JPH01238146A - Semiconductor device and manufacture thereof - Google Patents
Semiconductor device and manufacture thereofInfo
- Publication number
- JPH01238146A JPH01238146A JP6649788A JP6649788A JPH01238146A JP H01238146 A JPH01238146 A JP H01238146A JP 6649788 A JP6649788 A JP 6649788A JP 6649788 A JP6649788 A JP 6649788A JP H01238146 A JPH01238146 A JP H01238146A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- film
- aluminum
- semiconductor device
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 238000000059 patterning Methods 0.000 claims description 3
- 229920000620 organic polymer Polymers 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 14
- 229910052782 aluminium Inorganic materials 0.000 abstract description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 239000010703 silicon Substances 0.000 abstract description 8
- 239000011229 interlayer Substances 0.000 abstract description 6
- 238000005530 etching Methods 0.000 abstract description 4
- 239000011347 resin Substances 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 abstract description 4
- 238000001020 plasma etching Methods 0.000 abstract description 3
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 2
- 230000003071 parasitic effect Effects 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半導体装置、特に半導体素子間の電極配線とそ
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor device, and particularly to an electrode wiring between semiconductor elements and a manufacturing method thereof.
(従来の技術)
近年、半導体装置の高集積化や高速化が著しい向上を遂
げているが、これは加工技術の進歩によって、素子の微
細化が実現したことに起因する。しかし、素子が比例縮
小側によって微細化されると素子自身の高速性は向上さ
れる一方、各素子間を結線する配線の抵抗や容量が増加
し、半導体装置の速度を決める要因として配線による遅
延時間の占める割合も大きくなってきた。特に、配線間
隔(ピッチ)が狭くなると配線容量が著しく増大するこ
とが問題になる。配線容量を決めるものは配線断面積と
縦横配線間隔および配線一基板間隔、それに配線間を充
填する絶縁膜の誘電率である。(Prior Art) In recent years, there have been significant improvements in the integration and speed of semiconductor devices, and this is due to the miniaturization of elements achieved through advances in processing technology. However, when elements are miniaturized by proportional reduction, the speed of the elements themselves improves, but the resistance and capacitance of the wiring between each element increases, and the delay caused by wiring is a factor that determines the speed of semiconductor devices. The proportion of my time has also increased. Particularly, when the wiring spacing (pitch) becomes narrower, the wiring capacitance increases significantly, which becomes a problem. What determines the wiring capacitance is the cross-sectional area of the wiring, the vertical and horizontal wiring spacing, the wiring-to-substrate spacing, and the dielectric constant of the insulating film filling between the wirings.
従来、これらの絶縁膜としてCVD法によって堆積した
シリコン酸化膜やリンドープシリコン酸化膜(PSG)
などが多用され、誘電率は4程度であった。Conventionally, silicon oxide films and phosphorus-doped silicon oxide films (PSG) deposited by CVD have been used as these insulating films.
etc., and the dielectric constant was about 4.
配線容量を低減するには誘電率のより小さな絶縁性充填
物を使用することが必要となるが、原理的には何もない
状態(真空)が誘電率が最も小さく、空気などの気体を
用いてもほぼ同様の効果が期待される。To reduce the wiring capacitance, it is necessary to use an insulating filler with a lower dielectric constant, but in principle the dielectric constant is the lowest when there is nothing (vacuum). Almost the same effect is expected.
このような目的のために配線の一部を支柱間を結ぶつり
橋状に形成した例はジー・デイ−・マコーマック(G、
D、 McCormack)らによって、1982年
、ガリウム砒素ICシンポジウムの技術予稿集の25〜
28頁に報告されている。本論文では、第2図に示すよ
うにガリウム砒素基板31上のn十領域33に絶縁膜の
コンタクト穴を設けた後、チタンと金のメツキ法による
配線37を形成したものである。An example of forming a part of the wiring in the form of a suspension bridge connecting between pillars for this purpose is the work of G.D. McCormack (G.
D., McCormack) et al., 1982, Technical Proceedings of the Gallium Arsenide IC Symposium, 25-
It is reported on page 28. In this paper, as shown in FIG. 2, a contact hole is formed in an insulating film in an n+ region 33 on a gallium arsenide substrate 31, and then a wiring 37 is formed by plating titanium and gold.
