JPH02170020A - Infrared ray detecting device - Google Patents

Infrared ray detecting device

Info

Publication number
JPH02170020A
JPH02170020A JP63323723A JP32372388A JPH02170020A JP H02170020 A JPH02170020 A JP H02170020A JP 63323723 A JP63323723 A JP 63323723A JP 32372388 A JP32372388 A JP 32372388A JP H02170020 A JPH02170020 A JP H02170020A
Authority
JP
Japan
Prior art keywords
infrared ray
concave mirror
ray detecting
infrared
infrared detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323723A
Other languages
Japanese (ja)
Inventor
Mamoru Araoka
衛 荒岡
Akira Hashimoto
彰 橋本
Tomotsuchi Kawamura
河村 友槌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63323723A priority Critical patent/JPH02170020A/en
Publication of JPH02170020A publication Critical patent/JPH02170020A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0804Shutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0815Light concentrators, collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a compact and reliable high-sensitivity infrared ray detecting device by arranging an infrared ray detecting element on an aperture in the center part of the 1st concave mirror facing to a high temperature atmosphere and providing the 2nd concave mirror facing to the 1st concave mirror. CONSTITUTION:The faint infrared rays 13 radiated from the high temperature atmosphere pass through a cover glass 15 for protection and are condensed on the infrared ray detecting element 17 through a pair of facing concave mirrors 12 and 18 in directions shown by arrow 13', 13'' and 13'''. The signal of the infrared ray detecting element 17 is calibrated by a chopper 22 and amplified by a preamplifier 21 to be outputted. In addition to the infrared ray detecting element 17, the preamplifier 21 and the chopper 22, a thermocople type thermometer 23 is provided on the thermoelectronic cooling element 19 in a sensor room 20 and the temperature in the sensor room 20 is monitored by means of the thermometer 23 so as to keep the room at a fixed temperature. An air cooling part 24 provided in the lower part of the sensor room 20 is cooled with the air in the case that discharging from the element 19 is necessary.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ボイラ伝熱管の温度監視、ボイラケーシング
の温度監視、各種熱交換器例えば空気予熱器、脱硫装置
のガス・ガスヒータのメタル温度監視、又は脱硝装置触
媒の温度監視などに用いられる赤外線検出装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to temperature monitoring of boiler heat exchanger tubes, temperature monitoring of boiler casings, metal temperature monitoring of various heat exchangers such as air preheaters, gas/gas heaters of desulfurization equipment, or This invention relates to an infrared detection device used for monitoring the temperature of a denitrification equipment catalyst.

検出して温度監視を行い、これにより火災などを検知す
る従来の赤外線検出装置として、例えば第2図に示すよ
うなものがある。
For example, there is an infrared detection device shown in FIG. 2 as a conventional infrared detection device that detects and monitors temperature and thereby detects a fire or the like.

第2図において、赤外線検出装置1は赤外線を集光する
ためのフレネルレンズ2を包含し、このフレネルレンズ
2にて集光された赤外線が本体3内に置かれている赤外
線検出素子4に入射されるようになっている。
In FIG. 2, an infrared detection device 1 includes a Fresnel lens 2 for condensing infrared rays, and the infrared rays condensed by this Fresnel lens 2 enter an infrared detection element 4 placed inside a main body 3. It is now possible to do so.

また、この赤外線検出素子4を冷却するための冷却水層
5が赤外線検出素子4を支持する支持材6と本体3との
間に形成され、冷却水は入ロアから入って出口8から出
ていく。
Further, a cooling water layer 5 for cooling the infrared detecting element 4 is formed between the support material 6 that supports the infrared detecting element 4 and the main body 3, and the cooling water enters from the inlet lower and exits from the outlet 8. go.

なお、図示は省略しであるが、支持材6にはプリアンプ
なども取付けられている。また、本体3にはフレネルレ
ンズ2をクリーニングするためのエアホースが備えられ
ている。
Although not shown, a preamplifier and the like are also attached to the support member 6. Further, the main body 3 is equipped with an air hose for cleaning the Fresnel lens 2.

