JPH02170902A - Manufacture of corrosion-resistant sintered stainless steel - Google Patents

Manufacture of corrosion-resistant sintered stainless steel

Info

Publication number
JPH02170902A
JPH02170902A JP32201088A JP32201088A JPH02170902A JP H02170902 A JPH02170902 A JP H02170902A JP 32201088 A JP32201088 A JP 32201088A JP 32201088 A JP32201088 A JP 32201088A JP H02170902 A JPH02170902 A JP H02170902A
Authority
JP
Japan
Prior art keywords
stainless steel
green body
corrosion
binder
degreased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32201088A
Other languages
Japanese (ja)
Inventor
Shiyunji Suemura
末村 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAI ICHI KASEI KK
Daiichi Kasei Co Ltd
Original Assignee
DAI ICHI KASEI KK
Daiichi Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAI ICHI KASEI KK, Daiichi Kasei Co Ltd filed Critical DAI ICHI KASEI KK
Priority to JP32201088A priority Critical patent/JPH02170902A/en
Publication of JPH02170902A publication Critical patent/JPH02170902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a high density and corrosion-resistant sintered stainless steel by kneading stainless steel powder with binder of organic compound, injection-molding and sintering the obtd. green body after degreasing to the specific carbon content. CONSTITUTION:The powder of stainless steel of SUS 303, 304, 304L, 316, 316L, etc., is kneaded with the binder mainly composed of the organic compound and injection-molded to form the green body. This green body is sintered after degreased, to obtain the sintered body. For this purpose a green body having the binder contact of 8-15 wt.% is degreased at >=3 deg.C/hr temp. rising speed, <=350 deg.C max. temp. and <=8 hr max. temp. holding time under the atmosphere; or >=3 deg.C/hr temp. rising speed, 500-600 deg.C max. temp. and <=8 hr max. temp. holding time under vacuum. By this method, the degreased body having 0.05-1.0% carbon content is made. By sintering this degreased body, the development of chromium carbide obstructing the corrosion resistance is retrained to obtain a high density and corrosion resistant sintered stainless steel whose remaining porosity ratio is slight.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は時計側等に使用される高耐食性ステンレス鋼焼
結体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a highly corrosion-resistant stainless steel sintered body used for watch parts and the like.

[従来技術] 金属粉末を加圧プレスにより賦形して焼結する粉末冶金
法は、製品の形状に制限があることや密度が充分上り切
らないという欠点があり、これらの欠点をカバーする方
法として金属粉末の射出成形法がクローズアップされて
きた。
[Prior art] Powder metallurgy, in which metal powder is shaped and sintered using a pressure press, has drawbacks such as limitations on the shape of the product and insufficient density.There are methods to overcome these drawbacks. Injection molding methods for metal powders have been attracting attention as a result.

射出成形法は、加熱によって流動性を呈する主として有
機化合物からなるバインダーを11.金属粉末にまぜて
加熱混練した後、射出成形機により加熱流動化させ、金
型に射出してグリーン成形体として固化成形させる0次
いで、グリーン成形体をオーブン内で加熱して、有機バ
インダーを蒸発或いは分解揮散せしめて脱脂し、゛その
後、焼成炉で金属の融点以下の高温に加熱して焼成させ
る。このようにして得られた焼結体は三次元的に複雑な
形状を持ち、粉末冶金法による焼結体よりも、真比重近
くまで密度が達するという利点があるので、適用対象が
急速に広がりつつあるが、耐食性は必ずしも満足できる
ものではなかった。
In the injection molding method, a binder mainly consisting of an organic compound that becomes fluid when heated is used. After mixing with metal powder and heating and kneading, it is heated and fluidized using an injection molding machine, and then injected into a mold to solidify and mold it as a green molded product.Next, the green molded product is heated in an oven to evaporate the organic binder. Alternatively, it is decomposed and volatilized to degrease it, and then fired in a firing furnace at a high temperature below the melting point of the metal. The sintered body obtained in this way has a three-dimensionally complex shape and has the advantage of reaching a density close to the true specific gravity compared to a sintered body made by powder metallurgy, so the range of applications is rapidly expanding. However, the corrosion resistance was not always satisfactory.

