JP2592273B2 - Particle detection device contained in fluid - Google Patents

Particle detection device contained in fluid

Info

Publication number
JP2592273B2
JP2592273B2 JP62320098A JP32009887A JP2592273B2 JP 2592273 B2 JP2592273 B2 JP 2592273B2 JP 62320098 A JP62320098 A JP 62320098A JP 32009887 A JP32009887 A JP 32009887A JP 2592273 B2 JP2592273 B2 JP 2592273B2
Authority
JP
Japan
Prior art keywords
fluid
scattered
scattered light
light
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62320098A
Other languages
Japanese (ja)
Other versions
JPH01162130A (en
Inventor
孝之 定方
広行 馬場
信夫 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62320098A priority Critical patent/JP2592273B2/en
Publication of JPH01162130A publication Critical patent/JPH01162130A/en
Application granted granted Critical
Publication of JP2592273B2 publication Critical patent/JP2592273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 純水、酸溶液、アルカリ溶液等の高純度の流体中に含
まれるパーティクル数を検出する装置の改良に関し、 被測定流体の温度がどのように変化しても、正しいパ
ーティクル数を測定できるよう改良した、流体中に含ま
れるパーティクル検出装置を提供することを目的とし、 レーザ発生装置と、該レーザ発生装置の発生するレー
ザ光が透過して入射するレーザ光入射窓と射出するレー
ザ光射出窓とを有し、被測定流体を供給されるセンサー
セルと、該センサーセルのレーザ光射出窓を透過して射
出されたレーザ光を、被測定流体中に含まれるパーティ
クルにより散乱された散乱レーザ光と散乱されなかった
非散乱光とに分離する手段と、前記散乱光を集束し検出
する散乱光検出手段と、前記非散乱レーザ光を検出する
非散乱光検出手段と、前記散乱光検出手段の検出値と前
記非散乱光検出手段の検出値とを入力され、被測定流体
中のパーティクル数を算出するパーティクル数算出手段
とを具備してなる、流体中に含まれるパーティクル検出
装置において、前記センサーセルには温度検出手段が設
けられ、前記パーティクル検出装置には、該温度検出手
段の検出する前記センサーセルの温度に追従して、前記
被測定流体の温度を制御する流体温度制御手段を設ける
よう構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to an improvement of an apparatus for detecting the number of particles contained in a high-purity fluid such as pure water, an acid solution, and an alkaline solution. Another object of the present invention is to provide a particle detection device included in a fluid, which is improved so that the correct number of particles can be measured. A sensor cell having an incident window and a laser light exit window for emitting light, and a sensor fluid supplied with the fluid to be measured, and a laser beam emitted through the laser light exit window of the sensor cell and contained in the fluid to be measured. Means for separating scattered laser light scattered by the particles to be scattered and non-scattered light which is not scattered, scattered light detecting means for focusing and detecting the scattered light, and detecting the scattered laser light. Non-scattered light detection means for outputting, and a detection value of the scattered light detection means and a detection value of the non-scattered light detection means, and a particle number calculation means for calculating the number of particles in the fluid to be measured. In the particle detecting device contained in the fluid, the sensor cell is provided with a temperature detecting means, and the particle detecting device follows the temperature of the sensor cell detected by the temperature detecting means, A fluid temperature control means for controlling the temperature of the fluid to be measured is provided.

〔産業上の利用分野〕[Industrial applications]

純水、酸溶液、アルカリ溶液等の高純度の流体中に含
まれるパーティクル数を検出する装置の改良に関する。
The present invention relates to an improvement in an apparatus for detecting the number of particles contained in a high-purity fluid such as pure water, an acid solution, and an alkaline solution.

