JPH02170423A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH02170423A
JPH02170423A JP32522888A JP32522888A JPH02170423A JP H02170423 A JPH02170423 A JP H02170423A JP 32522888 A JP32522888 A JP 32522888A JP 32522888 A JP32522888 A JP 32522888A JP H02170423 A JPH02170423 A JP H02170423A
Authority
JP
Japan
Prior art keywords
film
melting point
semiconductor element
point metal
silicon semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32522888A
Other languages
Japanese (ja)
Inventor
Ichiro Honma
一郎 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32522888A priority Critical patent/JPH02170423A/en
Publication of JPH02170423A publication Critical patent/JPH02170423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid an increase in a contact resistance due to an Si deposit on the interface between an Al film and an Si film by a method wherein a high-melting point metal or high-melting point metal silicide film is formed on the surface of a conductive region, where conductive support pillars are provided, in an Si semiconductor element. CONSTITUTION:An interelement isolation insulating film 22 consisting of an Si oxide is formed on a P-type Si substrate 21, a gate insulating film 23 is formed on the surface of an element formation region, and a gate electrode 24 is formed on a desired region. The, after N-type high-concentration impurity diffused layers 26, which are used as source and drain regions, are formed, Al is deposited on a titanium silicide film 27 and other Al is etched away in such a way that Al support pillars are left on the source and drain regions and the gate electrode. Then, an organic resin film 29 is applied as a temporary interlayer film, and after a heat treatment is performed, the film 29 is etched using oxidation plasma until all the Al support pillars 28 are exposed and an Al film 30 which is used as a wiring is deposited. Lastly, when the temporary interlayer film 29 is selectively removed by plasma etching using oxygen gas, a gap is generated between elements and between wirings.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はシリコン半導体装置、特にシリコン半導体素子
間の電極配線とその製造方法に関する。 〔従来の技術〕 近年、半導体装置の高集積化や高速化が著しい向上を遂
げているが、これは加工技術の進歩に因って、素子の微
細化が実現したことに起因する。 しかし、素子が比例縮小剤によってIR細化されると素
子自身の高速性は向上される一方、各素子間を結線する
配線の抵抗や容量が増加し、半導体装置の速度を決める
要因として配線による遅延時間の占める割合も大きくな
ってきた。特に、配線間隔(ピッチ)が狭くなると配線
容量が著しく増大することが問題になる。配線容量を決
めるものは配線断面積とMl横配線間隔および゛配線一
基板間隔、それに配線間を充填する絶縁膜の誘電率であ
る。 従来、これらの絶縁膜としてCVD法によって堆積した
シリコン酸化膜やリンドープシリコン酸化液(PSG)
などが多用され、その誘電率は4程度であった、配線容
量を低減するには誘電率のより小さな絶縁性充填物を使
用することが必要となるが、原理的には何もない状!r
!k(真空)が誘電率が最も小さく、空気などの気体を
用いてもほぼ同様の効果が期待される。 このような目的のために基板上に形成した半導体素子内
で上部配線と接続すべき領域上に導電性支柱を形成し、
他の固形性物質に接触することなく導電性支柱間を配線
により結線する方法は遠藤仲裕らによって、特願昭63
−066497号
[Industrial Field of Application] The present invention relates to a silicon semiconductor device, and particularly to an electrode wiring between silicon semiconductor elements and a manufacturing method thereof. [Background Art] In recent years, there has been a remarkable increase in the integration and speed of semiconductor devices, and this is due to the miniaturization of elements due to advances in processing technology. However, when an element is IR-reduced using a proportional shrinking agent, the high-speed performance of the element itself is improved, but the resistance and capacitance of the wiring connecting each element increases, and the wiring is a factor that determines the speed of semiconductor devices. The proportion of delay time has also increased. Particularly, when the wiring spacing (pitch) becomes narrower, the wiring capacitance increases significantly, which becomes a problem. The wiring capacitance is determined by the cross-sectional area of the wiring, the horizontal wiring spacing, the wiring-to-substrate spacing, and the dielectric constant of the insulating film filling between the wirings. Conventionally, silicon oxide films or phosphorus-doped silicon oxide liquid (PSG) deposited by CVD have been used as these insulating films.
etc., and its dielectric constant was around 4. To reduce the wiring capacitance, it is necessary to use an insulating filler with a lower dielectric constant, but in principle there is no such thing! r
! k (vacuum) has the smallest dielectric constant, and almost the same effect is expected even if a gas such as air is used. For this purpose, conductive pillars are formed on the area to be connected to the upper wiring in the semiconductor element formed on the substrate,
A method of connecting conductive columns by wiring without contacting other solid substances was proposed by Nakahiro Endo et al.