C発明が解決しようとする課ill なかでも、金属粉末としてステンレス鋼を使用した射出
成形焼結体は、ステンレス鋼材が機械加工しにくいこと
から、ニヤ ネット シェイプの有望な材料として注目
を集めているが、鋼材や鋳造品に比べて一般に錆が発生
しやすいという欠点がある。
Issues that the C invention aims to solve Among these, injection molded sintered bodies using stainless steel as metal powder are attracting attention as a promising material for near-net shapes because stainless steel materials are difficult to machine. However, they have the disadvantage of being more prone to rust than steel or cast products.

ステンレスの大きな特徴である耐食性が、射出成形焼結
品において一般に低下することの原因は、焼結品である
ため空孔が残りやすいこと、成形に使用する有機バイン
ダーが脱脂で完全に除去されず、炭素となって残り、そ
の炭素が焼成中にステンレス鋼中のクロームと結合して
クロームの防食効果を低減させることにある。
Corrosion resistance, which is a major feature of stainless steel, generally decreases in injection molded sintered products because the sintered products tend to leave pores, and the organic binder used in molding is not completely removed by degreasing. , remains as carbon, and the carbon combines with chromium in the stainless steel during firing, reducing the anticorrosion effect of chromium.

従って、射出成形焼結体の耐食性を上げるためには、焼
結密度を出来るだけ上げて空孔を可及的に低減させるこ
と、及び脱脂体に含まれる残留炭素量を少なくすること
が必要である。
Therefore, in order to improve the corrosion resistance of injection molded sintered bodies, it is necessary to increase the sintered density as much as possible to reduce pores as much as possible, and to reduce the amount of residual carbon contained in the degreased body. be.

しかし、脱脂体中の炭素は、一方では、それ自体、ステ
ンレス粉末の焼結に必要な温度を低下させたり、また脱
脂工程で生じた金属酸化物を焼成中に還元させる働きを
する。すなわち、炭素は焼結を容易にすると共に焼結密
度を上げ、空孔の残存率を低下させる機能を持っている
ので、−概に少なくすれば良いというものでもない。
However, the carbon in the degreased body itself functions to lower the temperature required for sintering the stainless steel powder and to reduce metal oxides produced during the degreasing process during firing. That is, since carbon has the function of facilitating sintering, increasing the sintered density, and reducing the residual rate of pores, it is not generally advisable to reduce the amount.

また、脱脂によってバインダーが揮散すると、ステンレ
ス粉末と外気が高温下で直接接触するため、特にステン
レス中の鉄の酸化が起こりやすくなる。脱脂中に一旦酸
化されたステンレス粉末は、一般に極めて焼結し難くな
るから、焼結体の密度が上らなくなる。すなわち、脱脂
体に含まれる炭素量を少なくするため、単純に脱脂を強
化すればステンレスが酸化し、焼結体の密度が上り難く
、空孔も残留しやすくなるという問題がある。
Furthermore, when the binder is volatilized by degreasing, the stainless steel powder comes into direct contact with the outside air at high temperatures, making it particularly likely that the iron in the stainless steel will oxidize. Stainless steel powder once oxidized during degreasing generally becomes extremely difficult to sinter, making it difficult to increase the density of the sintered body. That is, if degreasing is simply strengthened in order to reduce the amount of carbon contained in the degreased body, there is a problem that the stainless steel will oxidize, making it difficult to increase the density of the sintered body, and making it easy for pores to remain.

