JP2010060485A - Gas cell, gas sample chamber and concentration measuring instrument - Google Patents

Gas cell, gas sample chamber and concentration measuring instrument Download PDF

Info

Publication number
JP2010060485A
JP2010060485A JP2008227895A JP2008227895A JP2010060485A JP 2010060485 A JP2010060485 A JP 2010060485A JP 2008227895 A JP2008227895 A JP 2008227895A JP 2008227895 A JP2008227895 A JP 2008227895A JP 2010060485 A JP2010060485 A JP 2010060485A
Authority
JP
Japan
Prior art keywords
gas
infrared
sample chamber
light source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008227895A
Other languages
Japanese (ja)
Inventor
Yoshiro Miyazaki
芳郎 宮崎
Hiromi Ishihara
裕己 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008227895A priority Critical patent/JP2010060485A/en
Publication of JP2010060485A publication Critical patent/JP2010060485A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas cell capable of preventing the irregular reflection of infrared rays from an inner peripheral surface to prevent the deterioration of the measuring precision of concentration, a gas sample chamber and a concentration measuring instrument. <P>SOLUTION: The gas cell 6 is formed into a cylindrical shape and guides infrared rays radiated from the light source 7 arranged at one end 6b to the infrared sensor arranged at the other end 6c through the interior and is formed of pure aluminum. Mirror polish treatment is applied to the inner peripheral surface 6d. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、二酸化炭素、水蒸気、一酸化炭素などの所定の気体の濃度を測定する濃度測定装置に用いられる気体セル、気体サンプル室及びこの気体サンプル室を備える濃度測定装置に関するものである。   The present invention relates to a gas cell, a gas sample chamber, and a concentration measuring device including the gas sample chamber, which are used in a concentration measuring device that measures the concentration of a predetermined gas such as carbon dioxide, water vapor, or carbon monoxide. .

例えば、二酸化炭素、水蒸気、一酸化炭素などの所定の気体の濃度を測定する濃度測定装置には、従来、種々の気体サンプル室が用いられてきた。このような気体サンプル室は、内部が密閉された筒状の気体セルとしての中空チューブと、中空チューブの一端部に設けられた光源と、中空チューブの他端部に設けられた受光器とを備えている。   For example, various gas sample chambers have conventionally been used for concentration measuring devices that measure the concentration of a predetermined gas such as carbon dioxide, water vapor, or carbon monoxide. Such a gas sample chamber comprises a hollow tube as a cylindrical gas cell sealed inside, a light source provided at one end of the hollow tube, and a light receiver provided at the other end of the hollow tube. I have.

中空チューブは、例えば、ジュラルミンなどの金属製の円柱体を円筒形状に切削加工した後、その内周面を平滑にするために機械研磨(バフ研磨など)が施されて形成されている。中空チューブには、その内部に、濃度が測定される所定の気体を含む雰囲気などが導入される気体導入孔、及び、該雰囲気などを排出する気体導出孔が設けられている。   The hollow tube is formed, for example, by cutting a cylindrical metal body such as duralumin into a cylindrical shape and then performing mechanical polishing (such as buffing) to smooth the inner peripheral surface. The hollow tube is provided with a gas introduction hole into which an atmosphere containing a predetermined gas whose concentration is to be measured, and a gas outlet hole through which the atmosphere is discharged.

光源は、白熱ランプであり、赤外線(即ち、赤外光)を放射する。受光器は、赤外線センサと、前記赤外線センサと光源との間に配置されて所定の波長の赤外線のみを透過する透過部材としての光学バンドパスフィルタ(以下、「フィルタ」という)と、を備えている。この赤外線センサは、赤外線の強さに応じた電圧を出力する。フィルタを透過する赤外線の波長は、濃度が測定される対象となる気体に応じて定められる。例えば、測定対象の気体の濃度が0ppmから数千ppmの比較的低濃度の範囲内であれば、フィルタを透過する赤外線の波長として、測定対象の気体によって最も減衰しやすい赤外線波長を選択するなどして、このフィルタは、測定対象の気体に応じて適切に選択される。   The light source is an incandescent lamp and emits infrared rays (that is, infrared light). The light receiver includes an infrared sensor, and an optical bandpass filter (hereinafter referred to as “filter”) as a transmission member that is disposed between the infrared sensor and the light source and transmits only infrared rays having a predetermined wavelength. Yes. This infrared sensor outputs a voltage corresponding to the intensity of infrared rays. The wavelength of infrared light that passes through the filter is determined according to the gas whose concentration is to be measured. For example, if the concentration of the gas to be measured is within a relatively low concentration range of 0 ppm to several thousand ppm, the infrared wavelength that is most easily attenuated by the gas to be measured is selected as the wavelength of the infrared light that passes through the filter. The filter is appropriately selected according to the gas to be measured.

このような気体サンプル室即ち濃度測定装置は、気体導入孔を通じて中空チューブ内に雰囲気を供給し、フィルタを介して赤外線センサが受光した光源からの赤外線の強さを測定することで、この雰囲気に含まれる前述した測定対象の気体の濃度を測定していた。   Such a gas sample chamber, that is, a concentration measuring device, supplies an atmosphere into the hollow tube through the gas introduction hole, and measures the intensity of infrared rays from the light source received by the infrared sensor through the filter. The concentration of the gas to be measured included was measured.

