invention. The side wall 3 is in an electrically floating state. The high frequency power supply 5 and the capacitor 6 are connected to the counter electrode 2
And the sample mounting electrode 1 is at the ground potential,
As in the above-described embodiment, the counter electrode 2 may be grounded, and the high-frequency power supply 5 and the capacitor 6 may be connected to the sample mounting electrode 1 side.

【0027】また、図4のプラズマ処理装置は、図3と
同様に、排気口が、2枚の電極1、2のいずれか一方と
同電位にて、当該いずれか一方の電極に接続されている
ように構成した真空処理室の、試料載置電極1と対向電
極2の中間部に、グリッド電極26を設置して三極構造
の装置としたものである。グリッド電極26は接地電位
とし、試料載置電極1および対向電極2に夫々高周波電
源5とコンデンサ6が接続される。
Also, in the plasma processing apparatus of FIG. 4 , the exhaust port is connected to one of the two electrodes 1 and 2 as in FIG.
Connected to one of the electrodes at the same potential
A grid electrode 26 is installed in the vacuum processing chamber configured as described above, at an intermediate portion between the sample mounting electrode 1 and the counter electrode 2 to form an apparatus having a three-electrode structure. The grid electrode 26 is set to the ground potential, and the high frequency power supply 5 and the capacitor 6 are connected to the sample mounting electrode 1 and the counter electrode 2, respectively.

【0028】これらの実施例においても、側壁3が浮遊
電位におかれるので、高周波電源5との間のインピーダ
ンスが非常に大きな値となって、電極1、2と側壁3の
間で放電を維持することは困難なので、結局、試料載置
電極1と対向電極2の対向間隙に放電を閉じ込め、放電
の安定化を図ることができる。
Also in these embodiments, since the side wall 3 is placed at the floating potential, the impedance between the high frequency power supply 5 and the high frequency power supply 5 becomes a very large value, and the discharge is maintained between the electrodes 1, 2 and the side wall 3. Therefore, the discharge can be confined in the opposing gap between the sample mounting electrode 1 and the counter electrode 2, and the discharge can be stabilized.

【0029】以上、プラズマエッチングを例に、この発
明の実施例を説明したが、プラズマCVD装置に適用し
て同様の作用効果をあげることができる。
Although the embodiment of the present invention has been described by taking plasma etching as an example, the same effect can be obtained by applying the present invention to a plasma CVD apparatus.

【0030】[0030]

【発明の効果】この発明によれば、プラズマを均一に効
率よく試料載置電極と対向電極の間に閉じ込めることが
出来るので、低圧力でも高周波電力を有効に利用でき、
かつ均一、高速のエッチングを再現性良く行うことが可
能である。
According to the present invention, plasma can be uniformly and efficiently confined between the sample mounting electrode and the counter electrode, so that high frequency power can be effectively used even at a low pressure.
In addition, uniform and high-speed etching can be performed with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例の要部の概略断面図で
ある。
FIG. 1 is a schematic sectional view of a main part of a first embodiment of the present invention.

【図2】この発明の第2の実施例の要部の概略断面図で
ある。
FIG. 2 is a schematic sectional view of a main part of a second embodiment of the present invention.

【図3】この発明の第3の実施例の要部の概略断面図で
ある。
FIG. 3 is a schematic sectional view of a main part of a third embodiment of the present invention.

【図4】この発明の第4の実施例の要部の概略断面図で
ある。
FIG. 4 is a schematic sectional view of a main part of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 試料載置電極 2 対向電極 3 側壁 5 高周波電源 7 シリコンウェーハ 9 ガス導入管 10 ガス吹出板 11 排気口 12 シールド 13 排気導管 17 搬送室 18 遮蔽筒 19 位相シフタ 20 高周波増幅器 21 高周波電源 24 スペーサ 25 スペーサ DESCRIPTION OF SYMBOLS 1 Sample mounting electrode 2 Counter electrode 3 Side wall 5 High frequency power supply 7 Silicon wafer 9 Gas introduction pipe 10 Gas blowout plate 11 Exhaust port 12 Shield 13 Exhaust conduit 17 Transfer chamber 18 Shield cylinder 19 Phase shifter 20 High frequency amplifier 21 High frequency power supply 24 Spacer 25 Spacer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−266584(JP,A) 特開 昭62−254428(JP,A) 特開 昭56−87667(JP,A) 特開 平2−14517(JP,A) 特開 昭58−114432(JP,A) 特開 昭60−79726(JP,A) 特開 昭63−58834(JP,A) 実開 昭63−177030(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/3065 C23C 16/509 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-266584 (JP, A) JP-A-62-254428 (JP, A) JP-A-56-87667 (JP, A) JP-A-2- 14517 (JP, A) JP-A-58-114432 (JP, A) JP-A-60-79726 (JP, A) JP-A-63-58834 (JP, A) Japanese Utility Model Laid-Open No. 63-177030 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/3065 C23C 16/509