このように、射出成形ステンレス鋼焼結体は、その欠点
である耐食性を改善することが予想以上にむつかしく、
そのため、高湿度、塩水等の環境にさらされる商品には
、適用が躊躇されているのが実状である。
In this way, it is more difficult than expected to improve the corrosion resistance of injection molded stainless steel sintered bodies.
Therefore, in reality, there is hesitation in applying it to products that are exposed to environments such as high humidity and salt water.

上記諸問題に鑑み1本発明の目的とするところは、ステ
ンレス鋼粉末の射出成形、焼結品の製造方法であって、
耐食性を阻害するクローム炭化物の生成を押えて空孔残
存率の少ない高密度焼結品が得られるものを提供するこ
とにある。
In view of the above problems, an object of the present invention is to provide a method for injection molding stainless steel powder and manufacturing a sintered product, which
The object of the present invention is to provide a high-density sintered product that suppresses the formation of chromium carbide that impedes corrosion resistance and has a low porosity residual rate.

[課題を解決するための手段] 本願の発明者は、ステンレス鋼粉末の射出成形脱脂体に
含まれる残留炭素量が焼結体の密度及びクローム炭化物
生成量、その耐食性に及ぼす影響について詳細に検討す
ると同時に、一般に分子量が比較的高い有機化合物であ
るため、タール化したりして筒単には揮散し難いバイン
ダーの有効な脱脂方法について鋭意研究を進め、脱脂体
の残留炭素量のコントロールや、脱脂中の金属の酸化の
抑制について多くの工夫を積み重ねた結果、本発明に到
達した。
[Means for Solving the Problems] The inventor of the present application has conducted a detailed study on the influence of the amount of residual carbon contained in an injection-molded degreased body of stainless steel powder on the density of the sintered body, the amount of chromium carbide produced, and its corrosion resistance. At the same time, we are conducting intensive research on effective degreasing methods for binders, which are generally organic compounds with relatively high molecular weights and are difficult to volatilize in a cylinder due to tar formation. The present invention was achieved as a result of many efforts to suppress the oxidation of metals.

本発明が採用する手段は、ステンレス鋼の粉末を、主と
して有機化合物からなるバインダーと混練し、これを射
出成形してグリーン体を形成し、該グリーン体を脱脂し
た後、焼成する焼結品の製造において、含有される残留
炭素量が0.05〜l、0%の脱脂体に焼成することを
特徴とする。
The means adopted by the present invention is to knead stainless steel powder with a binder mainly consisting of an organic compound, injection mold this to form a green body, degrease the green body, and then sinter the sintered product. In the manufacturing process, it is characterized in that it is fired into a degreased body containing 0.05 to 1 and 0% residual carbon content.

上記の脱脂体を得る方法としては、バインダー量が8〜
15重量%のグリーン体を用い、該グリーン体を、大気
雰囲気中、昇温速度3℃/時間以上、最高温度350℃
以下、最高温度保持時間8時間以内で脱脂することが望
ましい。
As a method for obtaining the above degreased body, the amount of binder is 8 to 8.
Using a 15% by weight green body, the green body was heated in the air at a heating rate of 3°C/hour or more and at a maximum temperature of 350°C.
Hereinafter, it is desirable to degrease within the maximum temperature holding time of 8 hours.

さらに、上記脱脂体を得る他の方法としては、バインダ
ー量が8〜15重量%のグリーン体を用い、該グリーン
体を、真空中、昇温速度3℃/時間以上、最高温度50
0〜600℃、最高温度保持時間8時間以内で脱脂する
ことにより可能である。
Furthermore, as another method for obtaining the above-mentioned degreased body, a green body having a binder amount of 8 to 15% by weight is used, and the green body is heated in a vacuum at a heating rate of 3° C./hour or more at a maximum temperature of 50° C.
This is possible by degreasing at 0 to 600°C for a maximum temperature holding time of 8 hours or less.