(発明が解決しようとする課題)
キ技術によって金属を堆積しているため、配線材料が金
かクロムなどに限定され、他の金属材料を使用すること
が困難であった。(Problems to be Solved by the Invention) Since the metal is deposited using the metal technique, the wiring material is limited to gold or chromium, and it is difficult to use other metal materials.
(課題を解決するための手段)
本発明は基板上の半導体素子と前記各半導体素子間を接
続する配線とによって構成される半導体装置において、
配線の少くとも一部が他の固形性物質に接触することな
く前記半導体素子内導電性領域上に設けた導電性支柱間
を結線されていることを特徴とした半導体装置を提供す
る。(Means for Solving the Problems) The present invention provides a semiconductor device comprising a semiconductor element on a substrate and wiring connecting each of the semiconductor elements.
Provided is a semiconductor device characterized in that at least a part of the wiring is connected between conductive pillars provided on the conductive region within the semiconductor element without contacting any other solid substance.
さらに本発明によれば、基板上に半導体素子を形成した
後、前記半導体素子内で上部配線と接続すべき領域上に
金属支柱を形成する工程と、高分子有機膜を充填した後
、前記金属支柱を露呈させる工程と、上部配線をパター
ン形成する工程と、前記充填した高分子有機膜を除去す
る工程とを含むことを特徴とする半導体装置の製造方法
が得られる。Further, according to the present invention, after forming a semiconductor element on a substrate, forming a metal support on a region of the semiconductor element to be connected to an upper wiring; A method for manufacturing a semiconductor device is obtained, which includes the steps of exposing the pillars, patterning the upper wiring, and removing the filled organic polymer film.
(作用)
半導体素子の導電性領域にオーミック接触をなす導電性
支柱を設けることにより配線が低ストレスで平坦に、し
かも半導体素子面と離して空気中に浮かせて形成される
ため、寄生配線容量が低減され、半導体装置の動作速度
が向上する。また、絶縁膜と接していないため、ストレ
スマイグレーションが生じにくく配線の信頼性が向上す
る利点がある。(Function) By providing conductive pillars that make ohmic contact with the conductive region of the semiconductor element, the wiring can be formed flat with low stress and suspended in the air away from the semiconductor element surface, reducing parasitic wiring capacitance. The operating speed of the semiconductor device is improved. Furthermore, since it is not in contact with the insulating film, it has the advantage that stress migration is less likely to occur and the reliability of the wiring is improved.
(実施例)
以下、本発明の一実施例を図面を用いて詳細に説明する
。第1図は本発明の半導体装置の構造を示す模式的断面
図である。シリコン基板1上に半導体素子を分離する素
子間分離絶縁膜2とゲート酸化膜3、ゲート電極4およ
び高濃度不純物拡散層5からなるnチャネルMO8)ラ
ンジスタを設け、上部配線7と接続するための金属支柱
6が形成された半導体装置について述べる。(Example) Hereinafter, an example of the present invention will be described in detail using the drawings. FIG. 1 is a schematic cross-sectional view showing the structure of a semiconductor device of the present invention. An n-channel MO transistor (8) consisting of an interelement isolation insulating film 2 for isolating semiconductor elements, a gate oxide film 3, a gate electrode 4, and a high concentration impurity diffusion layer 5 is provided on a silicon substrate 1, and is connected to an upper wiring 7. A semiconductor device in which metal pillars 6 are formed will be described.
第3図(a)、 (b)は本発明の半導体装置の製造方
法を順を追って示した模式図である。p型シリコン基板
11上にシリコン酸化膜からなる素子間分離絶縁膜12
を形成し、続いて素子形成領域表面にゲート絶縁膜13
を形成した後、所望の領域に第1配線としてのゲート電
極14を形成する。次に、イオン注入法によりp型シリ
コン基板に砒素を拡散し、nチャネルMIS”K界効果
トランジスタのソース・ドレイン領域となるn型高濃度
不純物拡散層15を形成した後、アルミニウムを1.5
μm程度蒸着し、上部配線と接続すべき領域、例えばソ
ース・ドレイン領域やゲート電極上にアルミニウムの支
柱16を残すように他のアルミニウムをエツチング除去
すると第3図(a)が得られる。次に、板層間膜として
ポジ型レジストなどの有機樹脂膜17をスピン塗布し、
熱処理によって溶融して平坦化した後、アルミニウムと
有機樹脂膜とが等速のエツチング速度をもつ条件のプラ
ズマエツチングを用いてすべてのアルミニウム支柱の少
くとも表面が露呈するまでエツチングし、上部配線とし
てのアルミニウム18を蒸着する。上部配線を通常の写
真食刻技術とエツチング技術を用いてパターン形成を行
うことによって第3図(b)が得られる。FIGS. 3(a) and 3(b) are schematic diagrams sequentially showing the method for manufacturing a semiconductor device of the present invention. An element isolation insulating film 12 made of a silicon oxide film is formed on a p-type silicon substrate 11.