しかしながら、上述したフィルタは、該フィルタ面に対して垂直又は垂直に近い角度で入射した赤外線を、その波長に応じて選別(通過又は遮断)するものであるところ、上述した気体サンプル室で用いられる中空チューブは、その内周面が機械研磨によって平滑にされているので、光学的にみると表面が粗く形成されており、赤外線を様々な方向に乱反射(拡散反射)してしまい、そのため、この乱反射された赤外線のうち中空チューブの軸方向に対して直角に近い角度に反射されたものが、上述したフィルタ面に対してななめ方向(フィルタ面と平行に近い方向、即ち、垂直でない方向)から入射してしまって、フィルタによる赤外線波長毎の選別が正常に機能せず、本来フィルタによって遮断される波長の赤外線がフィルタを通過して、濃度測定の精度が悪化してしまうという問題があった。また、光源から放射された赤外線の一部が、乱反射された角度によっては赤外線センサに到達する前に減衰又は消滅してしまうので、赤外線センサに到達する赤外線の光量が減少し、そのため、濃度測定の精度が悪化してしまうという問題があった。   However, the filter described above is used in the gas sample chamber described above, which sorts (passes or blocks) infrared rays incident on the filter surface at an angle perpendicular to or close to the vertical according to the wavelength. Since the inner peripheral surface of the hollow tube is smoothed by mechanical polishing, the surface is formed rough when viewed optically, and the infrared rays are irregularly reflected (diffuse reflected) in various directions. Of the irregularly reflected infrared rays, those reflected at an angle close to a right angle with respect to the axial direction of the hollow tube are tanned with respect to the above-described filter surface (a direction close to parallel to the filter surface, that is, a direction not perpendicular). The filter does not function properly for each infrared wavelength by the filter, and the infrared light with the wavelength that is originally blocked by the filter passes through the filter. The accuracy of the concentration measurement there is a problem that becomes worse. Also, some of the infrared rays emitted from the light source are attenuated or extinguished before reaching the infrared sensor depending on the angle of irregular reflection, so that the amount of infrared light reaching the infrared sensor is reduced, and thus the concentration measurement. There was a problem that the accuracy of was deteriorated.

本発明は、上記課題に係る問題を解決することを目的としている。即ち、本発明は、内周面での赤外線の乱反射を防いで、濃度測定の精度の悪化を防止できる気体セル、気体サンプル室、及び、濃度測定装置を提供することを目的としている。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a gas cell, a gas sample chamber, and a concentration measuring device that can prevent irregular reflection of infrared rays on the inner peripheral surface and prevent deterioration in accuracy of concentration measurement.

請求項1に記載された発明は、上記目的を達成するために、筒状に形成されており、一端部に配置された光源から放射される赤外線を、内部を通じて他端部に配置された赤外線センサに導く気体セルであって、純アルミニウムからなり、内周面が鏡面状に研磨されていることを特徴とする気体セルである。   In order to achieve the above-mentioned object, the invention described in claim 1 is formed in a cylindrical shape, and infrared rays emitted from a light source arranged at one end portion are infrared rays arranged at the other end portion through the inside. A gas cell led to a sensor, which is made of pure aluminum and has an inner peripheral surface polished in a mirror shape.

請求項2に記載された発明は、筒状に形成された気体セルと、前記気体セルの一端部に配置され且つ赤外線を放射する光源と、前記気体セルの他端部に配置され且つ前記光源からの前記赤外線を検出する赤外線センサと、を備え、前記光源からの前記赤外線を前記気体セルの内部を通じて前記赤外線センサに導く気体サンプル室において、前記気体セルとして、請求項1に記載の気体セルを備えていることを特徴とする気体サンプル室である。   The invention described in claim 2 is a gas cell formed in a cylindrical shape, a light source disposed at one end of the gas cell and emitting infrared light, a gas source disposed at the other end of the gas cell, and the light source The gas cell according to claim 1, further comprising: an infrared sensor that detects the infrared light from the light source, wherein the gas cell is a gas sample chamber that guides the infrared light from the light source to the infrared sensor through the gas cell. A gas sample chamber.

請求項3に記載された発明は、赤外線を放射する光源と前記光源からの前記赤外線を検出する赤外線センサとを備えた気体サンプル室と、前記赤外線センサが検出した前記赤外線の強さに基づいて、前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、前記気体サンプル室として、請求項2に記載の気体サンプル室を備えていることを特徴とする濃度測定装置である。   The invention described in claim 3 is based on a gas sample chamber including a light source that emits infrared rays and an infrared sensor that detects the infrared rays from the light source, and the intensity of the infrared rays detected by the infrared sensor. A concentration measuring device comprising: a concentration calculating unit that calculates a predetermined gas concentration in the gas sample chamber, wherein the gas sample chamber according to claim 2 is provided as the gas sample chamber. This is a characteristic concentration measuring device.

請求項1、2、3に記載された発明によれば、内部に赤外線を通す気体セルが、純アルミニウムからなり、その内周面が鏡面状に研磨されているので、その内周面において赤外線を鏡面反射して乱反射を防ぐことができ、そのため、赤外線がフィルタ(透過部材)に対してフィルタ面と平行に近い角度から入射することを防ぐとともに、赤外線センサに到達する赤外線の光量の減少を防いで、濃度測定の精度の悪化を防止できる。また、赤外線を鏡面反射するので、内周面での熱吸収率が低く、そのため、赤外線を効率よく導くことができる。また、気体セルに用いる純アルミニウムは、材料自体安価であるので、気体セル、該気体セルを備えた気体サンプル室、及び、該サンプル室を備えた濃度測定装置、を安価に提供することができる。   According to the first, second, and third aspects of the present invention, the gas cell that transmits infrared rays is made of pure aluminum, and the inner peripheral surface thereof is polished in a mirror shape. Therefore, infrared rays can be prevented from entering the filter (transmission member) from an angle nearly parallel to the filter surface, and the amount of infrared light reaching the infrared sensor can be reduced. This prevents the deterioration of density measurement accuracy. Moreover, since infrared rays are mirror-reflected, the heat absorption rate on the inner peripheral surface is low, so that infrared rays can be guided efficiently. In addition, since pure aluminum used for the gas cell is inexpensive, the gas cell, the gas sample chamber including the gas cell, and the concentration measuring device including the sample chamber can be provided at low cost. .

以下、本発明の一実施形態に係る濃度測定装置を、図1乃至図6を参照して説明する。   Hereinafter, a concentration measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.

濃度測定装置1は、図2に示すように、濃度の測定対象の気体を含んだ雰囲気が充填される気体サンプル室2と、制御回路部3と、受光回路部4と、濃度算出部としてのマイクロコンピュータ(以下、μcomと記載する)5と、を備えている。   As shown in FIG. 2, the concentration measuring apparatus 1 includes a gas sample chamber 2 filled with an atmosphere containing a gas whose concentration is to be measured, a control circuit unit 3, a light receiving circuit unit 4, and a concentration calculating unit. And a microcomputer 5 (hereinafter referred to as μcom).