[作用コ 脱脂体中の炭素量が、0.05%以下になると、焼結に
よるクローム炭化物の生成は少ないが、脱脂中の金属の
酸化が加速されたり、また酸化された金属を焼成中に還
元する力が不足して、結局焼結し難くなり、密度の上昇
が不十分となる。また、該炭素量が1.0%以上になる
と焼結温度は低下するが、焼結によるクローム炭化物の
生成が多くなって耐食性が阻害される。
[Effects] When the amount of carbon in the degreased body is 0.05% or less, chromium carbide is hardly produced during sintering, but oxidation of the metal during degreasing may be accelerated, and oxidized metal may be removed during firing. Due to the lack of reducing power, sintering becomes difficult and the increase in density becomes insufficient. Furthermore, when the carbon content is 1.0% or more, the sintering temperature is lowered, but the sintering increases the formation of chromium carbide, which impairs corrosion resistance.

このような脱脂体を得るための脱脂体製造条件は広く選
択できるが、好ましくは、使用グリーン体の含有バイン
ダー量は8〜15重量%である。
Although the degreased body production conditions for obtaining such a defatted body can be selected from a wide range, preferably, the amount of binder contained in the green body used is 8 to 15% by weight.

バインダー量がこれより少ない場合は、流動性の悪い組
成物を無理に射出成形しているため、グリーン体の組織
が均一でなく、よい焼結品が得られにくいし、バインダ
ー量が15重量%以上になると、脱脂負荷が大きくなっ
て脱脂体の残留炭素量が増えると同時にその量のコント
ロールが難しくなる。
If the amount of binder is less than this, the structure of the green body will not be uniform and it will be difficult to obtain a good sintered product because a composition with poor fluidity will be forced to be injection molded, and the amount of binder will be 15% by weight. When the amount exceeds that amount, the degreasing load increases and the amount of residual carbon in the degreased body increases, and at the same time, it becomes difficult to control the amount.

脱脂の条件として、第一は、脱脂中の雰囲気は酸素が存
在する大気を七のまま使用する。大気中の酸素によって
バインダーの酸化分解が促進され、バインダーの除去が
円滑に行なわれるため残留炭素は少なく保てるし、また
、その量のコントロールもやりやすい。
The first condition for degreasing is that the atmosphere during degreasing is an atmosphere containing oxygen. The oxidative decomposition of the binder is promoted by oxygen in the atmosphere, and the binder is removed smoothly, so the amount of residual carbon can be kept low and its amount can be easily controlled.

しかし、同時に酸素によってステンレス鋼の酸化が起こ
るので、これを極力防ぐために脱脂の温度条件は昇温速
度3℃/時間以上、最高温度350℃以下、最高温度保
持時間8時間以内に設定される。この範囲以上に熱履歴
を多く与えると、ステンレス鋼中の金属の酸化が促進さ
れ、脱脂体が焼結し難くなり、焼結体の密度アップが不
十分になる。
However, at the same time, the stainless steel is oxidized by oxygen, so to prevent this as much as possible, the temperature conditions for degreasing are set at a heating rate of 3° C./hour or more, a maximum temperature of 350° C. or less, and a maximum temperature holding time of 8 hours or less. If a large amount of thermal history is applied in excess of this range, oxidation of the metal in the stainless steel will be promoted, making it difficult to sinter the degreased body and insufficiently increasing the density of the sintered body.

脱脂の条件として、第二は真空炉を用いて脱脂する。そ
の場合は、昇温速度3℃/時間以上、最高温度500〜
600℃、最高温度保持時間8時間以内に設定される。
The second condition for degreasing is to use a vacuum furnace. In that case, the heating rate should be 3℃/hour or more, and the maximum temperature should be 500℃ or more.
The temperature is set at 600°C and the maximum temperature holding time is within 8 hours.