Then, a gate insulating film 13 is formed on the surface of the element formation region.
After forming, a gate electrode 14 as a first wiring is formed in a desired region. Next, arsenic is diffused into the p-type silicon substrate by ion implantation to form an n-type high concentration impurity diffusion layer 15 that will become the source/drain region of the n-channel MIS"K field effect transistor, and then aluminum is
If the remaining aluminum is deposited to a depth of about .mu.m and then removed by etching so as to leave aluminum pillars 16 in regions to be connected to upper wirings, such as source/drain regions and gate electrodes, the result shown in FIG. 3(a) is obtained. Next, an organic resin film 17 such as a positive resist is spin-coated as an interlayer film,
After being melted and flattened by heat treatment, the aluminum and the organic resin film are etched using plasma etching under conditions where the etching rate is constant until at least the surface of all the aluminum pillars is exposed. Deposit aluminum 18. The pattern shown in FIG. 3(b) is obtained by patterning the upper wiring using ordinary photolithography and etching techniques.
続いて酸素ガスを用いたプラズマエツチングによって板
層間膜の有機樹脂膜17を選択的に除去すると素子面と
上部配線との間にすき間が生じる。Subsequently, when the organic resin film 17 serving as the interlayer film is selectively removed by plasma etching using oxygen gas, a gap is created between the element surface and the upper wiring.
最後に低温の熱処理によってシリコンとアルミニウム間
の合金反応を促して配線の結線部分のオーミック接触を
形成すると第1図の構造が得られる。Finally, the structure shown in FIG. 1 is obtained by promoting an alloy reaction between silicon and aluminum by low-temperature heat treatment to form ohmic contact between the interconnection parts.
通常第1図のすき間8は空気で充たされており、比誘電
率が約1と小さいため配線容量が従来の四分の工程度に
低減することができる。また、素子をパッケージに固定
し、ボンディングした後、乾燥窒素中あるいは真空中で
封止すれば、素子の安定性や信頼性を著しく向上させる
ことができる。Normally, the gap 8 in FIG. 1 is filled with air, and since the dielectric constant is as small as about 1, the wiring capacitance can be reduced to a quarter of the conventional level. Moreover, if the element is fixed in a package, bonded, and then sealed in dry nitrogen or vacuum, the stability and reliability of the element can be significantly improved.
実施例では金属支柱と上部配線にアルミニウムを用いた
が、それぞれ異なる金属材料を用いても良く、その中で
タングステン、モリブデン、チタン、タンタル、金など
の材料や合金材料が有望であるが、低抵抗の半導体を使
用することも可能である。In the example, aluminum was used for the metal support and the upper wiring, but different metal materials may be used for each. Among these, materials such as tungsten, molybdenum, titanium, tantalum, and gold, and alloy materials are promising, but It is also possible to use resistive semiconductors.
さらに実施例では一層の上部配線について説明したが、
第3図(b)の構造を得た後、第2の金属支柱を形成し
、第2の板層間膜の塗布、第二層の上部配線の形成とい
う工程を同様の方法によって繰返すことによって二層配
線あるいは多層配線の多くを絶縁物で接触させることな
しに形成することができる。Furthermore, in the embodiment, one layer of upper wiring was explained, but
After obtaining the structure shown in FIG. 3(b), a second metal support is formed, and the steps of applying the second interlayer film and forming the upper wiring of the second layer are repeated in the same manner. Many of the layer wiring or multilayer wiring can be formed without contacting with an insulator.
また、本発明の実施例では金属支柱を素子の配線部分に
のみ形成したが、゛上部配線のたわみの補強のために絶
縁膜上に形成しても構わない。Further, in the embodiment of the present invention, the metal support is formed only on the wiring portion of the element, but it may be formed on the insulating film in order to reinforce the bending of the upper wiring.