-No. 066497

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記構造において、シリコン半導体素子内の上部配線と
接続すべき領域上にアルミニウムを主成分とする導電性
支柱を形成すると、その後の熱処理でアロイスパイクと
呼ばれるアルミニウムがシリコン基板中に針状成長して
いく現象やノジュールと呼ばれるアルミニウムーシリコ
ン界面でのシリコンの析出が起こり、シリコン半導体素
子内導電性領域とアルミニウムを主成分とする導電性支
柱の接続が困難であった。 本発明の目的は上記問題点を解消した半導体装置および
その製造方法を提供することにある。 〔課題を解決するための手段〕 上記目的を達成するため、本発明の半導体装置はシリコ
ン基板上のシリコン半導体素子と前記各シリコン半導体
素子を接続する配線の少なくとも一部が他の固形性物質
に接触することなく前記シリコン半導体素子内導電性領
域上に設けたアルミニウムを主成分とする導電性支柱間
と結線されているシリコン半導体装置において、前記導
電性支柱を設けるべき前記シリコン半導体素子内導電性
領域表面に高融点金属または高融点金属シリサイド膜を
有するものである。 本発明の半導体装置はシリコン基板上にシリコン半導体
素子を形成した後、前記シリコン半導体素子内導電性領
域表面を高融点金属または高融点金属シリサイドで覆う
工程と、前記シリコン半導体素子内で上部配線と゛接続
すべき領域上にアルミニウムを主成分とする導電性支柱
を形成する工程と、高分子有機膜を充填した後、前記ア
ルミニウムを主成分とする導電性支柱を露呈させる工程
と、上部配線をパターン形成する工程と、前記充填した
高分子有機膜を除去する工程とを含む半導体装置の製造
方法によって得られる。 〔作用〕 シリコン半導体素子の導電性領域表面を高融点金属また
は高融点金属シリサイドで覆うことによりシリコン半導
体素子内導電性領域とアルミニウムを主成分とする導電
性支柱とが接触することがなくしたがってアロイスパイ
ク、ノジュールの発生がなく信顆性が向上する利点があ
る。 〔実錐例〕 以下、本発明の一実施例を図面を用いて詳細に説明する
。第1図は本発明の半導体装置の構造を示す模式的断面
図である。図において、P型シリコン基板1上にシリコ
ン半導体素子を分離する素子分離絶縁膜 4及び高濃度不純物拡散層5からなるnチャネルMOS
トランジスタを設け、高濃度不純物拡散層表面に高融点
金属シリサイドv6を形成し、上部配線(第2配線)8
と接続するためのアルミニウムを主成分とする導電性支
柱7が形成されている。 9は半導体素子と上部配線8間に形成された気体からな
る隙間である。 第3図(a) 、 (b)は本発明の半導体装置の製造
方法を工程順に追って示した模式図である。第3図(a
)において、ρ型シリコン基板21上に、シリコン酸化
膜からなる素子間分離絶縁膜22を形成し、続いて素子
形成領域表面にゲート絶縁膜23を形成した後、所望の
領域に第1配線としてゲート電極24を形成する。次に
、CVD法によってシリコン酸化膜を堆積し、CF4R
IEを行いゲート電極側壁にサイドスペーサー25を形
成した後、イオン注入法によりp型シリコン基板21に
砒素を拡散し、nチャネルMO3電界効果トランジスタ
のソース・ドレイン領域となるn型高濃度不純物拡散層
26を形成する0次に、高融点金属であるチタンをスパ
ッタ堆積し、シリサイド反応を用いてn型高濃度不純物
拡散層表面にチタンシリサイドM27を形成する。続い
て、アルミニウム1.5μm程度蒸着し、上部配線と接
続すべき領域、例えばソース・ドレイン領域¥域やゲー
ト電極上にアルミニウムの支柱27を残すように他のア
ルミニウムをエツチング除去する。次に、第3図(b)
において、成層間膜としてポジ型レジストなどの有機樹
脂g29をスピン塗布し、熱処理によって溶融してこれ
を平坦化した後、全てのアルミニウム支柱28の表面が
露呈するまで酸素プラズマを用いて有機樹脂膜29をエ
ツチングし、上部配線としてのアルミニウム30を蒸着
する。上部配線を通常の写真食刻技術とエツチング技術
を用いてパターン形成を行うことによって図示の構造と
なる。 最後に酸素ガスを用いたプラズマエツチングによって成
層間膜の有Rv!4脂膜29を選択的に除去すると、素
子面と上部配線との間に隙間が生じ第1図の構造が得ら
れる。 以上実施例ではシリコン半導体素子内導電性領域上にチ
タンシリサイド膜を用いたが、他の金属材料を用いても
よく、その中でタングステン、モリブデン、タンタル、
チタンなどの材料や合金材料、またはそのシリサイドが
有望である。 〔発明の効果〕 以上のように本発明によるときには、アルミニウム中へ
のシリコンの拡散が原因であるアロイスパイクによるp
n接合の破壊、アルミニウムーシリコンを導電性支柱に
用いたときに発生ずるアルミニウムーシリコン界面での
シリコンの析出であるノジュールによるコンタクト抵抗
の増加の問題を回避でき、信頼性を向上できる効果を有
する。
In the above structure, when a conductive pillar mainly composed of aluminum is formed on the region to be connected to the upper wiring in the silicon semiconductor element, aluminum called an alloy spike grows into needles in the silicon substrate during subsequent heat treatment. This phenomenon causes a phenomenon called nodule, where silicon is deposited at the aluminum-silicon interface, making it difficult to connect the conductive region within the silicon