真空中での脱脂の場合、ステンレス鋼が酸化される危険
はないが、最高温度が低いとバインダーがタール状で残
留し易いから最高温度を500〜600℃にして加熱分
解することが重要である。
When degreasing in a vacuum, there is no risk of stainless steel being oxidized, but if the maximum temperature is low, the binder tends to remain in the form of tar, so it is important to heat the decomposition at a maximum temperature of 500 to 600°C. .

不活性ガス中で脱脂した場合は炭素が必要量以上に残っ
てし才い易いが、真空炉を使用すると分解ガスが効率よ
く排気されるので、残留炭素量が所定の範囲となる。
If degreasing is carried out in an inert gas, carbon tends to remain in excess of the required amount, but if a vacuum furnace is used, the cracked gas is efficiently exhausted, so that the amount of residual carbon falls within a predetermined range.

実際に、脱脂する際のより詳細な条件は、バインダーを
構成する物質によっても若干具なるが、当然、バインダ
ーの分解除去が行なわれるために十分な高い温度や、ク
ラックの発生しない低い昇温速度が、上記の温度条件の
範囲内で選定される。
In fact, the detailed conditions for degreasing depend somewhat on the substances that make up the binder, but of course the temperature must be high enough to decompose and remove the binder, and the heating rate must be low enough to prevent cracks from occurring. is selected within the range of the above temperature conditions.

脱脂体の最適焼成条件は当然ステンレス鋼の種類によっ
て異なり、さらに脱脂体の性状及び組成によって微妙に
変化するが、SUS304L、SUS316L(7)場
合、最高温度は1000℃〜1390℃位が一般に用い
られる。
The optimal firing conditions for the degreased body naturally vary depending on the type of stainless steel, and also vary slightly depending on the properties and composition of the degreased body, but in the case of SUS304L and SUS316L (7), the maximum temperature generally used is around 1000°C to 1390°C. .

本発明におけるステンレス鋼粉末は、各種粒径のものが
使用可能であるが、平均粒径が20−以下であることが
望ましい、20μより大きい平均粒径の粉末では1粒子
間隔が大きいため、焼結後学孔が残りやすく、錆が発生
しやすい傾向にある。また、本発明には各種のステンレ
ス鋼が使用されるが、特にオーステナイト系の5O53
03,304,304L、316.316Lが効果的で
ある。
The stainless steel powder used in the present invention can be used in various particle sizes, but it is desirable that the average particle size is 20 μm or less. Powder with an average particle size larger than 20 μm has a large interval between particles, so There is a tendency for holes to remain after the molding, and rust is likely to occur. In addition, although various types of stainless steel are used in the present invention, in particular, austenitic 5O53
03, 304, 304L, and 316.316L are effective.

〔実施例〕〔Example〕

実施例1 SUS304L−20μm (平均粒径Jogm)と金
属射出成形用有機バインダーとを表1のバインダー配合
比になるように秤量する。
Example 1 SUS304L-20 μm (average particle size Jogm) and an organic binder for metal injection molding were weighed so that the binder compounding ratio was as shown in Table 1.

(以下余白) 表1 表2 秤量した金属粉と有機バインダーとを卓上加圧ニーグー
内に入れ140℃で30分間混練後120″Cで90分
間混練し、ついで混練物を粗粉砕する。
(The following are blank spaces) Table 1 Table 2 The weighed metal powder and organic binder were placed in a tabletop pressurized Negoo and kneaded for 30 minutes at 140°C, then kneaded for 90 minutes at 120″C, and then the kneaded product was coarsely ground.

粗粉砕した混練物を射出成形機内に入れ、時計ケースを
成形した。成形条件は表2に示すとおりである。
The coarsely pulverized kneaded material was put into an injection molding machine to mold a watch case. The molding conditions are as shown in Table 2.