(発明の効果)
本発明を用いることにより、配線間が気体あるいは真空
で分離されているため、配線容量が従来に比較して数分
の1に低減し、半導体装置の高速動作に著しい効果を発
揮することができる。また、配線幅が微細化した場合に
は、ストレスマイグレーションによる配線の断線という
信頼性劣化の問題も回避することができ、配線を微細化
した高密度半導体装置を製造する上で有利になる。(Effects of the Invention) By using the present invention, since the interconnects are separated by gas or vacuum, the interconnect capacitance is reduced to a fraction of that of the conventional method, and this has a significant effect on high-speed operation of semiconductor devices. able to demonstrate. Further, when the wiring width is made finer, it is possible to avoid the problem of deterioration in reliability such as wire breakage due to stress migration, which is advantageous in manufacturing a high-density semiconductor device with finer wiring.
第1図は本発明の実施例における半導体装置の構造を示
す模式的断面図である。第2図は従来例を示す模式図で
、第3図(a)、 (b)は本発明の製造工程を説明す
る模式図である。
図中の番号は以下のものを示す。
1.11・・・p型シリコン基板 2,12・・・素子
間分離絶縁膜3.13・・・ゲート絶縁膜 4,1
4・・・ゲート電極5.15・・・n型高濃度不純物拡
散領域6.16・・・金属支柱、 7.18・
・・上部配線8・・・気体からなるすき間 170.・
板層間膜31・・・ガリウム砒素基板 32・・・低
濃度n型層33−9.高濃度n型層 34・・・
Au−Ge−Ni合金35・・・Ti−Pb−Au合金
36・・・シリコン窒化膜37・Ti−Au配
線
第1図
1P型シリコン基板 2素子分離絶縁層3ゲート絶縁
膜 4ゲート電極(第1配線)5nn型高度不純
物拡散層
6金属支柱 7上部配線(第2配線)8気体か
らなるすき間
第2図
31ガリウムヒ素基板 32n〜層
33n+層 34 Au−Ge−Ni合金3
5 Ti −Pd−Au合金36SiN膜37Ti−A
u配線
第3図
11P型シリコン基板 12素子分離絶縁層13ゲ
ート絶縁膜 14ゲ一ト電極15n型高濃度不
純物拡散層
16金属支柱 17仮層間膜18上部配線FIG. 1 is a schematic cross-sectional view showing the structure of a semiconductor device in an embodiment of the present invention. FIG. 2 is a schematic diagram showing a conventional example, and FIGS. 3(a) and 3(b) are schematic diagrams illustrating the manufacturing process of the present invention. The numbers in the figure indicate the following. 1.11...p-type silicon substrate 2,12...element isolation insulating film 3.13...gate insulating film 4,1
4... Gate electrode 5.15... N-type high concentration impurity diffusion region 6.16... Metal pillar, 7.18.
... Upper wiring 8 ... Gap made of gas 170.・
Interlayer film 31...Gallium arsenide substrate 32...Low concentration n-type layer 33-9. High concentration n-type layer 34...
Au-Ge-Ni alloy 35...Ti-Pb-Au alloy 36...Silicon nitride film 37/Ti-Au wiring Figure 1 1P type silicon substrate 2 Element isolation insulating layer 3 Gate insulating film 4 Gate electrode (No. 1 wiring) 5nn type high impurity diffusion layer 6 metal pillar 7 upper wiring (second wiring) 8 gap made of gas Figure 2 31 Gallium arsenide substrate 32n to layer 33 n+ layer 34 Au-Ge-Ni alloy 3
5 Ti-Pd-Au alloy 36SiN film 37Ti-A
U wiring Figure 3 11 P-type silicon substrate 12 Element isolation insulating layer 13 Gate insulating film 14 Gate electrode 15 N-type high concentration impurity diffusion layer 16 Metal pillar 17 Temporary interlayer film 18 Upper wiring
Claims (2)
する配線とによって構成される半導体装置において、配
線の少くとも一部が他の固形性物質に接触することなく
前記半導体素子内導電性領域上に設けた導電性支柱間と
結線されていることを特徴とする半導体装置。(1) In a semiconductor device constituted by a semiconductor element on a substrate and wiring connecting each of the semiconductor elements, conductivity within the semiconductor element can be achieved without at least a part of the wiring coming into contact with other solid substances. A semiconductor device characterized in that a wire is connected between conductive pillars provided on a region.