〔従来の技術〕[Conventional technology]

従来技術に係る流体中に含まれるパーティクル検出装
置の構成を第4図に示す。図において、被測定流体は、
配管5を介してセンサーセル1に供給され、レーザ発生
装置2において発生されたレーザは、サファイア、ガラ
ス等の耐蝕性があり、しかも、レーザ透過性の良い材料
からなる窓6aを透過してセンサーセル1に入射し、同様
に、サファイア、ガラス等の耐蝕性があり、しかも、レ
ーザ透過性の良い材料からなる窓6bを透過して外部に射
出される。
FIG. 4 shows a configuration of a device for detecting particles contained in a fluid according to a conventional technique. In the figure, the fluid to be measured is
The laser supplied to the sensor cell 1 through the pipe 5 and generated by the laser generator 2 passes through a window 6a made of a corrosion-resistant material such as sapphire, glass, etc. and having a good laser permeability, and transmits the laser to the sensor. The light enters the cell 1 and is similarly emitted to the outside through a window 6b made of a material having corrosion resistance such as sapphire and glass and having good laser transmittance.

ここで、被測定流体中のパーティクルによって散乱さ
れた散乱レーザ光は、窓6bを透過して外部に射出した
後、中央に開口を有する平面鏡7によって屈折され、集
光レンズ8によって集光され、散乱光検出手段3によっ
て検出される。
Here, the scattered laser light scattered by the particles in the fluid to be measured passes through the window 6b and is emitted to the outside, then refracted by the plane mirror 7 having an opening at the center, and collected by the condenser lens 8, It is detected by the scattered light detection means 3.

一方、被測定流体中のパーティクルによって散乱さな
かった非散乱レーザ光は、レーザ光射出窓6bを透過して
外部に射出された後、平面鏡7の中央の開口7aを通り、
非散乱光検出手段4によって検出される。
On the other hand, the non-scattered laser light that has not been scattered by the particles in the fluid to be measured passes through the laser light emission window 6b and is emitted outside, and then passes through the central opening 7a of the plane mirror 7, and
It is detected by the non-scattered light detecting means 4.

前記散乱光検出手段3および非散乱光検出手段4の検
出値をパーティクル数算出手段9において比較すること
によって被測定流体中のパーティクル数を測定する。
The number of particles in the fluid to be measured is measured by comparing the detection values of the scattered light detecting means 3 and the non-scattered light detecting means 4 in the particle number calculating means 9.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

たゞ、上記せる従来技術に係る流体中に含まれるパー
ティクル検出装置を使用すると、全く同一の被測定流体
であっても、その温度が相違すると、その中に含まれて
いるものとして検出されるパーティクル数が相違すると
いう欠点が発見された。
However, if the particle detection device included in a fluid according to the above-described conventional technique is used, even if the fluid to be measured is exactly the same, if the temperature is different, it is detected as being contained in the fluid. The disadvantage of a different number of particles has been discovered.

そこで、この現象を確認するため、全く同一の被測定
流体の温度を約20℃(Aをもって第2図・第3図に図示
する)から一旦100℃(Bをもって第2図・第3図に図
示する)まで昇温し、再び約20℃(Cをもって第2図・
第3図に図示する)まで降温して、上記の流体中に含ま
れるパーティクル検出装置を使用して、その中に含まれ
るものとして検出されるパーティクル数を測定し、その
結果を、第2図と第3図とに示す。
Therefore, in order to confirm this phenomenon, the temperature of the exactly same fluid to be measured was changed from about 20 ° C. (A is shown in FIGS. 2 and 3) to 100 ° C. (B is shown in FIGS. 2 and 3). (Shown in the figure) and again at about 20 ° C (Fig.
The temperature is lowered to that shown in FIG. 3), the number of particles detected as being contained in the fluid is measured using the particle detection device contained in the fluid, and the result is shown in FIG. FIG. 3 and FIG.

第2図は、被測定流体の昇温・降温の経過を示す、時
間・温度曲線であり、第3図は昇温過程及び降温過程に
おいて、上記せる全く同一の被測定流体から検出された
パーティクル数を示す。
FIG. 2 is a time-temperature curve showing the rise and fall of the temperature of the fluid to be measured. FIG. 3 is a graph showing particles detected from the same fluid to be measured in the temperature rise and fall processes. Indicates a number.