発明が解決しようとする課題 ところで、温度監視に使用される赤外線検出装置は、高
感度でかつ高い信頼性が要求され、また既設備に追設さ
れることが多いので、コンパクトでかつ軽量であること
が求められている。
Problems to be Solved by the Invention Incidentally, infrared detection devices used for temperature monitoring are required to have high sensitivity and high reliability, and because they are often added to existing equipment, they must be compact and lightweight. That is what is required.

したがって、従来の赤外線検出装置1は、コンパクト化
のため、レンズ焦点距離を短くできて、かつ軽量のフレ
ネルレンズ2を用いているが、フレネルレンズは集光性
が悪く、感度が低くなるため、大口径になり、結果的に
コンパクトにできなかった。
Therefore, in order to make the conventional infrared detection device 1 compact, the lens focal length can be shortened and a lightweight Fresnel lens 2 is used. Due to the large diameter, it was not possible to make it compact.

また、赤外線検出素子4の部分の冷却を令部会水で行っ
ているため、冷却水系統の腐食に伴うトラブルが多発し
ている。そして、冷却水が停止すると、赤外線検出素子
の部分が1温以上に上昇するため、赤外線検出素子が破
壊されるので、高い信頼性を要求される監視計器として
は不適当となる。
Furthermore, since the infrared detecting element 4 is cooled using coolant water, troubles due to corrosion of the cooling water system frequently occur. When the cooling water stops, the temperature of the infrared detection element rises to more than 1 degree, which destroys the infrared detection element, making it unsuitable for use as a monitoring instrument that requires high reliability.

課題を解決するための手段 本発明は、このような従来技術の課題を解決するために
、赤外線検出装置において、高温雰囲気に対向する第1
の凹面鏡の中央部分を開口し、この開口部分に電子冷却
素子上に取付けた赤外線検出素子を配置するとともに、
この赤外線検出素子に前記第1の凹面鏡にて反射された
赤外線を集光させる第2の凹面鏡を第1の凹面鏡と対向
して設けたものである。
Means for Solving the Problems In order to solve the problems of the prior art, the present invention provides an infrared detection device with a first sensor facing a high-temperature atmosphere.
The central part of the concave mirror is opened, and an infrared detection element attached to the electronic cooling element is placed in this opening part, and
A second concave mirror that focuses infrared rays reflected by the first concave mirror on the infrared detection element is provided opposite to the first concave mirror.

作用 上記の手段によれば、向かい合った2つの凹面鏡にて、
微弱な赤外線を集光し、赤外線検出素子に当てることが
できるので、広い範囲の温度上昇による赤外線を検知す
ることができる。
Effect: According to the above means, two concave mirrors facing each other,
Since weak infrared rays can be focused and applied to an infrared detection element, infrared rays caused by temperature increases can be detected over a wide range.

実施例 以下図面を参照して本発明の一実施例について詳述する
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図において、赤外線検出装置11は高温雰囲気に対
向して配置された第1の大きな凹面鏡12を包含し、こ
の凹面鏡12はしたがって高温雰囲気から放射される微
弱な赤外線13を受けることができる。この場合、赤外
線13は集光フレーム14の先端に取付けられている保
護用カバーガラス】5を通過してくる。
In FIG. 1, the infrared detection device 11 includes a first large concave mirror 12 placed opposite the hot atmosphere, which concave mirror 12 can therefore receive weak infrared radiation 13 emitted from the hot atmosphere. In this case, the infrared rays 13 pass through a protective cover glass 5 attached to the tip of the condensing frame 14.

また、凹面鏡12の中央部分は開口I6され、この開口
16の部分に赤外線検出素子17が配置されている。そ
して、凹面鏡12にて反射された赤外線13′を受けて
矢印13″で示すように反射させ、赤外線検出素子17
に矢印13″′で示すように集光させる第2の小さな凹
面鏡18が、第1の凹面鏡12と対向する関係で、保護
用カバーガラス15の下に設けられている。
Further, the central portion of the concave mirror 12 has an opening I6, and an infrared detection element 17 is disposed in the opening 16. Then, the infrared ray 13' reflected by the concave mirror 12 is reflected as indicated by an arrow 13'', and the infrared detection element 17
A second small concave mirror 18 for concentrating light as indicated by arrow 13'' is provided under the protective cover glass 15 in opposing relation to the first concave mirror 12.