子内で上部配線と接続すべき領域上に金属支柱を形成す
る工程と、高分子有機膜を充填した後、前記金属支柱を
露呈させる工程と、上部配線をパターン形成する工程と
、前記充填した高分子有機膜を除去する工程とを含むこ
とを特徴とする半導体装置の製造方法。(2) After forming a semiconductor element on a substrate, forming a metal support on a region to be connected to an upper wiring in the semiconductor element, and exposing the metal support after filling with a polymeric organic film. 1. A method of manufacturing a semiconductor device, comprising: a step of patterning an upper wiring; and a step of removing the filled organic polymer film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6649788A JPH01238146A (en) | 1988-03-18 | 1988-03-18 | Semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6649788A JPH01238146A (en) | 1988-03-18 | 1988-03-18 | Semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01238146A true JPH01238146A (en) | 1989-09-22 |
Family
ID=13317510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6649788A Pending JPH01238146A (en) | 1988-03-18 | 1988-03-18 | Semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01238146A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5861653A (en) * | 1995-05-11 | 1999-01-19 | Nec Corporation | Semiconductor device having gaseous isolating layer formed in inter-level insulating layer and process of fabrication thereof |
US6900110B1 (en) * | 2000-09-01 | 2005-05-31 | National Semiconductor Corporation | Chip scale package with compliant leads |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161675A (en) * | 1984-02-02 | 1985-08-23 | Mitsubishi Electric Corp | Manufacture of field-effect transistor |
JPS62122277A (en) * | 1985-11-22 | 1987-06-03 | Hitachi Ltd | Space wiring method of semiconductor element |
-
1988
- 1988-03-18 JP JP6649788A patent/JPH01238146A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161675A (en) * | 1984-02-02 | 1985-08-23 | Mitsubishi Electric Corp | Manufacture of field-effect transistor |
JPS62122277A (en) * | 1985-11-22 | 1987-06-03 | Hitachi Ltd | Space wiring method of semiconductor element |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5861653A (en) * | 1995-05-11 | 1999-01-19 | Nec Corporation | Semiconductor device having gaseous isolating layer formed in inter-level insulating layer and process of fabrication thereof |
US6900110B1 (en) * | 2000-09-01 | 2005-05-31 | National Semiconductor Corporation | Chip scale package with compliant leads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5126286A (en) | Method of manufacturing edge connected semiconductor die | |
US5146308A (en) | Semiconductor package utilizing edge connected semiconductor dice | |
US6472304B2 (en) | Wire bonding to copper | |
US7902067B2 (en) | Post passivation interconnection schemes on top of the IC chips | |
US6239491B1 (en) | Integrated circuit structure with thin dielectric between at least local interconnect level and first metal interconnect level, and process for making same | |
US20020090791A1 (en) | Method for reduced capacitance interconnect system using gaseous implants into the ild | |
JPH07183302A (en) | Formation of metal layer and bonding method therefor | |
DE102019127076B4 (en) | FILM STRUCTURE FOR BOND PAD AND METHOD OF PRODUCTION | |
JP3759909B2 (en) | Semiconductor device and manufacturing method thereof | |
DE102020116884B4 (en) | Oversized via as substrate via stop layer (TSV stop layer) | |
EP0305296A1 (en) | Semiconductor layer structure having an aluminum-silicon alloy layer | |
JPH06105708B2 (en) | Semiconductor device | |
US20050006688A1 (en) | Arrangement comprising a capacitor | |
US6998338B2 (en) | Method of producing an integrated circuit configuration | |
JPH01238146A (en) | Semiconductor device and manufacture thereof | |
KR0163943B1 (en) | Fabricating method of semiconductor device | |
JPS60153149A (en) | Formation of multilayer interconnection | |
JPH01264243A (en) | Semiconductor device and its manufacture | |
JPH02170423A (en) | Semiconductor device and its manufacture | |
JPH03102819A (en) | Manufacture of semiconductor device | |
JPS58115860A (en) | Semiconductor device | |
TW396525B (en) | Method for forming contact windows | |
KR910006092B1 (en) | Manufacturing method of semiconductor device using lift-off process | |
JP2618479B2 (en) | Method for manufacturing semiconductor device | |
JPS60177622A (en) | Semiconductor device |