気体サンプル室2は、図1に示すように、気体セルとしての測定セル6と、光源7と、受光ユニット8と、放熱部材としての放熱器9と、調温部材としての吸熱器10と、を備えている。   As shown in FIG. 1, the gas sample chamber 2 includes a measurement cell 6 as a gas cell, a light source 7, a light receiving unit 8, a radiator 9 as a heat radiating member, and a heat absorber 10 as a temperature adjusting member, It has.

測定セル6は、その内部を通じて一端部6bから他端部6cに赤外線を導く導管である。測定セル6には、例えば、純度99.99%以上の純アルミニウムからなり、円筒状に形成されている。また、測定セル6の外壁6aの内周面6dは、赤外線が乱反射しないように鏡面状に研磨されている。   The measurement cell 6 is a conduit that guides infrared rays from one end 6b to the other end 6c through the inside thereof. The measurement cell 6 is made of, for example, pure aluminum having a purity of 99.99% or more and is formed in a cylindrical shape. The inner peripheral surface 6d of the outer wall 6a of the measurement cell 6 is polished in a mirror shape so that infrared rays are not irregularly reflected.

測定セル6は、純アルミニウムからなる円柱状の基材を所定の長さに切断し、切削加工によりその内部を軸方向に貫通する穴を設けて円筒状に形成する。そして、内周面6dを鏡面状に研磨するために、例えば、(1)皮や樹脂などの研磨用柔軟剤を回転させながら押しつけて行う機械研磨(バフ研磨)、(2)化学研磨液内に測定セル6を浸漬させてセル及び化学研磨液のうち少なくとも一方を動かして行う化学研磨、(3)電解研磨液内に測定セル6を浸漬させ、測定セル6の内部に端子を配置して、測定セル6にプラス電位、前記端子及び前記電解研磨液を収容する漕にマイナス電位、をそれぞれ加えてセル及び電解研磨液のうち少なくとも一方を動かして行う電解研磨、を順次実施する。化学研磨で十分な鏡面状の研磨ができる場合は、電解研磨は省略しても良い。このようにして、内周面6dが鏡面状に研磨された測定セル6が得られる。なお、純アルミニウムの純度が低い場合、電気抵抗が高く十分に電流を流すことができないので、電解研磨の効果が現れず、赤外線の乱反射を防げる程度の鏡面を得ることができない。そのため、測定セル6の材料である純アルミニウムの純度は、電解研磨によって内周面が鏡面状に研磨できる程度の純度、概ね、99.99%以上の純度が必要となる。測定セル6の材料としては、ジュラルミンなどの金属(合金)よりも、安価で且つ上述の加工(研磨)が容易にできる純アルミニウムが適している。測定セル6の内周面6dの表面粗さは、Rz=0.11μm以下で且つRa=0.011μm以下、にされていることが望ましい。   The measurement cell 6 is formed in a cylindrical shape by cutting a columnar base material made of pure aluminum into a predetermined length, and providing a hole penetrating the inside in the axial direction by cutting. Then, in order to polish the inner peripheral surface 6d in a mirror shape, for example, (1) mechanical polishing (buff polishing) performed by pressing a polishing softener such as leather or resin while rotating, (2) in the chemical polishing liquid (3) The measurement cell 6 is immersed in the electrolytic polishing liquid, and a terminal is arranged inside the measurement cell 6 by immersing the measurement cell 6 in the electrode and moving at least one of the cell and the chemical polishing liquid. Then, a positive potential is applied to the measurement cell 6 and a negative potential is applied to the terminal and the electrode containing the electrolytic polishing liquid, respectively, and electrolytic polishing performed by moving at least one of the cell and the electrolytic polishing liquid is sequentially performed. In the case where sufficient mirror-like polishing can be performed by chemical polishing, electrolytic polishing may be omitted. In this way, the measurement cell 6 in which the inner peripheral surface 6d is polished in a mirror shape is obtained. If the purity of pure aluminum is low, the electric resistance is high and sufficient current cannot flow, so that the effect of electrolytic polishing does not appear and a mirror surface that can prevent irregular reflection of infrared rays cannot be obtained. Therefore, the purity of pure aluminum, which is the material of the measurement cell 6, needs to be high enough that the inner peripheral surface can be polished into a mirror surface by electrolytic polishing, and more than 99.99%. As the material of the measurement cell 6, pure aluminum which is cheaper and can be easily processed (polished) than the metal (alloy) such as duralumin is suitable. The surface roughness of the inner peripheral surface 6d of the measurement cell 6 is desirably Rz = 0.11 μm or less and Ra = 0.111 μm or less.

測定セル6の一端部6b及び他端部6cのそれぞれには、図示しない気体導入孔及び図示しない気体導出孔が設けられており、上記気体導入孔には、図示しない気体供給部が接続されている。この気体供給部は、測定対象の気体を含んだ雰囲気を気体導入孔から強制的に測定セル6内に送り込む。そして、測定セル6内に送り込まれた上記雰囲気は気体導出孔から排出される。   A gas introduction hole (not shown) and a gas lead-out hole (not shown) are provided in each of the one end 6b and the other end 6c of the measurement cell 6, and a gas supply part (not shown) is connected to the gas introduction hole. Yes. The gas supply unit forcibly sends the atmosphere containing the gas to be measured into the measurement cell 6 from the gas introduction hole. Then, the atmosphere sent into the measurement cell 6 is discharged from the gas outlet hole.