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁材料製の筒状体であって、その内面側
と外面側とを貫通する排気口を有し、当該排気口の内面
側開口部と外面側開口部との間の途中に網が設置される
ように内面側と外面側との間に厚みを有する絶縁材料製
筒状体からなる側壁と、当該側壁の上側と下側とにそれ
ぞれ真空に対してシールされて接する導電材料製の互い
に平行に対向する2枚の電極とで真空処理室が構成さ
れ、 前記下側の電極は被処理基板を保持する電極とされてい
て高周波発振器が接続されていると共に、前記上側の電
極は、反応性ガスを導入するための手段を備えた電極と
されており、 前記絶縁材料製筒状体からなる側壁の外面は接地電位の
遮蔽板で覆われ、 絶縁材料製筒状体からなる側壁の上側に真空に対してシ
ールされて接する前記上側の電極は、当該接地電位の遮
蔽板に電気的に接触して接地電位とされ、 前記絶縁材料製筒状体の内面側と外面側とを貫通する排
気口の外面側に、接地電位にある排気導管が接続され、 前記絶縁材料製筒状体を貫通している排気口の内面側開
口部と外面側開口部との間の途中 に、前記2枚の電極及
び排気導管から絶縁された、導電性材料でなる網が設置
されていることを特徴とするプラズマ処理装置。
1. A tubular body made of an insulating material, the inner surface side of which is provided.
And an exhaust port penetrating the outer surface side, and an inner surface of the exhaust port.
A net is installed halfway between the side opening and the outer side opening
Made of insulating material with a thickness between the inner surface and outer surface
A side wall made of a cylindrical body and upper and lower sides of the side wall
Each made of conductive material that is sealed and touched against a vacuum
A vacuum processing chamber is composed of two electrodes facing in parallel to each other.
The lower electrode is an electrode for holding the substrate to be processed.
The high frequency oscillator is connected to the
The pole is an electrode with means for introducing a reactive gas and
Are, the outer surface of the side wall made of the insulating material made tubular body of the ground potential
Covered with a shielding plate, the upper side of the side wall made of the insulating material cylindrical body is vacuum-sealed.
The upper electrode that is in contact with the ground is shielded from the ground potential.
蔽板the electrical contact is a ground potential, discharge penetrating the inner surface and the outer surface side of the insulating material made cylindrical member
An exhaust pipe at a ground potential is connected to the outer surface side of the air port, and the inner surface side of the exhaust port penetrating the insulating material cylindrical body is opened.
A plasma processing apparatus, wherein a net made of a conductive material, which is insulated from the two electrodes and the exhaust pipe, is provided midway between the mouth and the outer surface side opening .
【請求項2】絶縁材料製の筒状体であって、その内面側
と外面側とを貫通する排気口を有し、当該排気口の内面
側開口部と外面側開口部との間の途中に網が設置される
ように内面側と外面側との間に厚みを有する絶縁材料製
筒状体からなる側壁と、当該側壁の上側と下側とにそれ
ぞれ真空に対してシールされて接する導電材料製の互い
に平行に対向する2枚の電極とで真空処理室が構成さ
れ、 当該真空処理室の絶縁材料製筒状体からなる側壁の外面
は接地電位の遮蔽板で覆われており、 前記下側の電極は被処理基板を保持する電極、前記上側
の電極は反応性ガスを導入するための手段を備えた電極
とされ、これらの2枚の電極に高周波の位相シ フト装置
を介して、高周波発振器が接続されていると共に、 前記2枚の電極の、絶縁材料製筒状体からなる側壁の上
側と下側とへの真空に対してシールされての接触は、前
記遮蔽板との間に前記絶縁材料製筒状体からなる側壁の
一部が介在して、前記遮蔽板との間での絶縁が図られて
行われるものであり、 前記絶縁材料製筒状体の内面側と外面側とを貫通する排
気口の外面側に、接地電位にある排気導管が接続され、 前記絶縁材料製筒状体を貫通している排気口の内面側開
口部と外面側開口部との間の途中 に、前記2枚の電極及
び排気導管から絶縁された、導電性材料でなる網が設置
されていることを特徴とするプラズマ処理装置。
2. A cylindrical body made of an insulating material, the inner surface of which is
And an exhaust port penetrating the outer surface side, and an inner surface of the exhaust port.
A net is installed halfway between the side opening and the outer side opening
Made of insulating material with a thickness between the inner surface and outer surface
A side wall made of a cylindrical body and upper and lower sides of the side wall
Each made of conductive material that is sealed and touched against a vacuum
A vacuum processing chamber is composed of two electrodes facing in parallel to each other.
Is, the outer surface of the sidewall made of an insulating material made cylindrical body of the vacuum processing chamber
Is covered by a ground potential shielding plate, the lower electrode is an electrode for holding the substrate to be processed, and the upper electrode is
Electrodes are equipped with means for introducing reactive gases
It is a high frequency of the phase shift device to these two electrodes
A high-frequency oscillator is connected to the two electrodes via a side wall made of an insulating material cylindrical body.
The sealed contact against the vacuum on the side and bottom
Between the shielding plate and the side wall made of the insulating material cylindrical body.
Partly interposed, insulation between the shielding plate is achieved
The drainage is performed through the inner surface and the outer surface of the insulating material cylindrical body.
An exhaust pipe at a ground potential is connected to the outer surface side of the air port, and the inner surface side of the exhaust port penetrating the insulating material cylindrical body is opened.
A plasma processing apparatus, wherein a net made of a conductive material, which is insulated from the two electrodes and the exhaust pipe, is provided midway between the mouth and the outer surface side opening .
【請求項3】被処理基板を保持する電極は、上下動によ
り絶縁材料製筒状体からなる側壁に対して離接可能とさ
れていることを特徴とする請求項1又は2記載のプラズ
マ処理装置。
3. An electrode for holding a substrate to be processed is moved up and down.
Can be attached to and detached from the side wall made of insulating material cylindrical body.
The plasma processing apparatus according to claim 1 or 2, wherein
JP02054792A 1992-01-09 1992-01-09 Plasma processing equipment Expired - Lifetime JP3239168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02054792A JP3239168B2 (en) 1992-01-09 1992-01-09 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02054792A JP3239168B2 (en) 1992-01-09 1992-01-09 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH05190500A JPH05190500A (en) 1993-07-30
JP3239168B2 true JP3239168B2 (en) 2001-12-17