上記の実験結果から、被測定流体の温度が変化すれ
ば、パーティクル数の測定値が変化するだけでなく、同
じ温度であっても、その温度に到達するまでの温度の履
歴が異なれば、異なった測定値を示すことが確認され
た。
From the above experimental results, if the temperature of the fluid to be measured changes, not only does the measured value of the number of particles change, but even if the temperature is the same, if the history of the temperature until reaching that temperature is different, it differs. It was confirmed to show the measured values.

このことは、従来技術に係る流体中に含まれるパーテ
ィクル検出装置をもって測定した被測定流体中のパーテ
ィクル数の測定値が、測定後に施される温度補正のみを
もってしては、正しい値に換算されないことを示してい
る。
This means that the measured value of the number of particles in the fluid to be measured, measured with the particle detection device included in the fluid according to the prior art, cannot be converted to a correct value only with the temperature correction performed after the measurement. Is shown.

本発明の目的は、この欠点を解消することにあり、被
測定流体の温度がどのように変化しても、正しいパーテ
ィクル数を測定できるよう改良した、流体中に含まれる
パーティクル検出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks, and to provide a particle detecting device contained in a fluid, which is improved so that the correct number of particles can be measured regardless of the temperature of the fluid to be measured. It is in.

〔問題点を解決するための手段〕[Means for solving the problem]

上記の目的は、レーザ発生装置(2)と、該レーザ発
生装置(2)の発生するレーザ光が透過して入射するレ
ーザ光入射窓(6a)と射出するレーザ光射出窓(6b)と
を有し、被測定流体を供給されるセンサーセル(1)
と、該センサーセル(1)のレーザ光射出窓(6b)を透
過して射出されたレーザ光を、被測定流体中に含まれる
パーティクルにより散乱された散乱レーザ光と、散乱さ
れなかった非散乱光とに分離する手段(7)と、前記散
乱レーザ光を検出する散乱光検出手段(3)と、前記非
散乱レーザ光を検出する非散乱光検出手段(4)と、前
記散乱光検出手段(3)の検出値と前記非散乱光検出手
段(4)の検出値とを入力され、被測定流体中のパーテ
ィクル数を算出するパーティクル数算出手段(9)とを
具備している、流体中に含まれるパーティクル検出装置
において、前記センサーセル(1)には温度検出手段
(10a)が設けられ、前記パーティクル検出装置には、
該温度検出手段(10a)の検出する前記センサーセル
(1)の温度に追従して、前記被測定流体の温度を制御
する流体温度制御手段(10)が設けられることによって
達成される。
The above object is to provide a laser generator (2), a laser beam entrance window (6a) through which the laser beam generated by the laser generator (2) passes and a laser beam exit window (6b) through which the laser beam exits. Sensor cell having a fluid to be measured (1)
And the laser light emitted through the laser light emission window (6b) of the sensor cell (1) is scattered by the particles contained in the fluid to be measured, and the non-scattered laser light is not scattered. Means for separating light into light, scattered light detecting means for detecting the scattered laser light, non-scattered light detecting means for detecting the non-scattered laser light, and scattered light detecting means The detection value of (3) and the detection value of the non-scattered light detection means (4) are inputted, and a particle number calculation means (9) for calculating the number of particles in the fluid to be measured is provided. In the particle detection device included in the above, the sensor cell (1) is provided with a temperature detection means (10a), and the particle detection device includes:
This is achieved by providing a fluid temperature control means (10) for controlling the temperature of the fluid to be measured following the temperature of the sensor cell (1) detected by the temperature detection means (10a).

なお、センサーセル(1)のレーザ光射出窓(6b)を
透過して外部に射出されたレーザ光を、被測定流体中に
含まれるパーティクルにより散乱された散乱光と、散乱
されなかった非散乱光とに分離する手段(7)は、中央
(非散乱光の光軸に対応する領域)に開口(7a)を有
し、非散乱光の光軸に傾斜して配設される平面鏡(7)
または凸面鏡(7)等をもって実現することができる。
The laser light transmitted through the laser light emission window (6b) of the sensor cell (1) and emitted to the outside is scattered by the particles contained in the fluid to be measured and the non-scattered light that is not scattered. The means (7) for separating light into light has an opening (7a) at the center (a region corresponding to the optical axis of non-scattered light), and is provided with a plane mirror (7 )
Alternatively, it can be realized by a convex mirror (7) or the like.