光源7は、測定セル6内でかつ当該測定セル6の一端部6bに設けられている。光源7は、電圧が印加されることで、光としての赤外線を測定セル6の他端部に向かって放射する。光源7として、例えば黒体炉、白熱ランプ等が用いられる。また、光源7には、リフレクタ30が取り付けられている。すなわち、濃度測定装置1は、リフレクタ30を備えている。リフレクタ30は、光源7から出射された光を反射して、受光ユニット8に向かう平行光にする。光源7は、例えば、点灯0.7秒、消灯2.7秒などの所定間隔で点灯・消灯を繰り返すパルス点灯を行う。   The light source 7 is provided in the measurement cell 6 and at one end 6 b of the measurement cell 6. The light source 7 emits infrared light as light toward the other end of the measurement cell 6 by applying a voltage. As the light source 7, for example, a black body furnace or an incandescent lamp is used. A reflector 30 is attached to the light source 7. That is, the concentration measuring apparatus 1 includes a reflector 30. The reflector 30 reflects the light emitted from the light source 7 into parallel light directed toward the light receiving unit 8. The light source 7 performs pulse lighting that repeats lighting and extinguishing at predetermined intervals such as lighting 0.7 seconds and lighting 2.7 seconds.

受光ユニット8は、図3及び図4に示すように、ユニット本体11と、複数の受光器12と、を備えている。ユニット本体11即ち受光ユニット8は、測定セル6内でかつ当該測定セル6の他端部6cに設けられている。ユニット本体11は、測定セル6の外壁6aの内周面6dに沿う円筒状に形成されている。受光器12は、図示例では、四つ設けられている。受光器12は、それぞれ、赤外線センサとしての熱電堆式赤外線センサ14と、透過部材15とを備えている。   As shown in FIGS. 3 and 4, the light receiving unit 8 includes a unit main body 11 and a plurality of light receivers 12. The unit main body 11, that is, the light receiving unit 8 is provided in the measurement cell 6 and at the other end 6 c of the measurement cell 6. The unit body 11 is formed in a cylindrical shape along the inner peripheral surface 6 d of the outer wall 6 a of the measurement cell 6. In the illustrated example, four light receivers 12 are provided. Each of the light receivers 12 includes a thermopile type infrared sensor 14 as an infrared sensor and a transmission member 15.

熱電堆式赤外線センサ(以下、「赤外線センサ」ともいう)14は、サーモパイル式赤外線センサとも呼ばれ、複数の熱電対を直列に接続して出力電圧を高めた、周知の熱−電圧エネルギー変換素子である。赤外線センサ14の温接点は、光源からの赤外線を受光するように、透過部材15と向かい合うように配設されており、また、冷接点は、図示しない赤外線センサ14のケースと熱的に接続されている。赤外線センサ14は、ユニット本体11に取り付けられている。即ち、赤外線センサ14の冷接点は、測定セル6の他端部6cと熱的に接続されている。複数の受光器12の赤外線センサ14は、同一平面上に配置されている。赤外線センサ14は、光源7が発しかつ透過部材15を透過した赤外線を受光し、この赤外線の熱を電気エネルギーに変換する。赤外線センサ14は、赤外線の熱を電気エネルギーに変換して、センサ出力としてμcom5に出力する。   A thermopile type infrared sensor (hereinafter also referred to as “infrared sensor”) 14 is also called a thermopile type infrared sensor, and is a known thermal-voltage energy conversion element in which a plurality of thermocouples are connected in series to increase the output voltage. It is. The warm contact point of the infrared sensor 14 is disposed so as to face the transmission member 15 so as to receive infrared rays from the light source, and the cold junction is thermally connected to a case of the infrared sensor 14 (not shown). ing. The infrared sensor 14 is attached to the unit main body 11. That is, the cold junction of the infrared sensor 14 is thermally connected to the other end 6 c of the measurement cell 6. The infrared sensors 14 of the plurality of light receivers 12 are arranged on the same plane. The infrared sensor 14 receives infrared rays emitted from the light source 7 and transmitted through the transmission member 15 and converts the heat of the infrared rays into electric energy. The infrared sensor 14 converts infrared heat into electrical energy, and outputs it to the μcom 5 as a sensor output.

透過部材15は、周知の光学バンドパスフィルタであり、ユニット本体11に取り付けられて、赤外線センサ14と光源7との間に配置されている。複数の受光器12の透過部材15は、同一平面上に配置されている。透過部材15は、それぞれ、光源7からの赤外線のうち予め定められた波長の赤外線のみを透過して、当該透過した波長の赤外線を赤外線センサ14まで導く。複数の受光器12の透過部材15は、互いに透過する赤外線の波長が異なる。   The transmission member 15 is a known optical bandpass filter, is attached to the unit main body 11, and is disposed between the infrared sensor 14 and the light source 7. The transmission members 15 of the plurality of light receivers 12 are arranged on the same plane. Each of the transmissive members 15 transmits only infrared rays having a predetermined wavelength out of infrared rays from the light source 7 and guides the infrared rays having the transmitted wavelengths to the infrared sensor 14. The transmission members 15 of the plurality of light receivers 12 have different wavelengths of infrared rays that pass through each other.