semiconductor element and the conductive pillars mainly composed of aluminum. SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that solve the above-mentioned problems. [Means for Solving the Problems] In order to achieve the above object, the semiconductor device of the present invention includes a silicon semiconductor element on a silicon substrate and at least a part of the wiring connecting each of the silicon semiconductor elements to another solid substance. In a silicon semiconductor device in which conductive pillars mainly made of aluminum are connected to each other without contact between conductive pillars provided on conductive regions in the silicon semiconductor element, the conductive pillars in the silicon semiconductor element should be provided with the conductive pillars. It has a high melting point metal or a high melting point metal silicide film on the surface of the region. The semiconductor device of the present invention includes a step of forming a silicon semiconductor element on a silicon substrate, then covering the surface of a conductive region within the silicon semiconductor element with a high melting point metal or a high melting point metal silicide, and forming an upper wiring within the silicon semiconductor element. A step of forming conductive pillars mainly composed of aluminum on the area to be connected, a step of exposing the conductive pillars mainly composed of aluminum after filling with a polymeric organic film, and a step of patterning the upper wiring. It is obtained by a method for manufacturing a semiconductor device including a step of forming the film and a step of removing the filled organic polymer film. [Function] By covering the surface of the conductive region of the silicon semiconductor element with a high-melting point metal or a high-melting point metal silicide, the conductive region within the silicon semiconductor element and the conductive pillars mainly composed of aluminum are prevented from coming into contact with each other. It has the advantage of improving condyle as there are no spikes or nodules. [Actual Cone Example] Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the structure of a semiconductor device of the present invention. In the figure, an n-channel MOS consists of an element isolation insulating film 4 for isolating silicon semiconductor elements and a high concentration impurity diffusion layer 5 on a P-type silicon substrate 1.
A transistor is provided, high melting point metal silicide v6 is formed on the surface of the high concentration impurity diffusion layer, and upper wiring (second wiring) 8 is formed.