〔作用〕[Action]

本発明に係る、流体中に含まれるパーティクル検出装
置においては、センサーセル1に温度検出手段10aを設
け、一方、被測定流体の供給配管5に流体温度制御装置
10を設け、この流体温度制御装置10を、温度検出手段10
aの検出する温度に追従して制御し、センサーセル1に
流入する被測定流体の温度をセンサーセル1の温度と同
一にするように制御するので、流体中に含まれるパーテ
ィクル検出装置に供給される被測定流体の温度は、常
に、流体中に含まれるパーティクル検出装置のセンサー
セルの温度(実質的には室温)と同一になり、正しいパ
ーティクル数を測定することができる。
In the device for detecting particles contained in a fluid according to the present invention, the temperature detecting means 10a is provided in the sensor cell 1, and the fluid temperature control device is provided in the supply pipe 5 for the fluid to be measured.
The fluid temperature control device 10 is provided with a temperature detecting means 10.
Since the control is performed in accordance with the temperature detected by a and the temperature of the fluid to be measured flowing into the sensor cell 1 is controlled to be the same as the temperature of the sensor cell 1, the temperature of the fluid to be measured is supplied to the particle detection device included in the fluid. The temperature of the fluid to be measured is always the same as the temperature (substantially room temperature) of the sensor cell of the particle detection device included in the fluid, and the correct number of particles can be measured.

〔実施例〕〔Example〕

以下、図面を参照しつゝ、本発明の一実施例に係る流
体中に含まれるパーティクル検出装置について説明す
る。
Hereinafter, a particle detection device included in a fluid according to an embodiment of the present invention will be described with reference to the drawings.

第1図参照 1はセンサーセルであり、被測定流体が供給される配
管5が接続され、レーザ発生装置2において発生された
レーザ光を透過するサファイア、ガラス等の耐蝕性があ
り、しかも、レーザ透光性の良い材料からなるレーザ光
入射窓6aと、同様に、レーザ光を透過するサファイア、
ガラス等の耐蝕性があり、しかも、レーザ透光性の良い
材料からなるレーザ光射出窓6bとを有する。
Reference numeral 1 denotes a sensor cell, which is connected to a pipe 5 to which a fluid to be measured is supplied, has a corrosion resistance of sapphire, glass, or the like that transmits laser light generated in a laser generator 2, and has a laser. A laser light entrance window 6a made of a material having good light transmission properties, and similarly, sapphire that transmits laser light,
It has a laser light emission window 6b made of a material having corrosion resistance such as glass and having good laser translucency.

7は被測定流体中に含まれるパーティクルによって散
乱されて光軸が入射光の光軸からずれたレーザ光(散乱
レーザ光)と、被測定流体中に含まれるパーティクルに
よって散乱されず光軸が入射光の光軸からずれなかった
レーザ光(非散乱光)とを分離する機能を有する手段で
あり、本例においては、非散乱光の光軸に対応する領域
に開口7aを有し、非散乱光の光軸に傾斜して配置された
平面鏡7をもって構成されている。散乱レーザ光は平面
鏡7によって反射して光路を変更するが、非散乱レーザ
光は開口7aを通過して光路を変更することなく直進す
る。
Reference numeral 7 denotes laser light (scattered laser light) whose optical axis is deviated from the optical axis of the incident light by being scattered by particles contained in the fluid to be measured, and the optical axis is incident without being scattered by the particles contained in the fluid to be measured. This means has a function of separating laser light (non-scattered light) that has not deviated from the optical axis of light. In this example, the means has an opening 7a in a region corresponding to the optical axis of non-scattered light, It comprises a plane mirror 7 which is arranged obliquely to the optical axis of light. The scattered laser light is reflected by the plane mirror 7 to change the optical path, while the non-scattered laser light passes through the opening 7a and travels straight without changing the optical path.