透過部材15が透過する赤外線の波長は、濃度測定装置1によって濃度を測定される対象となる気体に応じて定められる。図示例では、測定対象の気体の測定の濃度範囲が0ppmから数千ppmの範囲内の低濃度の検出を可能としたものであり、透過部材15の透過する赤外線の波長は、濃度測定対象の気体に対する透過率が小さな赤外線の波長にされる。なお、受光器12は、二酸化炭素以外にも水蒸気、一酸化炭素を測定対象の気体とする。図示例では、例えば、一つの受光器12は、基準として用いられ、その透過部材15が大気中で全く減衰しない波長が1.5μm又は4.0μmの赤外線のみを透過する。図示例では、例えば、他の一つの受光器12は、二酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した二酸化炭素中で減衰しやすい波長が4.27μmの赤外線のみを透過する。図示例では、例えば、更に他の受光器12は、水蒸気の濃度を測定するために用いられ、その透過部材15が前述した水蒸気中で減衰しやすい波長が1.9μmの赤外線のみを透過する。図示例では、例えば、更に別の受光器12は、一酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した一酸化炭素中で減衰しやすい波長が4.64μmの赤外線のみを透過する。透過部材15は、入射する赤外線の角度がその面に対して垂直に近いと、予め定められた波長のみを精度良く透過し、入射する赤外線の角度がその面に対して水平に近いと、予め定められた波長以外の波長も透過してしまう。   The wavelength of infrared light transmitted through the transmission member 15 is determined according to the gas whose concentration is to be measured by the concentration measuring device 1. In the illustrated example, the concentration range of measurement of the gas to be measured can be detected at a low concentration within the range of 0 ppm to several thousand ppm, and the wavelength of the infrared ray transmitted through the transmission member 15 is the concentration measurement target. The transmittance for the gas is set to a small infrared wavelength. The light receiver 12 uses water vapor and carbon monoxide as the measurement target gas in addition to carbon dioxide. In the illustrated example, for example, one light receiver 12 is used as a reference, and the transmitting member 15 transmits only infrared rays having a wavelength of 1.5 μm or 4.0 μm that does not attenuate at all in the atmosphere. In the illustrated example, for example, another one of the light receivers 12 is used for measuring the concentration of carbon dioxide, and the transmission member 15 only receives infrared rays having a wavelength of 4.27 μm that is easily attenuated in carbon dioxide. To Penetrate. In the illustrated example, for example, still another light receiver 12 is used for measuring the concentration of water vapor, and the transmission member 15 transmits only infrared light having a wavelength of 1.9 μm that is easily attenuated in the water vapor. In the illustrated example, for example, another light receiver 12 is used to measure the concentration of carbon monoxide, and only the infrared ray whose wavelength is easily attenuated in the above-described carbon monoxide by the transmitting member 15 is 4.64 μm. Transparent. The transmissive member 15 accurately transmits only a predetermined wavelength when the angle of incident infrared rays is nearly perpendicular to the surface, and when the angle of incident infrared rays is nearly horizontal to the surface, Wavelengths other than the predetermined wavelength are also transmitted.

なお、図6は、二酸化炭素に対する赤外線の透過率を示しており、図6中の横軸は赤外線の波長(μm)を示し、図6中の縦軸は赤外線の透過率(%)を示している。図6によれば、波長が4.27μmの赤外線の二酸化炭素中の透過率が、略零であることが示されており、波長が4.27μmの赤外線は、二酸化炭素中を殆ど透過しない(殆ど吸収されてしまう)ことが示されている。   6 shows the infrared transmittance for carbon dioxide, the horizontal axis in FIG. 6 indicates the wavelength of infrared rays (μm), and the vertical axis in FIG. 6 indicates the infrared transmittance (%). ing. FIG. 6 shows that the transmittance of infrared rays having a wavelength of 4.27 μm in carbon dioxide is substantially zero, and infrared rays having a wavelength of 4.27 μm hardly pass through carbon dioxide ( It is almost absorbed).

放熱器9は、熱源から生じた熱を周囲の雰囲気に放出する周知の放熱部材である。放熱器9は、例えば、アルミニウムや銅などの熱伝導率の高い材料からなり、直方体状の本体9aと、その外面から立設した複数のフィン9bを備えている。なお、図示例では、放熱器9は、複数のフィン9bを備えるものであったが、これに限らず、例えば、複数のピン状の突起など、その表面積を大きくして放熱を効率よくできるものであれば、その形状は任意である。放熱器9は、測定セル6の一端部6bに、測定セル6との間の熱抵抗が小さくなるように密着して配設されている。これにより、放熱器9は、光源7によって加熱された測定セル6の熱を雰囲気中に放出して、光源7及び測定セル6の温度を素早く下げることができる。   The radiator 9 is a well-known heat radiating member that releases heat generated from a heat source to the surrounding atmosphere. The radiator 9 is made of, for example, a material having high thermal conductivity such as aluminum or copper, and includes a rectangular parallelepiped main body 9a and a plurality of fins 9b erected from the outer surface thereof. In the illustrated example, the radiator 9 is provided with a plurality of fins 9b. However, the present invention is not limited to this. For example, a plurality of pin-shaped protrusions can increase the surface area to efficiently dissipate heat. If so, the shape is arbitrary. The radiator 9 is disposed in close contact with the one end 6b of the measurement cell 6 so that the thermal resistance between the heat sink 9 and the measurement cell 6 becomes small. Thereby, the heat radiator 9 can discharge | release the heat | fever of the measurement cell 6 heated by the light source 7 in atmosphere, and can reduce the temperature of the light source 7 and the measurement cell 6 rapidly.

吸熱器10は、放熱器9と同様に、例えば、アルミニウムや銅などの熱伝導率の高い材料からなり、直方体状の本体10aと、その外面から立設した複数のフィン10bを備えている。なお、図示例では、吸熱器10は、複数のフィン10bを備えるものであったが、これに限らず、例えば、複数のピン状の突起など、その表面積を大きくして放熱を効率よくできるものであれば、その形状は任意である。吸熱器10は、測定セル6の他端部6cに、測定セル6との間の熱抵抗が小さくなるようにして密着して配設されている。つまり、吸熱器10は、赤外線センサ14の冷接点と熱的に接続されており、これによって、周囲の雰囲気の熱を吸熱して冷接点に伝えることができ、冷接点の温度を、周囲の雰囲気の温度の変化に素早く追従させることができる。なお、放熱器9及び吸熱器10は設置することが好ましいが、必ずしも設ける必要はなく、その設置は任意である。   Similarly to the radiator 9, the heat absorber 10 is made of a material having high thermal conductivity such as aluminum or copper, and includes a rectangular parallelepiped main body 10 a and a plurality of fins 10 b erected from the outer surface. In the illustrated example, the heat absorber 10 includes a plurality of fins 10b. However, the heat absorber 10 is not limited to this, and for example, a plurality of pin-shaped protrusions or the like can increase the surface area to efficiently dissipate heat. If so, the shape is arbitrary. The heat absorber 10 is disposed in close contact with the other end 6 c of the measurement cell 6 so that the thermal resistance between the heat absorber 10 and the measurement cell 6 becomes small. That is, the heat absorber 10 is thermally connected to the cold junction of the infrared sensor 14, so that the heat of the surrounding atmosphere can be absorbed and transmitted to the cold junction, and the temperature of the cold junction can be It can quickly follow changes in the temperature of the atmosphere. In addition, although it is preferable to install the radiator 9 and the heat absorber 10, it does not necessarily need to provide and the installation is arbitrary.