時計ケース成形体を大気循環式脱脂炉に入れ、大気中3
10℃まで10℃/ Hrでヒートアップして、310
℃で1時間放置後、炉冷して脱脂を行う。この時、残留
しているカーボン量は、粉体中に含有されているカーボ
ンを含めて0.38%である。
The watch case molded body was placed in an air circulation degreasing furnace, and
Heat up to 10℃ at 10℃/Hr to 310℃.
After being left at ℃ for 1 hour, it is cooled in a furnace and degreased. At this time, the amount of remaining carbon, including the carbon contained in the powder, is 0.38%.

時計ケース脱脂体を真空加圧焼結炉に入れ、1330℃
X2.5Hrで焼結後、850℃まで真空中で炉冷した
後、N2ガス1 atmで炉冷する。
Place the degreased watch case body into a vacuum pressure sintering furnace and heat it to 1330°C.
After sintering at X2.5 hours, the product is cooled in a vacuum to 850° C., and then cooled in a furnace at 1 atm of N2 gas.

この時、残留しているカーボン量は、0.001%であ
り、極低炭素ステンレス鋼である。この量は溶製材では
到達し難い低炭素量である(溶製材SUS304Lの規
格カーボン量は0.03以下である)、得られた焼結体
密度はρ=97%以上の従来方法では容易に得られない
高密度である。
At this time, the amount of carbon remaining is 0.001%, making it ultra-low carbon stainless steel. This amount is a low carbon content that is difficult to reach with ingots (the standard carbon content of ingot SUS304L is 0.03 or less), and the density of the obtained sintered body is easily reached by conventional methods where ρ = 97% or more. It is a high density that cannot be obtained.

この時計ケースを加速塩水噴霧試験(JISD0201
−1971)した結果、錆の発生は全く見られなかった
This watch case was subjected to accelerated salt spray test (JISD0201).
-1971), no rust was observed at all.

実施例? SUS304L−20終m(平均粒径10終m)と金属
射出成形用有機バインダーとを混練して時計ケースを成
形する。
Example? A watch case is molded by kneading SUS304L-20 (average particle size: 10 m) and an organic binder for metal injection molding.

成形体を大気脱脂炉に入れ、大気中340℃まで10℃
/Hrで加熱脱脂後、放置せずに炉冷する。この時の残
留カーボン量は0.12%である。
The molded body is placed in an atmospheric degreasing furnace and heated at 10°C to 340°C in the atmosphere.
After heating and degreasing at /Hr, cool in the furnace without leaving. The amount of residual carbon at this time was 0.12%.

脱脂体を真空加圧焼結炉に入れ、1340℃×2.58
rで焼結後、850℃まで真空中で炉冷した後、N2ガ
ス1 atmで炉冷する。この時の残留カーボン量は0
.003%であり、極低炭素ステンレス鋼である。
Put the degreased body into a vacuum pressure sintering furnace and heat it at 1340℃ x 2.58℃.
After sintering at R, the product is cooled in a vacuum to 850° C., and then cooled in a furnace at 1 atm of N2 gas. The amount of residual carbon at this time is 0
.. 003%, and is an ultra-low carbon stainless steel.

得られた焼結体の密度はρ=97%以上で加速塩水噴霧
試験を行なったところ、錆の発生は全くなく耐食性が極
めて良好であることを示した。
When the density of the obtained sintered body was ρ=97% or higher and an accelerated salt spray test was conducted, it was found that no rust occurred and the corrosion resistance was extremely good.

実施例3 SUS304L−20μm (平均粒径lOILm)と
表1の有機バインダーを加圧ニーダにより加熱混練し、
この混練物を表2の条件で時計ケースを射出成形した。
Example 3 SUS304L-20μm (average particle size lOILm) and the organic binder shown in Table 1 were heated and kneaded using a pressure kneader.
This kneaded product was injection molded into a watch case under the conditions shown in Table 2.

成形体を真空炉(10Torr)に入れ320℃/時の
昇温速度で加熱し、550℃で2時間保持後炉冷した。
The molded body was placed in a vacuum furnace (10 Torr) and heated at a temperature increase rate of 320° C./hour, held at 550° C. for 2 hours, and then cooled in the furnace.