Family

ID=12030181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02054792A Expired - Lifetime JP3239168B2 (en) 1992-01-09 1992-01-09 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3239168B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7845309B2 (en) * 2004-07-13 2010-12-07 Nordson Corporation Ultra high speed uniform plasma processing system
JP5984536B2 (en) * 2011-09-16 2016-09-06 国立大学法人名古屋大学 Plasma CVD apparatus and carbon nanotube manufacturing method

Also Published As

Publication number Publication date
JPH05190500A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
KR100900595B1 (en) Method and apparatus to confine plasma and to enhance flow conductance
KR0151769B1 (en) Plasma etching apparatus
JP3438696B2 (en) Plasma processing method and apparatus
KR100639076B1 (en) Plasma processing apparatus
US5413673A (en) Plasma processing apparatus
US4802968A (en) RF plasma processing apparatus
JP3343629B2 (en) Plasma processing equipment
JP3239168B2 (en) Plasma processing equipment
JP3260168B2 (en) Plasma processing equipment
EP1156516A1 (en) Method and apparatus for plasma processing
JP3417328B2 (en) Plasma processing method and apparatus
JP3033787B2 (en) Plasma processing equipment
JP3002496B2 (en) Dry etching method for semiconductor wafer
JP2000106298A (en) Plasma processing unit
JP3034358B2 (en) Plasma processing equipment
JPH06112168A (en) Plasma apparatus
KR100733241B1 (en) Plasma etching apparatus
JP3357737B2 (en) Discharge plasma processing equipment
JP3220528B2 (en) Vacuum processing equipment
JPS607132A (en) Dry etching device
US20020168814A1 (en) Plasma processing method and apparatus
JP2548164B2 (en) Dry etching method
JPH05251394A (en) Semiconductor manufacturing device
JP3830634B2 (en) Plasma processing apparatus and plasma processing method
KR200426498Y1 (en) Process kit for using in a plasma processing chamber

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11