制御回路部3は、図2に示すように、発振器16、クロック分周回路17、定電圧回路18などを備えており、μcom5の命令通りに、所定の周波数で光源7を点滅させる。   As shown in FIG. 2, the control circuit unit 3 includes an oscillator 16, a clock frequency dividing circuit 17, a constant voltage circuit 18, and the like, and blinks the light source 7 at a predetermined frequency according to a command of μcom5.

受光回路部4は、図5に示すように、複数のアンプ19と、切り換え器20と、A/D変換器21とを備えている。アンプ19は、それぞれ、受光器12と1対1に対応して設けられている。アンプ19は、対応する受光器12の赤外線センサ14からの信号を増幅して、切り換え器20を介してA/D変換器21に向かって出力する。A/D変換器21は、赤外線センサ14からの信号をデジタル信号に変換して、μcom5に向かって出力する。   As shown in FIG. 5, the light receiving circuit unit 4 includes a plurality of amplifiers 19, a switcher 20, and an A / D converter 21. The amplifiers 19 are respectively provided in one-to-one correspondence with the light receivers 12. The amplifier 19 amplifies the signal from the infrared sensor 14 of the corresponding light receiver 12 and outputs it to the A / D converter 21 via the switcher 20. The A / D converter 21 converts the signal from the infrared sensor 14 into a digital signal and outputs it to the μcom 5.

μcom5は、制御回路部3及び受光回路部4と接続して、これらの動作を制御することで、濃度測定装置1全体の動作をつかさどる。μcom5は、予め定められたプログラムに従って動作するコンピュータである。このμcom5は、周知のように、予め定めたプログラムに従って各種の処理や制御などを行う中央演算処理装置(CPU)、CPUのためのプログラム等を格納した読み出し専用のメモリであるROM、各種のデータを格納するとともにCPUの処理作業に必要なエリアを有する読み出し書き込み自在のメモリであるRAM等を有して構成している。   The μcom 5 is connected to the control circuit unit 3 and the light receiving circuit unit 4 and controls these operations, thereby controlling the operation of the concentration measuring apparatus 1 as a whole. μcom5 is a computer that operates according to a predetermined program. As is well known, this μcom 5 is a central processing unit (CPU) that performs various processes and controls in accordance with a predetermined program, a ROM that is a read-only memory storing a program for the CPU, and various data. And a RAM that is a readable / writable memory having an area necessary for processing operations of the CPU.

また、μcom5には、濃度測定装置1自体がオフ状態の間も記憶内容の保持が可能な電気的消去/書き換え可能な読み出し専用のメモリが接続されている。そして、このメモリには、濃度の算出に必要な後述する吸光係数、測定距離、濃度変換係数等の各種情報を記憶するとともに、算出した濃度を外部から読出可能に時系列的に記憶する。   The μcom 5 is connected to an electrically erasable / rewritable read-only memory capable of retaining stored contents even when the concentration measuring apparatus 1 itself is in an OFF state. The memory stores various information such as an extinction coefficient, measurement distance, and concentration conversion coefficient, which will be described later, necessary for calculating the concentration, and stores the calculated concentration in a time series so that it can be read from the outside.

前述した構成の濃度測定装置1は、測定セル6内に雰囲気を供給して、この測定セル6即ち気体サンプル室2内の気体を雰囲気と等しくする。そして、濃度測定装置1は、光源7を点滅(パルス点灯)させて、この光源7からの赤外線を各受光器12の赤外線センサ14で受光する。そして、濃度測定装置1のμcom5は、赤外線センサ14に受光した赤外線の強さ(即ち、光源7の点灯時における赤外線センサ14の出力電圧と、消灯時における赤外線センサ14の出力電圧と、の電位差)などに基づいて、気体サンプル室2内の予め定められた気体(例えば、二酸化炭素、水蒸気、一酸化炭素など)の濃度を測定する。具体的には、濃度測定装置1のμcom5は、基準として用いられる受光器12の赤外線センサ14で受光した赤外線の強さと、二酸化炭素、水蒸気及び一酸化炭素を測定するための受光器12の赤外線センサ14で受光した赤外線の強さとを比較して、測定対象の二酸化炭素、水蒸気及び一酸化炭素の濃度を測定する。このように、濃度測定装置1の気体サンプル室2は、光源7からの赤外線を受光器12に導くように形成されており、さらに、測定セル6の内周面が鏡面状に研磨されているので、光源7からの赤外線を、乱反射させることなく、測定セル6の軸方向とほぼ平行になるようにして、受光器12に導くことができる。   The concentration measuring apparatus 1 having the above-described configuration supplies an atmosphere into the measurement cell 6, and makes the gas in the measurement cell 6, that is, the gas sample chamber 2, equal to the atmosphere. Then, the concentration measuring apparatus 1 blinks the light source 7 (pulse lighting), and receives the infrared light from the light source 7 by the infrared sensor 14 of each light receiver 12. Then, μcom 5 of the concentration measuring apparatus 1 determines the potential difference between the intensity of infrared light received by the infrared sensor 14 (that is, the output voltage of the infrared sensor 14 when the light source 7 is turned on and the output voltage of the infrared sensor 14 when the light source 7 is turned off). ) And the like, the concentration of a predetermined gas (for example, carbon dioxide, water vapor, carbon monoxide, etc.) in the gas sample chamber 2 is measured. Specifically, the μcom 5 of the concentration measuring apparatus 1 determines the intensity of infrared light received by the infrared sensor 14 of the light receiver 12 used as a reference, and the infrared light of the light receiver 12 for measuring carbon dioxide, water vapor, and carbon monoxide. The concentration of carbon dioxide, water vapor, and carbon monoxide to be measured is measured by comparing the intensity of infrared rays received by the sensor 14. As described above, the gas sample chamber 2 of the concentration measuring apparatus 1 is formed so as to guide the infrared rays from the light source 7 to the light receiver 12, and the inner peripheral surface of the measurement cell 6 is polished into a mirror shape. Therefore, the infrared rays from the light source 7 can be guided to the light receiver 12 so as to be substantially parallel to the axial direction of the measurement cell 6 without irregular reflection.