この時の残留カーボン量は0015%であった・ 脱脂体を真空加圧焼結炉に入れ、1340℃X2.5H
rで焼結後、850℃まで真空中で炉冷した後、N2ガ
ス1 atmで炉冷する。この時の残留カーボン量は0
.00396であり、極低炭素ステンレス鋼である。
The amount of residual carbon at this time was 0.015%. The degreased body was placed in a vacuum pressure sintering furnace and heated at 1340°C for 2.5 hours.
After sintering at R, the product is cooled in a vacuum to 850° C., and then cooled in a furnace at 1 atm of N2 gas. The amount of residual carbon at this time is 0
.. 00396, an ultra-low carbon stainless steel.

得られた焼結体の密度はρ=97%以上で加速塩水噴霧
試験を行なったところ、錆の発生は全くなく耐食性が極
めて良好であった。
The density of the obtained sintered body was ρ=97% or more, and when an accelerated salt spray test was conducted, no rust was generated and the corrosion resistance was extremely good.

[発明の効果] 上記のとおり本発明の製造方法は、ステレス鋼粉末を用
いて耐食性にすぐれた射出成形焼結品を製造することが
出来る。従来、焼結品は錆が発生し易かったため、使用
用途が限られていたが、本発明による焼結品は、高湿度
や塩水等の環境で使用しても錆が発生するおそれが少な
いので、腕時計側等の部品としても使用を可能であると
いう優れた効果を有する。
[Effects of the Invention] As described above, the manufacturing method of the present invention can manufacture an injection molded sintered product with excellent corrosion resistance using stainless steel powder. Conventionally, sintered products were prone to rust, so their uses were limited, but the sintered products of the present invention have little risk of rusting even when used in environments with high humidity or salt water. It has the excellent effect of being able to be used as a component for wristwatches, etc.

Claims (1)

【特許請求の範囲】 1)ステンレス鋼の粉末を、主として有機化合物からな
るバインダーと混練し、これを射出成形してグリーン体
を形成し、該グリーン体を脱脂した後、焼成する焼結品
の製造方法において、含有炭素量が0.05〜1.0%
の脱脂体を焼成することを特徴とする耐食性焼結ステン
レス鋼の製造方法。 2)グリーン体のバインダ量が8〜15重量%、グリー
ン体を脱脂する条件が、大気雰囲気中、昇温速度3℃/
時間以上、最高温度350℃以下、最高温度保持時間8
時間以内である請求項1記載の耐食性焼結ステンレス鋼
の製造方法。 3)グリーン体のバインダ量が8〜15重量%、グリー
ン体を脱脂する条件が、真空中、昇温速度3℃/時間以
上、最高温度500〜600℃、最高温度保持時間8時
間以内である請求項1記載の耐食性焼結ステンレス鋼の
製造方法。 4)ステンレス鋼粉末の平均粒径が20μ以下である請
求項1記載の耐食性焼結ステンレス鋼の製造方法。 5)ステンレス鋼がSUS303、304、304L、
316、316Lである請求項1ないし4のいずれか一
つに記載の耐食性焼結ステンレス鋼の製造方法。
[Claims] 1) A sintered product in which stainless steel powder is kneaded with a binder mainly consisting of an organic compound, the mixture is injection molded to form a green body, and the green body is degreased and then fired. In the manufacturing method, the carbon content is 0.05 to 1.0%
A method for producing corrosion-resistant sintered stainless steel, the method comprising firing a degreased body of. 2) The amount of binder in the green body is 8 to 15% by weight, and the conditions for degreasing the green body are as follows: the temperature rise rate is 3℃/
more than 1 hour, maximum temperature 350℃ or less, maximum temperature holding time 8
2. The method of manufacturing a corrosion-resistant sintered stainless steel according to claim 1, wherein the manufacturing time is within hours. 3) The amount of binder in the green body is 8 to 15% by weight, and the conditions for degreasing the green body are: in a vacuum, at a heating rate of 3°C/hour or more, at a maximum temperature of 500 to 600°C, and at a maximum temperature holding time of 8 hours or less. A method for producing a corrosion-resistant sintered stainless steel according to claim 1. 4) The method for producing corrosion-resistant sintered stainless steel according to claim 1, wherein the average particle size of the stainless steel powder is 20 μm or less. 5) Stainless steel is SUS303, 304, 304L,
5. The method for producing a corrosion-resistant sintered stainless steel according to any one of claims 1 to 4, wherein the stainless steel is 316 or 316L.
JP32201088A 1988-12-22 1988-12-22 Manufacture of corrosion-resistant sintered stainless steel Pending JPH02170902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32201088A JPH02170902A (en) 1988-12-22 1988-12-22 Manufacture of corrosion-resistant sintered stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32201088A JPH02170902A (en) 1988-12-22 1988-12-22 Manufacture of corrosion-resistant sintered stainless steel