A conductive column 7 mainly made of aluminum is formed to connect with the conductive column 7. Reference numeral 9 denotes a gap formed between the semiconductor element and the upper wiring 8 and made of gas. FIGS. 3(a) and 3(b) are schematic diagrams showing the method for manufacturing a semiconductor device of the present invention in the order of steps. Figure 3 (a
), an inter-element isolation insulating film 22 made of a silicon oxide film is formed on a ρ-type silicon substrate 21, and then a gate insulating film 23 is formed on the surface of the element formation region, and then a first wiring is formed in a desired region. A gate electrode 24 is formed. Next, a silicon oxide film is deposited by CVD method, and CF4R
After performing IE and forming side spacers 25 on the side walls of the gate electrode, arsenic is diffused into the p-type silicon substrate 21 by ion implantation to form an n-type high concentration impurity diffusion layer that will become the source/drain region of the n-channel MO3 field effect transistor. Next, titanium, which is a high melting point metal, is deposited by sputtering, and titanium silicide M27 is formed on the surface of the n-type high concentration impurity diffusion layer using a silicide reaction. Subsequently, aluminum is deposited to a thickness of about 1.5 .mu.m, and other aluminum is etched away so as to leave aluminum pillars 27 in regions to be connected to the upper wiring, such as the source/drain region and the gate electrode. Next, Figure 3(b)
, an organic resin G29 such as a positive resist is spin-coated as an interlayer film, melted by heat treatment and flattened, and then an organic resin film is applied using oxygen plasma until the surfaces of all aluminum pillars 28 are exposed. 29 is etched, and aluminum 30 is deposited as an upper wiring. The illustrated structure is obtained by patterning the upper wiring using conventional photolithography and etching techniques. Finally, plasma etching using oxygen gas is performed to improve the Rv of the interlayer film. 4. When the fat film 29 is selectively removed, a gap is created between the element surface and the upper wiring, and the structure shown in FIG. 1 is obtained. In the above embodiments, a titanium silicide film was used on the conductive region within the silicon semiconductor element, but other metal materials may also be used, including tungsten, molybdenum, tantalum,
Materials such as titanium, alloy materials, or their silicides are promising. [Effects of the Invention] As described above, according to the present invention, p due to alloy spikes caused by diffusion of silicon into aluminum
This has the effect of improving reliability by avoiding the problems of n-junction breakdown and increased contact resistance due to nodules, which are silicon precipitation at the aluminum-silicon interface that occur when aluminum-silicon is used as a conductive support. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の構造を示す模式的断面図
、第2図は従来例を示す模式的断面図、第3図fa) 
、 (b)は本発明の半導体装置の製造方法を工程順に
示す模式図である。 1.21・・・P型シリコン基板 2.22・・・素子分離絶縁膜 3.23・・・ゲート絶縁膜 4.24・・・ゲート電極(第1配線)25・・・サイ
ドスペーサー 5.26・・・n型高濃度不純物拡散層6.27・・・
高融点金属シリサイド膜29・・・有機樹脂膜 8.30・・・上部配線(第2配線) 特許出願人   日本電気株式会社 代   理   人      弁理士  内  原 
    晋鶴1 ?−p型シリコン基板 3−一−ゲート足憇 5−−−n型高濃度不’FE物拡散層 7−−−導電性支社 9−−一気体力)うなる隙間 図 2−  案−f分離絶縁層 4−一−ゲート電糧(第1配線) 6−−−高1注急金3シリプイド膜 8−・−上邪記憬(第2画6線) 鶴3図 (b)
FIG. 1 is a schematic cross-sectional view showing the structure of the semiconductor device of the present invention, FIG. 2 is a schematic cross-sectional view showing a conventional example, and FIG. 3 fa)
, (b) are schematic diagrams illustrating the method for manufacturing a semiconductor device according to the present invention in order of steps. 1.21... P-type silicon substrate 2.22... Element isolation insulating film 3.23... Gate insulating film 4.24... Gate electrode (first wiring) 25... Side spacer 5. 26...N-type high concentration impurity diffusion layer 6.27...
High melting point metal silicide film 29...Organic resin film 8.30...Upper wiring (second wiring) Patent applicant NEC Corporation Representative Patent attorney Hara Uchi
Shinkaku 1? -p-type silicon substrate 3--gate leg 5--n-type high-concentration impurity FE diffusion layer 7--conductive branch 9--grooving gap Figure 2-Plan-f separation insulating layer 4-1-Gate electrical supply (1st wiring) 6--High 1st charge 3 Sillpoid membrane 8---Upper holder (2nd stroke 6 lines) Crane 3 figure (b)

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板上のシリコン半導体素子と前記各シ
リコン半導体素子を接続する配線の少なくとも一部が他
の固形性物質に接触することなく前記シリコン半導体素
子内導電性領域上に設けたアルミニウムを主成分とする
導電性支柱間と結線されているシリコン半導体装置にお
いて、前記導電性支柱を設けるべき前記シリコン半導体
素子内導電性領域表面に高融点金属または高融点金属シ
リサイド膜を有することを特徴とする半導体装置。
(1) At least a part of the wiring connecting the silicon semiconductor element on the silicon substrate and each of the silicon semiconductor elements is mainly made of aluminum provided on the conductive region within the silicon semiconductor element without contacting other solid substances. A silicon semiconductor device that is connected between conductive pillars as components, characterized in that a high melting point metal or a high melting point metal silicide film is provided on the surface of the conductive region within the silicon semiconductor element where the conductive pillars are to be provided. Semiconductor equipment.