赤外線検出素子17は、電子冷却素子19の上に取付け
られて、凹面鏡12の中央部下に設けられているセンサ
室20に収納されている。電子冷却素子19の上には、
また、プリアンプ2■、チョッパ22及び熱電対式の温
度計23が取付けられている。そして、センサ室20の
下側には空気冷却部24が設けられている。
The infrared detection element 17 is mounted on the electronic cooling element 19 and housed in a sensor chamber 20 provided below the center of the concave mirror 12. On the electronic cooling element 19,
Further, a preamplifier 2■, a chopper 22, and a thermocouple type thermometer 23 are attached. An air cooling section 24 is provided below the sensor chamber 20.

次に、作用について説明する。Next, the effect will be explained.

高温雰囲気から放射される微弱な赤外線13は、保護用
カバーガラス15を通過後、一対の向かい合った凹面鏡
12及び工8により矢印13’、 13”  で示す如
く集光されて矢印13 ”となり、赤外線検出素子17
により増幅し、出力される。
After passing through the protective cover glass 15, the weak infrared rays 13 emitted from the high-temperature atmosphere are condensed by a pair of opposing concave mirrors 12 and the workpiece 8 as shown by arrows 13' and 13'', becoming an infrared light 13''. Detection element 17
is amplified and output.

センサ室20内の電子冷却素子19の上には、赤外線検
出素子17、プリアンプ21及びチョッパ22に加え、
熱電対式の温度計23が取付けられているので、二つの
違った金属を用い電流を流すことにより、一方が冷却、
他方が発熱する特性(ベニルチエ効果)を利用し、電子
冷却素子19のセンサ室20内の温度は、温度計23に
より監視され、一定温度に保持される。また、センサ室
20の下部に設けられている空気冷却部24が、電子冷
却素子19からの放熱が必要な場合、空気により冷却す
る。
Above the electronic cooling element 19 in the sensor chamber 20, in addition to the infrared detection element 17, the preamplifier 21, and the chopper 22,
Since a thermocouple type thermometer 23 is attached, one can be cooled or cooled by passing current through two different metals.
Utilizing the property that the other heats up (Beniltier effect), the temperature in the sensor chamber 20 of the electronic cooling element 19 is monitored by the thermometer 23 and maintained at a constant temperature. In addition, when heat radiation from the electronic cooling element 19 is required, the air cooling section 24 provided at the lower part of the sensor chamber 20 cools the sensor chamber 20 with air.

発明の効果 以上述べたように、本発明によれば、赤外線集光方式に
一対の向かい合った凹面鏡を用いているので、高感度の
ままで、赤外線検出装置のコンパクト化及び軽量化を図
ることができる。
Effects of the Invention As described above, according to the present invention, since a pair of concave mirrors facing each other is used in the infrared condensing method, it is possible to make the infrared detection device compact and lightweight while maintaining high sensitivity. can.

また、赤外線検知素子の冷却に電子冷却を用いているの
で、信頼性を大幅に向上することができる。すなわち、
従来例におけろ水冷却による腐食のトラブルを無くすと
共に、電子冷却では極性逆接続により加熱も可能であり
、大気温度以下の場合でも、凍結の心配が無い。
Furthermore, since electronic cooling is used to cool the infrared sensing element, reliability can be greatly improved. That is,
In addition to eliminating the problems of corrosion caused by conventional filter water cooling, electronic cooling also allows heating by reverse polarity connection, so there is no fear of freezing even when the temperature is below atmospheric temperature.