3は散乱レーザ光検出手段であり、センサーセル1内
においてパーティクルによって散乱し、平面鏡7の表面
で反射して光路を変更した散乱レーザ光を集光レンズ8
を介して集光して、その強度を検出する。
Reference numeral 3 denotes a scattered laser light detecting unit, which scatters the particles in the sensor cell 1 and reflects the scattered laser light reflected on the surface of the plane mirror 7 to change the optical path, and collects the scattered laser light by a condenser lens 8.
And the intensity is detected.

4は非散乱レーザ光検出手段であり、センサーセル1
内においてパーティクルによって散乱しなかった非散乱
レーザ光を平面鏡7の中央部にある開口7aを通して受光
しその強度を検出する。
Reference numeral 4 denotes a non-scattered laser beam detecting means, and the sensor cell 1
Non-scattered laser light that is not scattered by the particles inside is received through an opening 7a at the center of the plane mirror 7 and its intensity is detected.

9はパーティクル数算出手段であり、散乱レーザ光検
出手段3による検出値と非散乱レーザ光検出手段4によ
る検出値とを比較し、被測定流体中に含まれるパーティ
クル数を算出する。
Reference numeral 9 denotes a number-of-particles calculating means, which compares the value detected by the scattered laser light detecting means 3 with the value detected by the non-scattered laser light detecting means 4 to calculate the number of particles contained in the fluid to be measured.

10aが本発明の要旨に係る温度検出手段であり、セン
サーセル1の温度を検出する。この温度検出手段10aの
検出値は四季を通じて多少変化するが、おゝむね室温で
あり、常時恒温に近い。
10a is a temperature detecting means according to the gist of the present invention, which detects the temperature of the sensor cell 1. The detection value of the temperature detecting means 10a slightly changes throughout the four seasons, but is generally room temperature, and is almost always constant.

10bは被測定流体の温度を検出する被測定流体温度検
出器であり、本発明の要旨に係る温度検出手段10aの検
出値とともに調節器10cに入力される。
Reference numeral 10b denotes a measured fluid temperature detector for detecting the temperature of the measured fluid, which is input to the controller 10c together with the detected value of the temperature detecting means 10a according to the gist of the present invention.

調節器10cは、被測定流体の温度をセンサーセル1の
温度に一致させるように動作する。本例においては、加
熱及び/または冷却媒体を供給する配管10dに設けられ
た制御弁10eを制御する。その結果、熱交換器10fにおけ
る熱交換量は制御され、センサーセル1に供給される被
測定流体の温度はセンサーセル1の温度と等しくされ
る。したがって、流体中に含まれるパーティクル検出装
置をもって検出されるパーティクルの数の精度は顕著に
向上する。なお、本実施例においては、散乱光と非散乱
光とを分離する手段7として、中央(非散乱光の光軸に
対応する領域)に開口7aを有し、非散乱光の光軸に傾斜
して設けられる平面鏡7を使用しているが、これは1例
であって、本発明を限定するものではない。上記の他、
中央(非散乱光の光軸に対応する領域)に開口(図示せ
ず)を有し、非散乱光の光軸に傾斜して設けられる凹面
鏡(図示せず)を使用することもできる。この場合に
は、集光レンズ8は不要となる。
The controller 10c operates so that the temperature of the fluid to be measured matches the temperature of the sensor cell 1. In the present example, a control valve 10e provided in a pipe 10d for supplying a heating and / or cooling medium is controlled. As a result, the amount of heat exchange in the heat exchanger 10f is controlled, and the temperature of the fluid to be measured supplied to the sensor cell 1 is made equal to the temperature of the sensor cell 1. Therefore, the accuracy of the number of particles detected by the particle detection device included in the fluid is significantly improved. In this embodiment, as means 7 for separating scattered light and non-scattered light, an opening 7a is provided at the center (a region corresponding to the optical axis of non-scattered light), and is inclined to the optical axis of non-scattered light. Although the plane mirror 7 provided is used as an example, this is only an example and does not limit the present invention. In addition to the above,
It is also possible to use a concave mirror (not shown) having an opening (not shown) at the center (a region corresponding to the optical axis of non-scattered light) and being provided inclined to the optical axis of non-scattered light. In this case, the condenser lens 8 becomes unnecessary.