Publications (1)

Publication Number Publication Date
JPH02170902A true JPH02170902A (en) 1990-07-02

Family

ID=18138913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32201088A Pending JPH02170902A (en) 1988-12-22 1988-12-22 Manufacture of corrosion-resistant sintered stainless steel

Country Status (1)

Country Link
JP (1) JPH02170902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073623A (en) * 2001-03-15 2002-09-28 주식회사 엠스페이스 Porous metallic sintered body with improved corrosion resistance and absorptiveness, and manufacturing method therefor
CN104117670A (en) * 2014-07-31 2014-10-29 上海兴罗特种密封件有限公司 Material and method for protruding automobile electric control pump adjusting base plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073623A (en) * 2001-03-15 2002-09-28 주식회사 엠스페이스 Porous metallic sintered body with improved corrosion resistance and absorptiveness, and manufacturing method therefor
CN104117670A (en) * 2014-07-31 2014-10-29 上海兴罗特种密封件有限公司 Material and method for protruding automobile electric control pump adjusting base plate

Similar Documents

Publication Publication Date Title
JP5585237B2 (en) Metal powder for powder metallurgy and sintered body
EP1083239B1 (en) Non-magnetic, high density tungsten alloy
US4415528A (en) Method of forming shaped metal alloy parts from metal or compound particles of the metal alloy components and compositions
JP6549586B2 (en) Method of manufacturing sintered member and sintered member
US6761852B2 (en) Forming complex-shaped aluminum components
US6126873A (en) Process for making stainless steel aqueous molding compositions
JP5320843B2 (en) Compound for metal powder injection molding and method for producing sintered body
JPH02170902A (en) Manufacture of corrosion-resistant sintered stainless steel
JP5470955B2 (en) Metal powder and sintered body
JP2743090B2 (en) How to control the carbon content of metal injection products
EP1965940B1 (en) Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy
CN112371981A (en) Nitrogen-containing duplex stainless steel and near-net forming method thereof
JPS58722B2 (en) Reduction sintering method for high speed steel powder
LaSalle et al. Net-shape processing using an aqueous-based MIM binder
JP3265463B2 (en) Method for producing Ti sintered body
JP2571231B2 (en) Manufacturing method of metal sintered body
JP4158015B2 (en) Method for producing sintered body and sintered body
JP2857751B2 (en) Manufacturing method of cast iron based high density powder sintered compact
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
JPH0339402A (en) Manufacture of metal powder sintered body
JPH01184204A (en) Method for pretreating injecting molded body for producing sintered member
JPH07179960A (en) Production of titanium or titanium alloy sintered compact
JP2932763B2 (en) Method of manufacturing injection molded powder metallurgy products
JPH04247808A (en) Production of composite sintered article
KR20010055793A (en) Sintering method of metal powder by pickling