以上より、本発明によれば、内部に赤外線を通す測定セル6が、純アルミニウムからなり、その内周面が鏡面状に研磨されているので、その内周面6aにおいて赤外線を鏡面反射して乱反射を防ぐことができ、そのため、赤外線が透過部材15に対してその面と平行に近い角度から入射することを防ぐとともに、赤外線センサに到達する赤外線の光量の減少を防いで、濃度測定の精度の悪化を防止できる。また、赤外線を鏡面反射するので、内周面6aでの熱吸収率が低く、そのため、赤外線を効率よく導くことができる。また、測定セル6に用いる純アルミニウムは、材料自体安価でありので、測定セル6、気体サンプル室2、及び、濃度測定装置1、を安価に提供することができる。   As described above, according to the present invention, the measurement cell 6 that transmits infrared rays is made of pure aluminum and the inner peripheral surface thereof is polished into a mirror surface. Diffuse reflection can be prevented, so that infrared rays can be prevented from entering the transmissive member 15 from an angle nearly parallel to the surface, and the amount of infrared rays reaching the infrared sensor can be prevented from decreasing, and the density measurement accuracy can be prevented. Can be prevented. Moreover, since infrared rays are mirror-reflected, the heat absorption rate at the inner peripheral surface 6a is low, so that infrared rays can be efficiently guided. Moreover, since pure aluminum used for the measurement cell 6 is inexpensive, the measurement cell 6, the gas sample chamber 2, and the concentration measuring device 1 can be provided at low cost.

前述した実施形態では、測定対象の気体の濃度が低濃度である場合の透過部材15の透過する赤外線の波長を示しているが、本発明では、測定対象の気体が低濃度から高濃度(0ppmから数%)の範囲内にある場合には、測定セル6の長さを変更したり、透過部材15が測定対象の気体中での赤外線の吸収量が少ない波長の赤外線のみを透過するようにしたり、しても良い。   In the above-described embodiment, the wavelength of the infrared ray transmitted through the transmission member 15 when the concentration of the measurement target gas is low is shown. However, in the present invention, the measurement target gas has a low concentration to a high concentration (0 ppm). The length of the measurement cell 6 is changed, or the transmitting member 15 transmits only infrared light having a wavelength with a small amount of infrared absorption in the measurement target gas. Or you can do it.

さらに、実施形態では、濃度測定装置1が二酸化炭素、水蒸気、一酸化炭素の濃度を測定している。しかしながら、本発明では、濃度測定装置1がNOx、SOx、H2S、O3、CH4、NOなどの二酸化炭素、水蒸気、一酸化炭素以外の種々の気体の濃度を測定しても良い。また、本発明では、測定セル6は、円筒状以外の種々の筒状に形成されても良い。 Furthermore, in the embodiment, the concentration measuring device 1 measures the concentrations of carbon dioxide, water vapor, and carbon monoxide. However, in the present invention, the concentration measuring apparatus 1 may measure the concentrations of various gases other than carbon dioxide such as NOx, SOx, H 2 S, O 3 , CH 4 , NO, water vapor, and carbon monoxide. In the present invention, the measurement cell 6 may be formed in various cylindrical shapes other than the cylindrical shape.

また、実施形態では、赤外線センサとして熱電堆式赤外線センサを備えるものであったが、これに限定するものではなく、例えば、赤外線センサとして、光導電効果などを利用した周知の量子型赤外線センサなど、他の種類の赤外線センサを用いても良い。このような量子型赤外線センサにおいても、調熱部材によって、それ自身を周囲の温度に素早く合わせることで測定の誤差などを解消することができる。この種の量子型赤外線センサには、室温での測定に適したものとして、光導電素子の材料にPbSeを用いたもの、低温での測定に適したものとして、光導電素子の材料にPbSを用いたものなどがある。   Further, in the embodiment, the thermoelectric stack type infrared sensor is provided as the infrared sensor, but the invention is not limited thereto. For example, as the infrared sensor, a well-known quantum infrared sensor using a photoconductive effect or the like is used. Other types of infrared sensors may be used. Even in such a quantum infrared sensor, measurement errors and the like can be eliminated by quickly adjusting itself to the ambient temperature by the heat control member. This type of quantum infrared sensor is suitable for measurement at room temperature, uses PbSe as the material for the photoconductive element, and is suitable for measurement at a low temperature, and uses PbS as the material for the photoconductive element. There are things used.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる濃度測定装置の気体サンプル室の構成を模式的に示す斜視図である。It is a perspective view showing typically composition of a gas sample room of a concentration measuring device concerning one embodiment of the present invention. 図1に示された濃度測定装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the density | concentration measuring apparatus shown by FIG. 図1に示された気体サンプル室の受光ユニットの正面を模式的に示す説明図である。It is explanatory drawing which shows typically the front of the light-receiving unit of the gas sample chamber shown by FIG. 図3中のVI−VI線の断面を模式的に示す説明図である。It is explanatory drawing which shows typically the cross section of the VI-VI line in FIG. 図2に示された濃度測定装置の受光回路の構成を示す説明図である。It is explanatory drawing which shows the structure of the light-receiving circuit of the density | concentration measuring apparatus shown by FIG. 二酸化炭素の吸収スペクトラムを示したグラフである。3 is a graph showing an absorption spectrum of carbon dioxide.