〔発明の効果〕〔The invention's effect〕

以上説明せるとおり、本発明に係る、流体中に含まれ
るパーティクル検出装置においては、センサーセルに供
給される被測定流体の温度が被測定流体供給前のセンサ
ーセルの温度と等しくなるよう制御されるので、原始的
には高温であった被測定流体が供給されても、センサー
セルに到着するときは被測定流体供給前のセンサーセル
の温度と等しくなり、センサーセル内温度は、被測定流
体供給前も、供給後も(測定期間中も)、変化しないの
で、流体中に含まれるパーティクル検出装置をもって検
出されるパーティクルの数の精度は顕著に向上する。
As described above, in the particle detection device according to the present invention, the temperature of the fluid to be measured supplied to the sensor cell is controlled to be equal to the temperature of the sensor cell before the supply of the fluid to be measured. Therefore, even if the fluid to be measured, which was initially high in temperature, is supplied, when it arrives at the sensor cell, it becomes equal to the temperature of the sensor cell before the supply of the fluid to be measured. Since there is no change before and after the supply (even during the measurement period), the accuracy of the number of particles detected by the particle detection device contained in the fluid is significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例に係る流体中に含まれるパ
ーティクル検出装置の構成図である。 第2図は、従来技術に係る流体中に含まれるパーティク
ル検出装置の欠点を確認するためになした試験におけ
る、被測定流体の時間に対する温度変化を示す曲線であ
る。 第3図は、従来技術に係る流体中に含まれるパーティク
ル検出装置の欠点を確認するためになした試験の結果を
示すグラフであり、被測定流体が第2図に示す温度変化
をした場合のパーティクル数測定値である。 第4図は、従来技術に係る流体中に含まれるパーティク
ル検出装置の構成図である。 1……センサーセル、 2……レーザ発生装置、 3……散乱レーザ光検出手段、 4……非散乱レーザ光検出手段、 5……非測定流体供給配管、 6a……レーザ入射窓、 6b……レーザ射出窓、 7……散乱光と非散乱光とを分離する手段(鏡) 7a……鏡7に非散乱光の光軸に対応して設けられた開
口、 8……集光レンズ、 9……パーティクル数算出手段、 10a……センサーセルの温度検出器、 10b……被測定流体の温度検出器、 10c……調節器、 10d……冷却及び/または加熱媒体供給配管、 10e……制御弁、 10f……熱交換器。
FIG. 1 is a configuration diagram of an apparatus for detecting particles contained in a fluid according to one embodiment of the present invention. FIG. 2 is a curve showing a change in temperature of a fluid to be measured with respect to time in a test performed to confirm a defect of a particle detection device included in a fluid according to the related art. FIG. 3 is a graph showing a result of a test performed to confirm a defect of the particle detection device included in the fluid according to the conventional technique, and shows a case where the fluid to be measured changes in temperature shown in FIG. It is a measured value of the number of particles. FIG. 4 is a configuration diagram of a device for detecting particles contained in a fluid according to the related art. DESCRIPTION OF SYMBOLS 1 ... Sensor cell, 2 ... Laser generator, 3 ... Scattered laser light detection means, 4 ... Non-scattered laser light detection means, 5 ... Non-measurement fluid supply pipe, 6a ... Laser entrance window, 6b ... ... Laser emission window 7 ... Means (mirror) for separating scattered light and non-scattered light 7a ... Aperture provided in mirror 7 corresponding to the optical axis of non-scattered light 8 Condenser lens 9: Particle count calculating means, 10a: Temperature detector of sensor cell, 10b: Temperature detector of fluid to be measured, 10c: Controller, 10d: Cooling and / or heating medium supply pipe, 10e ... Control valve, 10f ... heat exchanger.