したがって、本発明によれば、高感度でかつコンパクト
軽量で信頼性の高い赤外線検出装置を提供することがで
きる。
Therefore, according to the present invention, it is possible to provide an infrared detection device that is highly sensitive, compact, lightweight, and highly reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による赤外線検出装置の一例を示す構成
図、第2図は従来の赤外線検出装置を示す構成図である
。 11・・赤外線検出装置、12・・第1の凹面鏡、13
.13’、 13” 、 13”・・赤外線、14・・
集光フレーム、15・・保護用カバーガラス、16・・
開口、17・・赤外線検出素子、18・・第2の凹面鏡
、19・・電子冷却素子、20・・センサ室、21・・
プリアンプ、22・・ヂョッパ、23・・温度計、24
・・(ほか1名)
FIG. 1 is a configuration diagram showing an example of an infrared detection device according to the present invention, and FIG. 2 is a configuration diagram showing a conventional infrared detection device. 11... Infrared detection device, 12... First concave mirror, 13
.. 13', 13", 13"...Infrared, 14...
Concentrating frame, 15... Protective cover glass, 16...
Opening, 17...Infrared detection element, 18...Second concave mirror, 19...Electronic cooling element, 20...Sensor chamber, 21...
Preamplifier, 22...Jopper, 23...Thermometer, 24
...(1 other person)

Claims (1)

【特許請求の範囲】[Claims] 高温雰囲気に対向する第1の凹面鏡の中央部分を開口し
、この開口部分に電子冷却素子上に取付けた赤外線検出
素子を配置するとともに、この赤外線検出素子に前記第
1の凹面鏡にて反射された赤外線を集光させる第2の凹
面鏡を第1の凹面鏡と対向して設けたことを特徴とする
赤外線検出装置。
The central part of the first concave mirror facing the high temperature atmosphere is opened, and an infrared detection element mounted on the electronic cooling element is disposed in this opening part, and the infrared radiation detected by the first concave mirror is reflected by the infrared detection element. An infrared detection device characterized in that a second concave mirror for condensing infrared rays is provided opposite to the first concave mirror.
JP63323723A 1988-12-23 1988-12-23 Infrared ray detecting device Pending JPH02170020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323723A JPH02170020A (en) 1988-12-23 1988-12-23 Infrared ray detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323723A JPH02170020A (en) 1988-12-23 1988-12-23 Infrared ray detecting device

Publications (1)

Publication Number Publication Date
JPH02170020A true JPH02170020A (en) 1990-06-29

Family

ID=18157887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323723A Pending JPH02170020A (en) 1988-12-23 1988-12-23 Infrared ray detecting device

Country Status (1)

Country Link
JP (1) JPH02170020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201474A (en) * 1990-12-07 1994-07-19 Ag Processing Technol Inc Bi-channel radiation detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201474A (en) * 1990-12-07 1994-07-19 Ag Processing Technol Inc Bi-channel radiation detector

Similar Documents

Publication Publication Date Title
US7422365B2 (en) Thermal imaging system and method
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
JPH05223494A (en) Temperature controller
US3861458A (en) Multi-head infra-red ray detector
US4884896A (en) Production line emissivity measurement system
JPH02170020A (en) Infrared ray detecting device
JP2000516736A (en) Thermal radiation detection device and presence detection device using this device
US5861625A (en) Imaging bolometer
US4791299A (en) Infrared ray sensing device
JPS6177728A (en) Thermocouple type infrared detecting element
JPH0829262A (en) Radiation detector
JP3214203B2 (en) Infrared detector
DE59010065D1 (en) Fire detector
US3040176A (en) Hot box detector
JPH0367137A (en) Surface temperatude controller
JPH0310128A (en) Method for simultaneously measuring temperature and emissivity in high temperature furnace
JPS6046431A (en) Power meter for laser
JPS5928729B2 (en) Automotive catalyst temperature warning device
JP2592273B2 (en) Particle detection device contained in fluid
JPS629229A (en) Laser power meter
JPS5892838A (en) Measuring device for light loss
JPH10290790A (en) Radiation thermometer
US10876901B1 (en) Burn saver device
JP2595475Y2 (en) Infrared gas analyzer
SE542640C2 (en) Gas sensor with thermopile