符号の説明Explanation of symbols

1 濃度測定装置
2 気体サンプル室
5 マイクロコンピュータ(濃度算出部)
6 測定セル(気体セル)
7 光源
9 放熱器
10 吸熱器
11 ユニット本体
12 受光器
14 熱電堆式赤外線センサ
15 透過部材
30 リフレクタ
1 Concentration measuring device 2 Gas sample chamber 5 Microcomputer (concentration calculator)
6 Measurement cell (gas cell)
7 Light source 9 Radiator 10 Heat absorber 11 Unit body 12 Light receiver 14 Thermoelectric infrared sensor 15 Transmissive member 30 Reflector

Claims (3)

筒状に形成されており、一端部に配置された光源から放射される赤外線を、内部を通じて他端部に配置された赤外線センサに導く気体セルであって、
純アルミニウムからなり、内周面が鏡面状に研磨されていることを特徴とする気体セル。
A gas cell that is formed in a cylindrical shape and guides infrared rays emitted from a light source arranged at one end to an infrared sensor arranged at the other end through the inside,
A gas cell comprising pure aluminum and having an inner peripheral surface polished in a mirror shape.
筒状に形成された気体セルと、前記気体セルの一端部に配置され且つ赤外線を放射する光源と、前記気体セルの他端部に配置され且つ前記光源からの前記赤外線を検出する赤外線センサと、を備え、前記光源からの前記赤外線を前記気体セルの内部を通じて前記赤外線センサに導く気体サンプル室において、
前記気体セルとして、請求項1に記載の気体セルを備えていることを特徴とする気体サンプル室。
A gas cell formed in a cylindrical shape, a light source disposed at one end of the gas cell and emitting infrared light, an infrared sensor disposed at the other end of the gas cell and detecting the infrared light from the light source; In a gas sample chamber for guiding the infrared light from the light source to the infrared sensor through the inside of the gas cell,
A gas sample chamber comprising the gas cell according to claim 1 as the gas cell.
赤外線を放射する光源と前記光源からの前記赤外線を検出する赤外線センサとを備えた気体サンプル室と、前記赤外線センサが検出した前記赤外線の強さに基づいて、前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、
前記気体サンプル室として、請求項2に記載の気体サンプル室を備えていることを特徴とする濃度測定装置。
A gas sample chamber comprising a light source that emits infrared light and an infrared sensor that detects the infrared light from the light source, and a predetermined value in the gas sample chamber based on the intensity of the infrared light detected by the infrared sensor. In a concentration measuring device comprising a concentration calculating unit for calculating the concentration of gas,
A concentration measuring apparatus comprising the gas sample chamber according to claim 2 as the gas sample chamber.
JP2008227895A 2008-09-05 2008-09-05 Gas cell, gas sample chamber and concentration measuring instrument Pending JP2010060485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227895A JP2010060485A (en) 2008-09-05 2008-09-05 Gas cell, gas sample chamber and concentration measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227895A JP2010060485A (en) 2008-09-05 2008-09-05 Gas cell, gas sample chamber and concentration measuring instrument

Publications (1)

Publication Number Publication Date
JP2010060485A true JP2010060485A (en) 2010-03-18

Family

ID=42187423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227895A Pending JP2010060485A (en) 2008-09-05 2008-09-05 Gas cell, gas sample chamber and concentration measuring instrument

Country Status (1)

Country Link
JP (1) JP2010060485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242311A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Gas analyzer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232838A (en) * 1990-07-25 1992-08-21 General Analysis Corp Absorbing cell of fluid sample
JPH0666724A (en) * 1992-07-16 1994-03-11 Gaztech Internatl Corp Improvement of diffusion type gas sample chamber
JPH06222003A (en) * 1993-01-25 1994-08-12 Chino Corp Gas concentration measuring equipment
JPH08193952A (en) * 1994-08-09 1996-07-30 Furoo Syst:Kk Nondispersive infrared densitometer
JP2002139435A (en) * 2000-10-31 2002-05-17 Shimadzu Corp Isotope measuring instrument
JP2004138499A (en) * 2002-10-17 2004-05-13 Yazaki Corp Gas concentration detection sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232838A (en) * 1990-07-25 1992-08-21 General Analysis Corp Absorbing cell of fluid sample
JPH0666724A (en) * 1992-07-16 1994-03-11 Gaztech Internatl Corp Improvement of diffusion type gas sample chamber
JPH06222003A (en) * 1993-01-25 1994-08-12 Chino Corp Gas concentration measuring equipment
JPH08193952A (en) * 1994-08-09 1996-07-30 Furoo Syst:Kk Nondispersive infrared densitometer
JP2002139435A (en) * 2000-10-31 2002-05-17 Shimadzu Corp Isotope measuring instrument
JP2004138499A (en) * 2002-10-17 2004-05-13 Yazaki Corp Gas concentration detection sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242311A (en) * 2011-05-23 2012-12-10 Mitsubishi Electric Corp Gas analyzer

Similar Documents

Publication Publication Date Title
KR102409960B1 (en) Optical measurement apparatus
JP5198844B2 (en) Cloudiness detector and mirror-cooled dew point meter
JP5175654B2 (en) Gas sample chamber and concentration measuring apparatus including the gas sample chamber
JP2023056000A (en) Spectroscopic detector
JP2017053680A (en) Gas analyzer
US20150338339A1 (en) Co2 concentration sensor
JP2010060485A (en) Gas cell, gas sample chamber and concentration measuring instrument
JP2010060484A (en) Gas cell, gas sample chamber and concentration measuring instrument
TWI652969B (en) Temperature measuring method of ultraviolet light penetrating member, temperature measuring device of ultraviolet light transmitting member, light source device
JP5161012B2 (en) Concentration measuring device
JPH1137936A (en) Liquid concentration detector
JP6515749B2 (en) Detector system
JP2013205052A (en) Gas sample chamber and gas concentration measuring device
JP2006275641A (en) Spectroscopic gas sensor
JP6826814B2 (en) Optical physical quantity measuring device and its light source control method
JP4528522B2 (en) Sensor device for optical analysis
US11199493B2 (en) Functional water concentration sensor, and calculation method
JP2019045149A (en) Functional water concentration sensor
JP6681632B2 (en) Calibration method for optical property measurement system
JPS629854B2 (en)
JP2020038226A (en) Optical measurement device
KR20060088375A (en) Optical gas detect0r
JP2005091271A (en) Output monitor for laser
JPWO2018193620A1 (en) Spectral detector
JP2001194234A (en) Spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205