フロントページの続き (56)参考文献 特開 昭61−181939(JP,A) 特開 昭57−182167(JP,A) 特開 昭60−42640(JP,A) 実開 昭57−182168(JP,U)Continuation of the front page (56) References JP-A-61-181939 (JP, A) JP-A-57-182167 (JP, A) JP-A-60-42640 (JP, A) , U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザ発生装置(2)と、 該レーザ発生装置(2)の発生するレーザ光が透過して
入射するレーザ光入射窓(6a)と射出するレーザ光射出
窓(6b)とを有し、被測定流体を供給されるセンサーセ
ル(1)と、 該センサーセル(1)のレーザ光射出窓(6b)を透過し
て射出されたレーザ光を、被測定流体中に含まれるパー
ティクルにより散乱された散乱レーザ光と、散乱されな
かった非散乱光とに分離する手段(7)と、 前記散乱レーザ光を検出する散乱光検出手段(3)と、 前記非散乱レーザ光を検出する非散乱光検出手段(4)
と、 前記散乱光検出手段(3)の検出値と前記非散乱光検出
手段(4)の検出値とを入力され、被測定流体中のパー
ティクル数を算出するパーティクル数算出手段(9)と を具備してなる、流体中に含まれるパーティクル検出装
置において、 前記センサーセル(1)には、温度検出手段(10a)が
設けられ、 前記パーティクル検出装置には、該温度検出手段(10
a)の検出する前記センサーセル(1)の温度に追従し
て、前記被測定流体の温度を制御する流体温度制御手段
(10)が具備されてなる ことを特徴とする、流体中に含まれるパーティクル検出
装置。
A laser generator (2), a laser beam entrance window (6a) through which laser light generated by the laser generator (2) is transmitted and incident, and a laser beam exit window (6b) through which the laser beam exits. A sensor cell (1) having a fluid to be measured, and a laser beam emitted through a laser light exit window (6b) of the sensor cell (1). Means (7) for separating the scattered laser light scattered by the laser beam and non-scattered non-scattered light, scattered light detecting means (3) for detecting the scattered laser light, and detecting the non-scattered laser light Non-scattered light detection means (4)
And a number-of-particles calculating means (9) that receives the detection value of the scattered light detection means (3) and the detection value of the non-scattered light detection means (4) and calculates the number of particles in the fluid to be measured. In the apparatus for detecting particles contained in a fluid, a temperature detecting means (10a) is provided in the sensor cell (1), and the temperature detecting means (10) is provided in the particle detecting apparatus.
fluid temperature control means (10) for controlling the temperature of the fluid to be measured following the temperature of the sensor cell (1) detected in a), which is included in the fluid. Particle detection device.
【請求項2】前記散乱光と前記非散乱光とを分離する手
段(7)は、前記レーザ光射出窓(6b)を透過した前記
非散乱光の光軸上に設けられ、前記非散乱光の光軸に対
応する領域に開口(7a)を有し、前記散乱光の光軸に対
し傾斜をもって配設されてなる平面鏡(7)と、該平面
鏡(7)によって反射された前記散乱光を集束する光学
系(8)とよりなることを特徴とする特許請求の範囲第
1項記載の流体中に含まれるパーティクル検出装置。
2. A means (7) for separating the scattered light and the non-scattered light is provided on an optical axis of the non-scattered light transmitted through the laser light exit window (6b), and A plane mirror (7) having an opening (7a) in a region corresponding to the optical axis of (a) and being disposed with an inclination with respect to the optical axis of the scattered light; and a scattered light reflected by the plane mirror (7). 2. The apparatus according to claim 1, further comprising a focusing optical system.
【請求項3】前記散乱光と前記非散乱光とを分離する手
段(7)は、前記レーザ光射出窓(6b)を透過した前記
非散乱光の光軸上に設けられ、前記非散乱光の光軸に対
応する領域に開口(7a)を有し、前記散乱光の光軸に対
し傾斜して配設されてなる凹面鏡(7)よりなり、前記
散乱光検出手段(3)は前記凹面鏡(7)の焦点の位置
に配設されてなることを特徴とする特許請求の範囲第1
項記載の流体中に含まれるパーティクル検出装置。
3. A means (7) for separating the scattered light and the non-scattered light is provided on an optical axis of the non-scattered light transmitted through the laser light exit window (6b), And a concave mirror (7) having an opening (7a) in an area corresponding to the optical axis of the scattered light, the concave mirror being disposed obliquely with respect to the optical axis of the scattered light. The first aspect of the present invention is arranged at the focal point of (7).
A particle detection device contained in the fluid described in the above item.
JP62320098A 1987-12-19 1987-12-19 Particle detection device contained in fluid Expired - Fee Related JP2592273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320098A JP2592273B2 (en) 1987-12-19 1987-12-19 Particle detection device contained in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320098A JP2592273B2 (en) 1987-12-19 1987-12-19 Particle detection device contained in fluid