(2)シリコン基板上にシリコン半導体素子を形成した
後、前記シリコン半導体素子内導電性領域表面を高融点
金属または高融点金属シリサイドで覆う工程と、前記シ
リコン半導体素子内で上部配線と接続すべき領域上にア
ルミニウムを主成分とする導電性支柱を形成する工程と
、高分子有機膜を充填した後、前記アルミニウムを主成
分とする導電性支柱を露呈させる工程と、上部配線をパ
ターン形成する工程と、前記充填した高分子有機膜を除
去する工程とを含むことを特徴とする半導体装置の製造
方法。
(2) After forming a silicon semiconductor element on a silicon substrate, a step of covering the surface of a conductive region within the silicon semiconductor element with a high melting point metal or a high melting point metal silicide, and connecting with an upper wiring within the silicon semiconductor element. A step of forming conductive pillars mainly composed of aluminum on the region, a step of exposing the conductive pillars mainly composed of aluminum after filling with a polymeric organic film, and a step of patterning the upper wiring. and a step of removing the filled organic polymer film.
JP32522888A 1988-12-22 1988-12-22 Semiconductor device and its manufacture Pending JPH02170423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32522888A JPH02170423A (en) 1988-12-22 1988-12-22 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32522888A JPH02170423A (en) 1988-12-22 1988-12-22 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH02170423A true JPH02170423A (en) 1990-07-02

Family

ID=18174455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32522888A Pending JPH02170423A (en) 1988-12-22 1988-12-22 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH02170423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114241A (en) * 1998-06-29 2000-09-05 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a semiconductor device capable of reducing contact resistance
US6277738B1 (en) 1999-06-23 2001-08-21 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a semiconductor device capable of reducing contact resistance
US6734094B2 (en) * 2002-04-29 2004-05-11 Intel Corporation Method of forming an air gap within a structure by exposing an ultraviolet sensitive material to ultraviolet radiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114241A (en) * 1998-06-29 2000-09-05 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a semiconductor device capable of reducing contact resistance
US6277738B1 (en) 1999-06-23 2001-08-21 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a semiconductor device capable of reducing contact resistance
US6734094B2 (en) * 2002-04-29 2004-05-11 Intel Corporation Method of forming an air gap within a structure by exposing an ultraviolet sensitive material to ultraviolet radiation

Similar Documents

Publication Publication Date Title
DE102015109834B4 (en) Method of forming a fin field effect transistor (finfet) - uneven gate device structure
US5243220A (en) Semiconductor device having miniaturized contact electrode and wiring structure
US20090068827A1 (en) Method for fabricating semiconductor device
JPH0799738B2 (en) Method for manufacturing semiconductor device
DE19629774A1 (en) Semiconductor device
JPH02170423A (en) Semiconductor device and its manufacture
US5055904A (en) Semiconductor device
JPS5923544A (en) Manufacture of semiconductor device
JPS62203363A (en) Manufacture of semiconductor device
JPH0834245B2 (en) Method for manufacturing semiconductor device
CN1450601A (en) Method for making top contact plug on isolator silicon material substrate
JPH03102819A (en) Manufacture of semiconductor device
JP3016162B2 (en) Semiconductor device and manufacturing method
JPS63299142A (en) Manufacture of semiconductor device having multilayer interconnection structure
JP2536050B2 (en) Method for manufacturing semiconductor device
JPH02170422A (en) Semiconductor device
JPH01238146A (en) Semiconductor device and manufacture thereof
JP2618479B2 (en) Method for manufacturing semiconductor device
JPH01201940A (en) Formation of electrode wiring of semiconductor device
TW202347692A (en) Wiring in diffusion breaks in an integrated circuit
JPH02201932A (en) Mos field-effect transistor with high withstand voltage
JP2764988B2 (en) Semiconductor device
JPH0322474A (en) Manufacture of semiconductor device
JPS61252656A (en) Manufacture of semiconductor device
JPH05211131A (en) Semiconductor device