Publications (2)

Publication Number Publication Date
JPH01162130A JPH01162130A (en) 1989-06-26
JP2592273B2 true JP2592273B2 (en) 1997-03-19

Family

ID=18117692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320098A Expired - Fee Related JP2592273B2 (en) 1987-12-19 1987-12-19 Particle detection device contained in fluid

Country Status (1)

Country Link
JP (1) JP2592273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849597A1 (en) * 1998-10-28 2000-05-04 Dade Behring Marburg Gmbh Nephelometric detection unit with optical in-process control
JP5412749B2 (en) * 2008-05-16 2014-02-12 横河電機株式会社 Transmission scattering turbidimeter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182167A (en) * 1981-05-02 1982-11-09 Toa Medical Electronics Co Ltd Blood analyzer
JPH018992Y2 (en) * 1981-05-12 1989-03-10
JPS6042640A (en) * 1983-08-19 1985-03-06 Toshiba Corp Measuring device of grain size
JPS61181939A (en) * 1985-02-06 1986-08-14 Mitsubishi Electric Corp Measuring system for fine particle in liquid

Also Published As

Publication number Publication date
JPH01162130A (en) 1989-06-26

Similar Documents

Publication Publication Date Title
US5715173A (en) Concentration controlling method and a substate treating apparatus utilizing same
US7995195B2 (en) Method of optically monitoring the progression of a physical and/or chemical process taking place on a surface of a body
US7528951B2 (en) Optical design of a measurement system having multiple sensor or multiple light source paths
CA1257980A (en) Process and device for determining the cloud point of a diesel oil
US5519490A (en) Condensation nucleus type device for counting particles in gas utilizing heating means on the connection pipe and measuring chamber
WO2007112212A2 (en) Measurement of light from a predefined scatter angle from particulate matter in a media
EP2010887A2 (en) Optical design of a particulate measurement system
JP2592273B2 (en) Particle detection device contained in fluid
WO2007112214A2 (en) Dual function measurement system
US3081632A (en) Direct-reading pyrometer microscope
JPH01307641A (en) Measuring instrument for dust concentration
JPH0543060U (en) Dew point detector
JPS58113839A (en) Detector for dew point
EP2010889A2 (en) Self calibrating measurement system
JPH0815146A (en) Concentration controller for fluid
SU842060A1 (en) Device for control of glass mass heating
JPH0783820A (en) Particle counting device
KR0156453B1 (en) Method and a substrate treating apparatus utilizing the same
JPS5847654B2 (en) Hannokongobutsuno Kiyuukodoo
JPH10507834A (en) Circulating cooling mirror dew point hygrometer with sapphire optical mirror
JP2010060484A (en) Gas cell, gas sample chamber and concentration measuring instrument
JPS5892838A (en) Measuring device for light loss
JPH057045A (en) Wavelength control equipment
JPS59228105A (en) Film-thickness measuring device
JP2010060485A (en) Gas cell, gas sample chamber and concentration measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees