JP6826814B2 - Optical physical quantity measuring device and its light source control method - Google Patents

Optical physical quantity measuring device and its light source control method Download PDF

Info

Publication number
JP6826814B2
JP6826814B2 JP2016033226A JP2016033226A JP6826814B2 JP 6826814 B2 JP6826814 B2 JP 6826814B2 JP 2016033226 A JP2016033226 A JP 2016033226A JP 2016033226 A JP2016033226 A JP 2016033226A JP 6826814 B2 JP6826814 B2 JP 6826814B2
Authority
JP
Japan
Prior art keywords
light source
resistance value
state
measuring device
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016033226A
Other languages
Japanese (ja)
Other versions
JP2017150930A (en
Inventor
祐司 合田
祐司 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2016033226A priority Critical patent/JP6826814B2/en
Publication of JP2017150930A publication Critical patent/JP2017150930A/en
Application granted granted Critical
Publication of JP6826814B2 publication Critical patent/JP6826814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光学式物理量測定装置及びその光源制御方法に関し、より詳細には、測定装置本体の動作開始又は再開直後から高精度に媒質中の測定対象分子の数量や密度を測定することができる光学式物理量測定装置及びその光源制御方法に関する。 The present invention relates to an optical physical quantity measuring device and a method for controlling a light source thereof. More specifically, the quantity and density of molecules to be measured in a medium can be measured with high accuracy immediately after the start or restart of the operation of the measuring device main body. The present invention relates to an optical physical quantity measuring device and a method for controlling a light source thereof.

従来、赤外線や紫外線、X線などの光の吸収、回折、散乱等を用いて媒質中の測定対象分子の数量や密度を測定する方法が知られている。
例えば、赤外線光源を用いて測定対象ガスの濃度測定を行うガス濃度測定装置としては、非分散赤外線吸収型(Non−Dispersive Infrared)ガス濃度測定装置が知られている。非分散赤外線吸収型ガス濃度測定装置は、ガスの種類によって吸収される赤外線の波長が異なることを利用し、この吸収量を検出することによりそのガス濃度を測定する。
この原理を用いたガス濃度測定装置として、例えば、測定対象ガスが吸収特性を持つ波長に限定した赤外線を透過するフィルタ(透過部材)と赤外線センサとを組み合わせ、測定対象ガスが吸収する赤外線の吸収量を測定することによってガスの濃度を測定するように構成された装置が挙げられる。
Conventionally, a method of measuring the quantity and density of measurement target molecules in a medium by using absorption, diffraction, scattering, etc. of light such as infrared rays, ultraviolet rays, and X-rays is known.
For example, as a gas concentration measuring device for measuring the concentration of a gas to be measured using an infrared light source, a non-dispersive infrared gas concentration measuring device is known. The non-dispersed infrared absorption type gas concentration measuring device utilizes the fact that the wavelength of infrared rays absorbed differs depending on the type of gas, and measures the gas concentration by detecting the absorbed amount.
As a gas concentration measuring device using this principle, for example, a filter (transmissive member) that transmits infrared rays limited to a wavelength in which the measurement target gas has absorption characteristics and an infrared sensor are combined to absorb infrared rays absorbed by the measurement target gas. Examples include devices configured to measure the concentration of gas by measuring the amount.

また、この原理を応用した炭酸ガス濃度測定装置が、特許文献1に開示されている。この特許文献1に開示された炭酸ガス濃度測定装置は、測定対象ガスによる赤外線の吸収が生じない波長域(以下、「測定対象ガスによる非吸収帯域」、又は単に「非吸収帯域」と称する場合がある)の赤外線を選択的に透過する参照用フィルタと、測定対象ガスによる赤外線の吸収が生じる波長域(以下、「測定対象ガスによる吸収帯域」、又は単に「吸収帯域」と称する場合がある)の赤外線を選択的に透過する測定用フィルタとをそれぞれ配置した赤外線検出素子を複数配置し、それぞれの赤外線検出素子からの出力信号に基づいて測定対象ガスの検出や濃度測定を行う。
このような炭酸ガス濃度測定装置及び炭酸ガス検出方法は、検出精度や出力の安定性を向上させることができることが、特許文献1には記載されている。以下、炭酸ガスを含めてガス濃度を測定する装置及び方法を総称してガス濃度測定装置及びガス濃度測定方法という。
Further, a carbon dioxide concentration measuring device to which this principle is applied is disclosed in Patent Document 1. The carbon dioxide concentration measuring device disclosed in Patent Document 1 is a wavelength range in which infrared rays are not absorbed by the measurement target gas (hereinafter, referred to as "non-absorption band by measurement target gas" or simply "non-absorption band". A reference filter that selectively transmits infrared rays (there is) and a wavelength range in which infrared rays are absorbed by the measurement target gas (hereinafter, may be referred to as "absorption band by measurement target gas" or simply "absorption band". ), A plurality of infrared detection elements each having a measurement filter that selectively transmits infrared rays are arranged, and the measurement target gas is detected and the concentration is measured based on the output signal from each infrared detection element.
It is described in Patent Document 1 that such a carbon dioxide concentration measuring device and a carbon dioxide detecting method can improve detection accuracy and output stability. Hereinafter, the apparatus and method for measuring the gas concentration including carbon dioxide gas are collectively referred to as a gas concentration measuring apparatus and a gas concentration measuring method.

例えば、特許文献1に開示された炭酸ガス濃度測定装置の動作原理は、波長による吸収度合いの差異を炭酸ガス検出に応用したものである。光源であるセラミックヒータから放射された赤外線において、波長4.3μm付近の赤外線は、気体容器内の炭酸ガスにより吸収されて、その放射強度が低下する。一方、波長3.9μm付近の赤外線は、炭酸ガスによる吸収はなく、その放射強度が低下することはない。そして、ガス測定装置の気体容器内を通過した異なる波長を含む赤外線から、波長4.3μmと波長3.9μmとの2波を、2波それぞれに対応した通過帯域を有する2種類の光学フィルタで濾波選別する。これら波長の異なる赤外線それぞれの放射強度に基づいて、気体容器内の炭酸ガスの濃度が算出される。
セラミックヒータの放射強度分布は、炭酸ガスの赤外線吸収スペクトルを含み、2μm〜50μmの波長領域でブロードであり、炭酸ガスの赤外線吸収スペクトル付近の波長領域で十分な放射強度を有する。したがって、光源にセラミックヒータを用いたガス測定装置の検出精度及び出力の安定性は向上する。
For example, the operating principle of the carbon dioxide concentration measuring device disclosed in Patent Document 1 applies the difference in the degree of absorption depending on the wavelength to carbon dioxide detection. In the infrared rays radiated from the ceramic heater as a light source, the infrared rays having a wavelength of about 4.3 μm are absorbed by the carbon dioxide gas in the gas container, and the radiant intensity is lowered. On the other hand, infrared rays having a wavelength of around 3.9 μm are not absorbed by carbon dioxide gas, and their radiant intensity does not decrease. Then, from infrared rays containing different wavelengths that have passed through the gas container of the gas measuring device, two waves having a wavelength of 4.3 μm and a wavelength of 3.9 μm are transmitted by two types of optical filters having a pass band corresponding to each of the two waves. Filter wave selection. The concentration of carbon dioxide in the gas container is calculated based on the radiant intensity of each of these infrared rays having different wavelengths.
The radiation intensity distribution of the ceramic heater includes the infrared absorption spectrum of carbon dioxide gas, is broad in the wavelength region of 2 μm to 50 μm, and has sufficient radiation intensity in the wavelength region near the infrared absorption spectrum of carbon dioxide gas. Therefore, the detection accuracy and output stability of the gas measuring device using the ceramic heater as the light source are improved.

特開平9−33431号公報Japanese Unexamined Patent Publication No. 9-33431

例えば、従来技術による非分散赤外線吸収型ガス濃度測定装置は、種々の方法で光源を動作させ赤外線検出部で検出された信号を用いている。このとき、例えば、光源を所定時間点灯させている間に赤外線検出部から検出された信号の最大値や、光源が点灯している時の所定期間に赤外線検出部から検出された信号を積分した値や、光源の点灯開始から所定時間経過後に赤外線検出部で検出された信号などを用いている。
また、実際のガス濃度測定装置の使用においては、必要とされるガス濃度測定結果の更新速度に応じて光源を周期的に点滅させたり、光源の発光強度を周期的に変化させることで消費電力を低減することができる。この周期動作による低消費電力化は、例えば、電力供給を断つ消灯状態と、ある既定の駆動条件で電力を供給する点灯状態を交互に繰り返すことによって実現できるし、また、上述した消灯の代わりに他のある既定の駆動条件で電力を供給する状態を交互に繰り返すことによっても実現できる。
For example, the non-dispersed infrared absorption type gas concentration measuring device according to the prior art operates a light source by various methods and uses a signal detected by an infrared detection unit. At this time, for example, the maximum value of the signal detected from the infrared detector while the light source is lit for a predetermined time and the signal detected from the infrared detector during the predetermined period when the light source is lit are integrated. The value and the signal detected by the infrared detection unit after a lapse of a predetermined time from the start of lighting of the light source are used.
Further, in the actual use of the gas concentration measuring device, power consumption is consumed by periodically blinking the light source or periodically changing the emission intensity of the light source according to the required update speed of the gas concentration measurement result. Can be reduced. The power consumption can be reduced by this periodic operation, for example, by alternately repeating the off state in which the power supply is cut off and the on state in which the power is supplied under a certain predetermined drive condition, and instead of the above-mentioned turn-off state. It can also be achieved by alternately repeating the state of supplying power under certain other predetermined drive conditions.

しかし、光源は電力の供給に応じて発熱し、光源の温度は時間とともに変化する。このとき、光源の温度変化によって光源から出力される赤外線の光量やスペクトルも変化する。このとき、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒータを光源として使用する場合は、熱源でもある光源からの黒体輻射として光が放出されるので、原理的に光源の温度変化は光量やスペクトルの変化となる。 However, the light source generates heat in response to the supply of electric power, and the temperature of the light source changes with time. At this time, the amount and spectrum of infrared rays output from the light source also change due to the temperature change of the light source. At this time, when an incandescent light bulb, a ceramic heater, or a MEMS (Micro Spectrum Mechanical Systems) heater is used as a light source, light is emitted as blackbody radiation from the light source which is also a heat source, so that the temperature change of the light source is in principle. The amount of light and the spectrum will change.

また、水銀ランプを光源として使用する場合には、光源周囲の温度が変化するとランプ内の水銀の蒸気圧が変化することに依り、半導体材料を用いたLEDなどを光源として使用する場合は半導体の温度特性により、光源としての温度特性が現れ、光量やスペクトルが変化する。
上述した周期動作を一定周期のもと十分な時間繰り返すと、例えば、周期動作が点滅動作である場合、点灯開始直後の光源の温度、赤外線の光量やスペクトルは周期毎に各々毎回同じ値になり、毎回の点灯開始から一定の時間経過後に光源から出力される赤外線の光量やスペクトルは毎回同じ値になることが期待されるが、光源が十分に冷えている状態からの点滅動作開始直後等は前述の物理量が毎回同じ値になることは期待できない。よって、ガス濃度測定装置の動作開始直後から精度よくガス濃度を算出するためには何らかの対策が必要となる。
Further, when a mercury lamp is used as a light source, the vapor pressure of mercury in the lamp changes when the temperature around the light source changes. Therefore, when an LED or the like made of a semiconductor material is used as a light source, the semiconductor is used. Depending on the temperature characteristics, the temperature characteristics as a light source appear, and the amount of light and the spectrum change.
When the above-mentioned periodic operation is repeated for a sufficient time under a fixed period, for example, when the periodic operation is a blinking operation, the temperature of the light source immediately after the start of lighting, the amount of infrared light, and the spectrum become the same values for each cycle. , It is expected that the amount and spectrum of infrared rays output from the light source will be the same each time after a certain period of time has passed from the start of each lighting, but immediately after the blinking operation starts from the state where the light source is sufficiently cold, etc. It cannot be expected that the above-mentioned physical quantities will be the same value every time. Therefore, some measures are required to accurately calculate the gas concentration immediately after the start of operation of the gas concentration measuring device.

これらの課題は、非分散赤外線吸収型ガス濃度測定装置に限らず、光源を有し、光の吸収、回折、散乱等を用いて媒質中の測定対象分子の数量や密度を測定する物理量測定装置に共通のものであり、また、測定対象媒質についても気相、液相、固相に依らず共通のものである。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、測定装置本体の動作開始又は再開直後から高精度に媒質中の測定対象分子の数量や密度を測定することができる光学式物理量測定装置及びその光源制御方法を提供することにある。
These issues are not limited to non-dispersive infrared absorption type gas concentration measuring devices, but are physical quantity measuring devices that have a light source and measure the quantity and density of molecules to be measured in a medium by using light absorption, diffraction, scattering, etc. In addition, the medium to be measured is also common regardless of the gas phase, liquid phase, or solid phase.
The present invention has been made in view of such a problem, and an object of the present invention is to measure the quantity and density of measurement target molecules in a medium with high accuracy immediately after the start or restart of the operation of the measuring device main body. It is an object of the present invention to provide an optical physical quantity measuring device capable of the present invention and a method for controlling a light source thereof.

本発明の第1の態様は、装置本体内に収納された光源を周期的に点灯及び消灯するように駆動する光学式物理量測定装置であって、前記光源が出力する光に応じた信号を測定出力として出力する測定用光検出部と、前記光源の状態を取得する光源状態検出部と、前記光源の駆動状態を制御する光源制御部と、前記測定用光検出部からの測定出力に基づいて測定対象分子の数量又は密度を算出する演算部と、を備え、前記光源状態検出部が、前記光源と前記光源制御部の間に設けられ、前記光源の抵抗値を取得し、取得した前記抵抗値と基準抵抗値とを比較することで前記光源の状態を取得するものであって、前記光源制御部が、前記光源を予め設定した周期目に駆動する際は、前記抵抗値が前記基準抵抗値より小さい間は前記光源を継続して点灯状態に維持し、前記抵抗値が前記基準抵抗値以上となったとき前記光源を消灯し、前記光源の消灯から既定時間経過後に前記光源を点灯し、以後、前記光源を前記周期的に点灯及び消灯するように駆動する
また、本発明の第2の態様は、光源を周期的に点灯及び消灯するように駆動する光学式物理量測定装置の光源制御方法であって、第n(nは1以上の整数)周期目の開始時に前記光源を点灯する第1のステップと、前記第1のステップの期間中の所定のタイミングで前記光源の抵抗値を取得し、取得した前記抵抗値と基準抵抗値とを比較することで前記光源の状態を取得する第2のステップと、前記第2のステップで取得した前記光源の状態が、前記抵抗値が前記基準抵抗値より小さい間は前記光源を継続して点灯状態に維持し、前記抵抗値が前記基準抵抗値以上となったとき前記光源を消灯する第3のステップと、前記第3のステップにおいて前記光源を消灯した場合に、前記光源の消灯から既定時間経過後に前記光源を点灯する第4のステップと、を有し、前記第4のステップ以後、前記光源を前記周期的に点灯及び消灯するように駆動する
The first aspect of the present invention is an optical physical quantity measuring device that drives a light source housed in a device main body to periodically turn on and off, and measures a signal corresponding to the light output by the light source. Based on the measurement output from the measurement light detection unit that outputs as an output, the light source state detection unit that acquires the state of the light source, the light source control unit that controls the driving state of the light source, and the measurement output from the measurement light detection unit. A calculation unit for calculating the quantity or density of the molecule to be measured is provided, and the light source state detection unit is provided between the light source and the light source control unit to acquire a resistance value of the light source and obtain the resistance. The state of the light source is acquired by comparing the value with the reference resistance value, and when the light source control unit drives the light source in a preset period, the resistance value is the reference resistance. The light source is continuously kept lit while it is smaller than the value, the light source is turned off when the resistance value becomes equal to or higher than the reference resistance value, and the light source is turned on after a predetermined time has elapsed from the turning off of the light source. After that, the light source is driven to be turned on and off periodically .
A second aspect of the present invention is a light source control method for an optical physical quantity measuring device that drives a light source to be turned on and off periodically, in the nth (n is an integer of 1 or more) period. By acquiring the resistance value of the light source at a predetermined timing during the period of the first step of turning on the light source at the start and the period of the first step, and comparing the acquired resistance value with the reference resistance value. While the second step of acquiring the state of the light source and the state of the light source acquired in the second step are smaller than the reference resistance value, the light source is continuously maintained in the lit state. A third step of turning off the light source when the resistance value becomes equal to or higher than the reference resistance value, and when the light source is turned off in the third step, the light source is turned off after a predetermined time has elapsed from the turning off of the light source. It has a fourth step of turning on and off, and after the fourth step, the light source is driven so as to be turned on and off periodically .

本発明の一態様によれば、物理量測定装置の動作開始、又は再開直後から高精度に媒質中の測定対象分子の数量や密度を測定することが可能な光学式物理量測定装置及びその光源制御方法が実現できる。 According to one aspect of the present invention, an optical physical quantity measuring device and a light source control method thereof capable of measuring the quantity and density of measurement target molecules in a medium with high accuracy immediately after the operation of the physical quantity measuring device is started or restarted. Can be realized.

本発明に係る光学式物理量測定装置の実施形態1を説明するための構成図である。It is a block diagram for demonstrating Embodiment 1 of the optical physical quantity measuring apparatus which concerns on this invention. 本発明に係る光学式物理量測定装置の実施形態2を説明するための構成図である。It is a block diagram for demonstrating Embodiment 2 of the optical physical quantity measuring apparatus which concerns on this invention. 本実施形態における物理量測定装置の物理量測定方法を説明するためのフローチャートを示す図である。It is a figure which shows the flowchart for demonstrating the physical quantity measuring method of the physical quantity measuring apparatus in this embodiment. (a)乃至(d)は、本実施形態における物理量測定装置が有する光源制御方法の優位性を示す実測データを示す図である。(A) to (d) are diagrams showing actual measurement data showing the superiority of the light source control method possessed by the physical quantity measuring device in the present embodiment. 本実施形態における物理量測定装置の他の物理量測定方法を説明するためのフローチャートを示す図である。It is a figure which shows the flowchart for demonstrating another physical quantity measuring method of the physical quantity measuring apparatus in this embodiment.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかであろう。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではなく、実施形態で説明されている特徴的な構成の組み合わせの全てを含むものである。 The following detailed description describes many specific specific configurations to provide a complete understanding of embodiments of the present invention. However, it will be clear that other embodiments can be implemented without being limited to such specific specific configurations. In addition, the following embodiments do not limit the invention according to the claims, but include all combinations of characteristic configurations described in the embodiments.

以下、図面を参照して本発明の各実施形態について説明する。
<実施形態1>
図1は、本発明に係る光学式物理量測定装置の実施形態1を説明するための構成図である。
図1に示すように、本実施形態1に係る光学式物理量測定装置100は、複数の駆動条件を用いて装置本体内に収納された光源101を周期的に駆動する光学式物理量測定装置100(以下、単に物理量測定装置という)である。
測定用光検出部102は、光源101が出力する光に応じた信号を測定出力として出力する。光源状態検出部105は、光源101の状態を取得する。光源制御部103は、光源101の駆動状態を制御する。演算部104は、測定用光検出部102からの測定出力に基づいて測定対象分子の数量又は密度を算出する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Embodiment 1>
FIG. 1 is a configuration diagram for explaining the first embodiment of the optical physical quantity measuring device according to the present invention.
As shown in FIG. 1, the optical physical quantity measuring device 100 according to the first embodiment is an optical physical quantity measuring device 100 (which periodically drives a light source 101 housed in the device main body using a plurality of driving conditions. Hereinafter, it is simply referred to as a physical quantity measuring device).
The measurement light detection unit 102 outputs a signal corresponding to the light output by the light source 101 as a measurement output. The light source state detection unit 105 acquires the state of the light source 101. The light source control unit 103 controls the driving state of the light source 101. The calculation unit 104 calculates the quantity or density of the molecule to be measured based on the measurement output from the measurement light detection unit 102.

また、光源制御部103は、演算部104からの命令により光源101に対して複数の駆動条件で電力供給状態を制御し、かつ、光源状態検出部105から取得される光源状態に応じて電力供給状態を制御する。また、演算部104は、光源制御部103を介して光源101を周期的に駆動する。
本発明に係る光学式物理量測定装置の光源制御方法は、複数の駆動条件を用いて光源101を周期的に駆動する光学式物理量測定装置の光源制御方法であり、第n(nは1以上の整数)周期目の開始時に所定の駆動条件により光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する第2のステップと、第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する第3のステップと、を有する。
Further, the light source control unit 103 controls the power supply state to the light source 101 under a plurality of drive conditions by a command from the calculation unit 104, and supplies power according to the light source state acquired from the light source state detection unit 105. Control the state. Further, the calculation unit 104 periodically drives the light source 101 via the light source control unit 103.
The light source control method of the optical physical quantity measuring device according to the present invention is a light source control method of the optical physical quantity measuring device that periodically drives the light source 101 using a plurality of driving conditions, and the nth (n is 1 or more). A first step of driving the light source 101 under a predetermined driving condition at the start of the (integer) cycle, a second step of acquiring the state of the light source 101 at a predetermined timing during the period of the first step, and a second step. It has a third step of determining whether to continue or end the driving by the first step based on the state of the light source 101 acquired in the step of.

また、第n(nは1以上の整数)周期目の開始時に実行される光源101の駆動条件は、複数の駆動条件の内の1つである。また、第2のステップでは、光源101の抵抗値に基づいて光源101の状態を取得する。また、第2のステップでは、参照用光検出部(図示せず)の出力に基づいて光源101の状態を取得する。また、nは1であってもよい。
つまり、第n(nは1以上の整数)周期目の開始時には1種類以上の所定の駆動条件により、1回以上実行される、光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を用いて光源101の駆動を制御する。
Further, the driving condition of the light source 101 executed at the start of the nth (n is an integer of 1 or more) period is one of a plurality of driving conditions. Further, in the second step, the state of the light source 101 is acquired based on the resistance value of the light source 101. Further, in the second step, the state of the light source 101 is acquired based on the output of the reference light detection unit (not shown). Further, n may be 1.
That is, at the start of the nth (n is an integer of 1 or more) period, the first step of driving the light source 101 and the first step of the first step, which are executed one or more times under one or more kinds of predetermined driving conditions. The second step, which is executed once or more to acquire the state of the light source 101 at a predetermined timing during the period, and the driving by the first step are continued based on the state of the light source 101 acquired in the second step. The drive of the light source 101 is controlled using a third step, which is performed one or more times to determine whether to do or end.

まずここで、「光源を駆動する」とは、光源101に対して電力が供給されている状態を意味する。この電力の供給は、電流制御や電圧制御によって行われても良い。
また、「光源を周期的に駆動する」とは、2種類以上の複数の駆動条件により光源101を駆動する期間を複数回繰り返すことを意味する。ここで、駆動条件とは、光源101に対して供給又は印加する電力、電圧又は電流の大きさ(0を含む)及び供給時間又は印加時間である。2種以上の複数の駆動条件は、定電力を供給する条件と、電力を供給しない条件の2種でも良い。この場合、この2種の駆動条件を交互に繰り返すことで、光源101を間欠駆動することができる。
First, here, "driving the light source" means a state in which electric power is supplied to the light source 101. This power supply may be performed by current control or voltage control.
Further, "driving the light source periodically" means that the period for driving the light source 101 is repeated a plurality of times under a plurality of driving conditions of two or more types. Here, the drive conditions are the magnitude (including 0) of the electric power, voltage, or current supplied or applied to the light source 101, and the supply time or application time. The plurality of driving conditions of two or more types may be two types, a condition for supplying constant power and a condition for not supplying power. In this case, the light source 101 can be intermittently driven by alternately repeating these two types of driving conditions.

また、「周期」とは、複数の駆動条件により光源101を駆動する際、ある駆動条件の変化があって以降、この駆動条件の変化と同じ変化が生じるまでの期間を「1周期」として定義するものである。上述した間欠駆動の際には、光源101に電力を供給する期間及び電力を供給しない期間の合計の期間が「1周期」となる。なお、ここでいう「周期」は、各周期の時間間隔が必ずしも一定である必要はなく、周期毎に異なる時間間隔で光源101の駆動を行っても良い。また、「光源の状態」は、後述の方法で取得することが可能である。 Further, the "cycle" is defined as "1 cycle" when the light source 101 is driven by a plurality of driving conditions, after a change in a certain driving condition until the same change as the change in the driving condition occurs. Is what you do. In the case of the intermittent drive described above, the total period of the period for supplying power to the light source 101 and the period for not supplying power is “1 cycle”. The "cycle" referred to here does not necessarily mean that the time interval of each cycle is constant, and the light source 101 may be driven at different time intervals for each cycle. Further, the "light source state" can be acquired by the method described later.

なお、測定対象の分子を含む媒質は、少なくとも物理量測定装置100内の光源101と、測定用光検出部102との間に流入又は配置可能である。ここで、流入又は配置可能とは、光源101から出力された光が媒質に作用を及ぼした上で、その光そのものや励起光や散乱光又は反射光が測定用光検出部102に到達可能であることを意味する。
媒質が固相の場合は、光源101と測定用光検出部102の間にその置いても良い。媒質が気相の場合は、光源101と測定用光検出部102を含む適度に閉鎖された空間を用いてその中に封入しても良いし、光源101と測定用光検出部102の間の空間に媒質を直接流入しても良いし、測定に使用する光に対して十分な透過性を有する容器に入れた上でその容器を光源101と測定用光検出部102の間に置いても良い。また、媒質が液相の場合は、測定に使用する光に対して十分な透過性を有する容器に入れた上でその容器を光源101と測定用光検出部102の間に置いても良い。
The medium containing the molecule to be measured can flow in or be arranged at least between the light source 101 in the physical quantity measuring device 100 and the photodetector 102 for measurement. Here, inflow or disposition means that the light output from the light source 101 acts on the medium, and the light itself, the excitation light, the scattered light, or the reflected light can reach the measurement light detection unit 102. It means that there is.
When the medium is a solid phase, it may be placed between the light source 101 and the photodetector 102 for measurement. When the medium is a gas phase, it may be enclosed in an appropriately closed space including the light source 101 and the measurement light detection unit 102, or between the light source 101 and the measurement light detection unit 102. The medium may flow directly into the space, or it may be placed in a container having sufficient transparency to the light used for measurement and then placed between the light source 101 and the light detection unit 102 for measurement. good. When the medium is a liquid phase, the medium may be placed in a container having sufficient transparency to the light used for measurement, and then the container may be placed between the light source 101 and the light detection unit 102 for measurement.

光源101は、測定用光検出部102が感度を有する波長帯を含む光であって、測定対象の分子が吸収する光の波長帯域を含む光を出力できれば特に制限されない。例えば、測定に赤外線を用いる場合、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒータや赤外線LED(Light Emitting Diode)などが、また、例えば、測定に紫外線を用いる場合、水銀ランプや紫外線LEDなどが、また、例えば、測定にX線を用いる場合、電子ビームや電子レーザーなどが、光源101として用いることができる。本実施形態1において、光源101は、その駆動回路を含み、点灯、消灯及び出力強度調整など出力を制御する機能を含んでもよい。 The light source 101 is not particularly limited as long as the light detection unit 102 for measurement can output light including a wavelength band having sensitivity and includes the wavelength band of light absorbed by the molecule to be measured. For example, when infrared rays are used for measurement, incandescent lamps and ceramic heaters, MEMS (Micro Electro Electrical Systems) heaters and infrared LEDs (Light Emitting Video) are used. For example, when ultraviolet rays are used for measurement, mercury lamps and ultraviolet LEDs are used. For example, when X-rays are used for measurement, an electron beam, an electron laser, or the like can be used as the light source 101. In the first embodiment, the light source 101 may include a drive circuit thereof, and may include functions for controlling the output such as lighting, extinguishing, and adjusting the output intensity.

測定用光検出部102は、光源101が出力する光に応じて測定出力を出力する。測定用光検出部102は、光源101が出力する光の内、測定対象の分子に作用を及ぼす帯域を含む光を検出し、光電変換した測定出力を演算部104に出力してもよい。
また、測定用光検出部102は、上述の特性を有していれば特に制限されない。例えば、測定に赤外線を用いる場合、測定用光検出部102には、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile)、ボロメータ(Bolometer)等の熱型赤外線センサや、ダイオードやフォトトランジスタ等の量子型赤外線センサ等が好適である。また、例えば、測定に紫外線を用いる場合、ダイオードやフォトトランジスタ等の量子型紫外線センサ等が好適である。また、例えば、測定にX線を用いる場合、各種半導体センサが好適である。
The measurement light detection unit 102 outputs a measurement output according to the light output by the light source 101. The measurement light detection unit 102 may detect the light including the band that acts on the molecule to be measured among the light output by the light source 101, and output the photoelectric conversion measurement output to the calculation unit 104.
Further, the measurement light detection unit 102 is not particularly limited as long as it has the above-mentioned characteristics. For example, when infrared rays are used for measurement, the optical detection unit 102 for measurement includes a thermal infrared sensor such as a pyrolectric sensor, a thermopile, or a bolometer, or a quantum such as a diode or a phototransistor. A type infrared sensor or the like is suitable. Further, for example, when ultraviolet rays are used for measurement, a quantum type ultraviolet sensor such as a diode or a phototransistor is suitable. Further, for example, when X-rays are used for measurement, various semiconductor sensors are suitable.

演算部104は、光源制御部103を介して光源101を周期的に駆動することができ、また、第n(nは1以上の整数)周期目の開始時には1種類以上の所定の駆動条件により、1回以上実行される、光源を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで前記光源の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を用いて光源101の駆動を制御することができ、また、測定用光検出部102から取得した測定出力と事前に用意された換算式を用いて、媒質中の測定対象分子の数量や密度を算出することができれば特に制限されない。 The calculation unit 104 can periodically drive the light source 101 via the light source control unit 103, and at the start of the nth (n is an integer of 1 or more) period, one or more predetermined driving conditions are applied. A first step of driving the light source, which is executed one or more times, and a second step, which is executed once or more, of acquiring the state of the light source at a predetermined timing during the period of the first step. , The third step, which is executed one or more times, determines whether to continue or end the driving by the first step based on the state of the light source acquired in the second step. Especially if the drive can be controlled and the quantity and density of the molecules to be measured in the medium can be calculated using the measurement output acquired from the light detection unit 102 for measurement and the conversion formula prepared in advance. Not limited.

光源状態検出部105は、光源101の状態を取得できれば特に制限されない。例えば、図1に示すように、光源状態検出部105が、光源101と光源制御部103の間に設けられ、光源101の抵抗値に基づいて光源101の状態を取得してもよい。この場合、光源101の端子間の電圧と光源101に流れる電流を検出することで、光源101の抵抗値を取得してもよい。また、光源101を定電流駆動する場合は、光源101の端子間電圧を検出することで光源101の抵抗値を取得してもよい。同様に光源101を定電圧駆動する場合は光源101に流れる電流を検出することで光源101の抵抗値を取得してもよい。 The light source state detection unit 105 is not particularly limited as long as it can acquire the state of the light source 101. For example, as shown in FIG. 1, a light source state detection unit 105 may be provided between the light source 101 and the light source control unit 103 to acquire the state of the light source 101 based on the resistance value of the light source 101. In this case, the resistance value of the light source 101 may be acquired by detecting the voltage between the terminals of the light source 101 and the current flowing through the light source 101. Further, when the light source 101 is driven by a constant current, the resistance value of the light source 101 may be acquired by detecting the voltage between the terminals of the light source 101. Similarly, when the light source 101 is driven by a constant voltage, the resistance value of the light source 101 may be acquired by detecting the current flowing through the light source 101.

<実施形態2>
図2は、本発明に係る光学式物理量測定装置の実施形態2を説明するための構成図である。図1に示した実施形態1との相違は、本実施形態2においては、光源状態検出部105が、光源101から出力される光の内、測定用光検出部102とは別の波長帯に感度を有する参照用光検出部(図示せず)の出力に基づいて光源101の状態を取得する点である。
つまり、本実施形態2においては、例えば、図2に示すように、光源101から出力される光の内、測定用光検出部102とは別の波長帯に感度を有する参照用光検出部の出力に基づいて、光源101の状態を取得しても良い。この参照用光検出部が、感度を有する波長帯は測定対象ガスに作用を及ぼさない帯域で合っても良い。また、光源101の抵抗値及び参照用光検出部の出力に基づいて光源101の状態を取得してもよい。
<Embodiment 2>
FIG. 2 is a configuration diagram for explaining the second embodiment of the optical physical quantity measuring device according to the present invention. The difference from the first embodiment shown in FIG. 1 is that in the second embodiment, the light source state detection unit 105 sets the wavelength band of the light output from the light source 101 to a wavelength band different from that of the measurement light detection unit 102. The point is that the state of the light source 101 is acquired based on the output of the sensitive reference photodetector (not shown).
That is, in the second embodiment, for example, as shown in FIG. 2, the reference light detection unit having sensitivity in a wavelength band different from that of the measurement light detection unit 102 among the light output from the light source 101. The state of the light source 101 may be acquired based on the output. The wavelength band in which the reference photodetector has sensitivity may be matched in a band that does not affect the measurement target gas. Further, the state of the light source 101 may be acquired based on the resistance value of the light source 101 and the output of the reference light detection unit.

参照用光検出部には、測定用光検出部と同様に、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile)、ボロメータ(Bolometer)等の熱型赤外線センサや、ダイオードやフォトトランジスタ等の量子型赤外線センサ等が好適である。また、例えば、測定に紫外線を用いる場合、ダイオードやフォトトランジスタ等の量子型紫外線センサ等が好適である。また、例えば、測定にX線を用いる場合、各種半導体センサが好適である。 Similar to the measurement light detection unit, the reference light detection unit includes a thermal infrared sensor such as a pyrolectric sensor, a thermopile, and a bolometer, and a quantum type such as a diode and a phototransistor. An infrared sensor or the like is suitable. Further, for example, when ultraviolet rays are used for measurement, a quantum type ultraviolet sensor such as a diode or a phototransistor is suitable. Further, for example, when X-rays are used for measurement, various semiconductor sensors are suitable.

またここで、光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する方法としては、以下のような方法が一例として挙げられるが特にこの方法には限定されない。
例えば、光源101の抵抗値に基づいて光源101の状態を取得する場合、光源101の駆動により光源抵抗値が増大する場合は、光源抵抗値があらかじめ用意された基準抵抗値以上となった場合に第1のステップによる駆動を終了しても良いし、光源101の駆動により光源抵抗値が減少する場合は、光源抵抗値があらかじめ用意された基準抵抗値以下となった場合に第1のステップによる駆動を終了しても良い。この基準抵抗値は、物理量測定装置の校正時に装置個体ごとに任意に定めても良い。
Further, as a method for determining whether to continue or end the driving by the first step based on the state of the light source 101, the following method can be given as an example, but the method is not particularly limited to this method.
For example, when the state of the light source 101 is acquired based on the resistance value of the light source 101, the light source resistance value increases due to the driving of the light source 101, or the light source resistance value becomes equal to or higher than the reference resistance value prepared in advance. The drive by the first step may be terminated, and when the light source resistance value is reduced by the drive of the light source 101, the first step is performed when the light source resistance value is equal to or less than the reference resistance value prepared in advance. The drive may be terminated. This reference resistance value may be arbitrarily determined for each individual device when calibrating the physical quantity measuring device.

また、例えば、参照用光検出部の出力に基づいて、光源101の状態を取得する場合、光源101の駆動により参照用光検出部の出力が増大する場合は、参照用光検出部の出力があらかじめ用意された基準出力値以上となった場合に第1のステップによる駆動を終了しても良いし、光源101の駆動により参照用光検出部の出力が減少する場合は、参照用光検出部の出力があらかじめ用意された基準出力値以下となった場合に第1のステップによる駆動を終了しても良いし、光源101の駆動により参照用光検出部の出力が増加減少する場合は、参照用光検出部の出力があらかじめ用意された基準出力値と一致した場合やその前後の既定の範囲に到達した場合に第1のステップによる駆動を終了しても良い。この基準出力値と前記既定の範囲は、物理量測定装置の校正時に装置個体ごとに任意に定めても良い。 Further, for example, when the state of the light source 101 is acquired based on the output of the reference light detection unit, and the output of the reference light detection unit is increased by driving the light source 101, the output of the reference light detection unit is output. The drive by the first step may be terminated when the reference output value or more prepared in advance is exceeded, or when the output of the reference light detection unit is reduced by driving the light source 101, the reference light detection unit The drive by the first step may be terminated when the output of is equal to or less than the reference output value prepared in advance, or when the output of the reference light detection unit increases or decreases due to the drive of the light source 101, refer to. The drive by the first step may be terminated when the output of the light source detection unit matches the reference output value prepared in advance or when the predetermined range before and after that is reached. The reference output value and the predetermined range may be arbitrarily determined for each individual device when calibrating the physical quantity measuring device.

光源制御部103は、演算部104からの命令により光源101に対して複数の駆動条件で電力供給状態を制御することができ、かつ、光源状態検出部105から取得される光源状態に応じて電力供給状態を制御することができれば特に制限されない。光源制御部103として、例えば、アナログIC、ディジタルIC及びCPU(Central Processing Unit)等が好適である。なお、演算部104や光源101自体に光源制御部103が含まれていても良い。 The light source control unit 103 can control the power supply state to the light source 101 under a plurality of drive conditions by a command from the calculation unit 104, and the power is supplied according to the light source state acquired from the light source state detection unit 105. There is no particular limitation as long as the supply state can be controlled. As the light source control unit 103, for example, an analog IC, a digital IC, a CPU (Central Processing Unit), or the like is suitable. The light source control unit 103 may be included in the calculation unit 104 or the light source 101 itself.

ここで、簡単のために、物理量測定装置100を、赤外線を用いるガス濃度測定装置とし、光源101として白熱電球を用い、光源101を一定周期で点滅動作させる場合を考える。この点滅動作において、点灯時は定電流駆動により電力を供給し、消灯時は電力の供給を断つ。すなわち、光源制御部103は、光源101を、電力供給を断つ駆動条件と、定電流駆動により電力を供給する駆動条件を一定周期で交互に繰り返して制御する場合を考えることとする。 Here, for the sake of simplicity, consider a case where the physical quantity measuring device 100 is a gas concentration measuring device using infrared rays, an incandescent light bulb is used as the light source 101, and the light source 101 is blinked at regular intervals. In this blinking operation, power is supplied by constant current drive when it is lit, and power is cut off when it is turned off. That is, the light source control unit 103 considers a case where the light source 101 is controlled by alternately repeating the drive condition for cutting off the power supply and the drive condition for supplying the power by the constant current drive at regular intervals.

点灯時、光源101への電力供給を開始すると、光源101である白熱電球のフィラメント温度(以下「光源温度」と称する)は時間とともに上昇し、光源101から出力される赤外線の光量も光源温度と共に上昇する。この光源温度及び赤外線出力の上昇は光源101への供給電力と赤外線出力や周囲環境による熱の吸収による放出電力とが一致するまで続く。すなわち、点灯中、光源温度は昇温過程にある。また、消灯時、光源101への電力供給を断ち、消灯させると光源温度は、周囲環境温度と一致するまで徐々に下がっていく。すなわち、消灯中、光源温度は冷却過程にある。 When the power supply to the light source 101 is started at the time of lighting, the filament temperature of the incandescent light bulb which is the light source 101 (hereinafter referred to as "light source temperature") rises with time, and the amount of infrared light output from the light source 101 also increases with the light source temperature. Rise. This increase in the light source temperature and the infrared output continues until the power supplied to the light source 101 and the power released due to the infrared output and heat absorption by the ambient environment match. That is, the light source temperature is in the process of raising the temperature during lighting. Further, when the power is turned off, the power supply to the light source 101 is cut off, and when the light source is turned off, the light source temperature gradually decreases until it matches the ambient temperature. That is, while the light is off, the light source temperature is in the cooling process.

冷却過程が十分に長く、毎回光源温度が周囲環境温度と一致するまで冷却されるのであれば、光源点灯開始時の光源温度は、十分に長い時間周期的に駆動を繰り返した後(以下、定常駆動時という)でも、周期駆動開始直後又は定常駆動時の消灯時間よりも十分長い時間駆動を停止していた状態からの周期駆動再開直後(以下、まとめて、駆動開始時という)でも同じ光源温度となる。
しかし、冷却過程が、光源温度が周囲環境温度と一致するまで冷却されるほど長くない場合、2回目以降の点灯開始時の光源温度は周囲環境温度よりも高い温度となる。この点灯開始時の光源温度は間欠駆動を繰り返すことで徐々に上昇し、やがて定常駆動時の点灯開始時の光源温度に収束する。毎回の間欠駆動の点灯状態における駆動条件が同一であれば、点灯開始時の光源温度の違いは点灯開始から一定の時間経過後の光源温度の違い、すなわち、光源101から出力される赤外線の光量及びスペクトルの差異となって現れる。
If the cooling process is long enough and the light source temperature is cooled until it matches the ambient environment temperature each time, the light source temperature at the start of lighting the light source is after repeating driving periodically for a sufficiently long time (hereinafter, steady). The same light source temperature is used immediately after the start of the periodic drive or immediately after the restart of the periodic drive (hereinafter collectively referred to as the start of the drive) from the state where the drive has been stopped for a time sufficiently longer than the extinguishing time during the steady drive. It becomes.
However, if the cooling process is not long enough to be cooled until the light source temperature matches the ambient environment temperature, the light source temperature at the start of the second and subsequent lightings will be higher than the ambient environment temperature. The light source temperature at the start of lighting gradually rises by repeating intermittent driving, and eventually converges to the light source temperature at the start of lighting during steady driving. If the driving conditions in the lighting state of the intermittent drive are the same each time, the difference in the light source temperature at the start of lighting is the difference in the light source temperature after a certain time has passed from the start of lighting, that is, the amount of infrared light output from the light source 101. And it appears as a difference in spectrum.

上述したように、従来技術による非分散赤外線吸収型ガス濃度測定装置は、例えば、光源を所定時間点灯させている間に赤外線検出部から検出された信号の最大値や、光源が点灯している時の所定期間に赤外線検出部から検出された信号を積分した値や、光源の点灯開始から所定時間経過後に赤外線検出部で検出された信号などを用いている。よって、冷却過程が、毎回光源温度が周囲環境温度と一致するまで冷却されるほど長くない場合においては、ガス濃度測定装置の駆動開始時と、駆動開始から十分な時間が経過した定常駆動時とではガス濃度の算出に用いる物理量、すなわち、光源を所定時間点灯させている間に赤外線検出部から検出された信号の最大値や、光源が点灯している時の所定期間に赤外線検出部から検出された信号を積分した値や、光源の点灯開始から所定時間経過後に赤外線検出部で検出された信号などが異なってしまうため、動作開始直後は精度よくガス濃度を算出することができない。 As described above, in the non-dispersed infrared absorption type gas concentration measuring device according to the prior art, for example, the maximum value of the signal detected from the infrared detection unit while the light source is lit for a predetermined time, or the light source is lit. A value obtained by integrating the signals detected by the infrared detection unit during a predetermined period of time, a signal detected by the infrared detection unit after a predetermined time has elapsed from the start of lighting of the light source, and the like are used. Therefore, when the cooling process is not long enough to be cooled until the light source temperature matches the ambient environment temperature each time, there are two cases, one is when the gas concentration measuring device is started and the other is when a sufficient time has passed since the start of driving. Then, the physical quantity used to calculate the gas concentration, that is, the maximum value of the signal detected from the infrared detector while the light source is lit for a predetermined time, or detected from the infrared detector during a predetermined period when the light source is lit. Since the integrated value of the signals and the signal detected by the infrared detection unit after a lapse of a predetermined time from the start of lighting of the light source are different, the gas concentration cannot be calculated accurately immediately after the start of operation.

上述した例では、簡単のため、光源101として白熱電球を用い、完全な点滅動作をさせる場合について説明したが、上述したいずれの光源を用いても、光源101を消灯状態と点灯状態を交互に繰り返す、または光源101の出力を周期的に変化させる等により、光源101の駆動条件を周期的に変化させる際には駆動開始時と定常駆動時とでは、周期上の同一時刻において光源101から出力される光量やスペクトルは異なり、測定出力も異なる。 In the above-mentioned example, for the sake of simplicity, an incandescent light bulb is used as the light source 101 to perform a complete blinking operation. However, regardless of which of the above-mentioned light sources is used, the light source 101 is alternately turned off and on. When the driving conditions of the light source 101 are changed periodically by repeating or changing the output of the light source 101 periodically, the light source 101 outputs at the same time in the cycle at the start of driving and the steady driving. The amount of light and the spectrum produced are different, and the measurement output is also different.

すなわち、物理量測定装置100の駆動開始直後から、定常駆動時と同等の光源101の状態を作り出すことができれば、駆動開始時から精度よく測定対象分子の数量や密度を算出することができる。そのために、物理量測定装置100は光源101の駆動開始時に1種類以上の所定の駆動条件により、1回以上実行される、光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源101の状態に基づいて該第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を有する光源制御方法を用いることとしている。 That is, if the state of the light source 101 equivalent to that at the time of steady driving can be created immediately after the start of driving of the physical quantity measuring device 100, the quantity and density of the molecules to be measured can be calculated accurately from the time of starting driving. Therefore, the physical quantity measuring device 100 is executed one or more times under one or more predetermined driving conditions at the start of driving the light source 101, during the first step of driving the light source 101 and during the period of the first step. Whether to continue the driving by the second step, which is executed once or more to acquire the state of the light source 101 at a predetermined timing, and the state of the light source 101 acquired in the second step. A light source control method comprising a third step, which is performed one or more times to determine whether to end, is to be used.

この光源制御方法により物理量測定装置100は、光源101の駆動開始時から光源101の状態を定常駆動時と一致させることができ、精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出することができる。
また、実際には定常駆動時にも外気温度の変化等により、光源101の点灯開始時の光源101の温度は周期ごとに変化し得る。よって、定常駆動時であっても精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出するために、毎回の点灯開始時の光源101の状態は揃えられることが望ましい。そのために、物理量測定装置100は第n(nは1以上の整数)周期目の開始時に1種類以上の所定の駆動条件により、1回以上実行される、光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を有する光源制御方法を用いてもよい。
By this light source control method, the physical quantity measuring device 100 can match the state of the light source 101 with that at the time of steady driving from the start of driving the light source 101, and can accurately match the quantity and density of the molecules to be measured (in this example, concrete). Gas concentration) can be calculated.
Further, in reality, the temperature of the light source 101 at the start of lighting of the light source 101 may change for each cycle due to a change in the outside air temperature even during steady driving. Therefore, in order to accurately calculate the quantity and density of the molecules to be measured (specifically, the gas concentration in this example) even during steady drive, the states of the light source 101 at the start of each lighting are aligned. Is desirable. Therefore, the physical quantity measuring device 100 is executed one or more times under one or more predetermined driving conditions at the start of the nth (n is an integer of 1 or more) period, and the first step of driving the light source 101. , Acquiring the state of the light source 101 at a predetermined timing during the period of the first step, the first step is executed once or more based on the second step and the state of the light source 101 acquired in the second step. A light source control method having a third step, which is executed one or more times to determine whether to continue or end the driving by the step of, may be used.

この光源制御方法により物理量測定装置100は、毎回の点灯開始時の光源101の状態を一致させることができ、精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出することができる。
また、光源101を駆動することにより光源温度が上昇すればするほど、光源温度上昇幅に対する光源状態を示す物理量の変化幅がより大きくなる場合は、毎回の点灯開始時の光源101の状態をより素早くそろえるために、毎回の点灯開始時、定電圧駆動を用いる1回目の第1ステップと、1回目の第1のステップの期間中の所定のタイミングで光源101の状態を取得する1回目の第2のステップと、1回目の第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を有し、1回目の第1ステップによる駆動終了後は定電流駆動を用いる2回目の第1ステップと、2回目の第1のステップの期間中の所定のタイミングで光源101の状態を取得する2回目の第2のステップと、2回目の第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、をする光源制御方法を用いてもよい。
By this light source control method, the physical quantity measuring device 100 can match the state of the light source 101 at the start of each lighting, and the quantity and density of the molecules to be measured with high accuracy (specifically, the gas concentration in this example). Can be calculated.
Further, when the light source temperature rises by driving the light source 101, the change width of the physical quantity indicating the light source state with respect to the light source temperature rise width becomes larger, the state of the light source 101 at the start of each lighting is changed. The first step of acquiring the state of the light source 101 at a predetermined timing during the period of the first first step using constant voltage drive and the first first step at the start of each lighting for quick alignment. The third step, which is executed one or more times, determines whether to continue or end the driving by the first step based on the state of the light source 101 acquired in the second step and the first second step. And, after the end of the drive by the first first step, the state of the light source 101 is changed at a predetermined timing during the period of the second first step and the second first step using constant current drive. It is executed one or more times to determine whether to continue or end the driving by the first step based on the state of the light source 101 acquired in the second second step to be acquired and the second step of the second time. You may use the light source control method which performs the third step.

この光源制御方法により物理量測定装置100は、毎回の点灯開始時の光源101の状態を素早く一致させることができ、精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出することができる。なお、駆動することにより光源温度が上昇すればするほど、光源温度上昇幅に対する光源状態を示す物理量の変化幅がより大きくなる光源101として白熱電球を、物理量として白熱電球のフィラメント抵抗値を用いても良い。
上述した実施形態及び後述する実施例は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
By this light source control method, the physical quantity measuring device 100 can quickly match the state of the light source 101 at the start of each lighting, and can accurately match the quantity and density of the molecule to be measured (specifically, the gas concentration in this example). ) Can be calculated. An incandescent light bulb is used as the light source 101, and the filament resistance value of the incandescent light bulb is used as the physical quantity, as the change width of the physical quantity indicating the light source state with respect to the light source temperature rise width becomes larger as the light source temperature rises by driving. Is also good.
The above-described embodiment and the examples described later exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, and structure of components. , Arrangement, etc. are not specified. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

以下、本実施形態による物理量測定装置100について実施例を用いてより具体的に説明する。
図3は、本実施形態における物理量測定装置の物理量測定方法を説明するためのフローチャートを示す図である。
物理量測定装置100は、まず、ステップS101では、測定出力(最大値)を初期化して光源101を点灯する。ステップS101の次のステップS102では、測定用光検出部102から最新の測定出力、測定出力(最新値)を取得する。ステップS102の次のステップS103では、ステップS102で取得した測定出力(最新値)がその時点で保持している測定出力(最大値)より大きければ測定出力(最新値)を新たな測定出力(最大値)として更新する。ただし、測定出力(最大値)の初期化後1回目の測定出力(最新値)に対しては、S103内の真偽判定は常に真とする。
Hereinafter, the physical quantity measuring device 100 according to the present embodiment will be described more specifically with reference to Examples.
FIG. 3 is a diagram showing a flowchart for explaining a physical quantity measuring method of the physical quantity measuring device according to the present embodiment.
First, in step S101, the physical quantity measuring device 100 initializes the measurement output (maximum value) and turns on the light source 101. In step S102 following step S101, the latest measurement output and measurement output (latest value) are acquired from the measurement light detection unit 102. In step S103 following step S102, if the measurement output (latest value) acquired in step S102 is larger than the measurement output (maximum value) held at that time, the measurement output (latest value) is changed to a new measurement output (maximum value). Value) to update. However, for the first measurement output (latest value) after the initialization of the measurement output (maximum value), the authenticity determination in S103 is always true.

ステップ103の次のステップ104では、光源抵抗値を取得することで光源状態を取得し、光源抵抗値が基準抵抗値未満であれば光源を点灯した状態のまま、ステップS102に戻り、基準抵抗値以上であればステップS105に進む。ステップS105では、光源101を消灯し、保持している測定出力(最大値)に基づいて物理量を算出する。
ステップS105の次のステップS106では、物理量測定装置100が測定終了の命令を受けているかを判定し、その結果が真であれば測定を終了し、偽であればステップS107に進む。ステップS107では、直前の光源消灯から既定時間経過しているかを判定し、判定結果が真となるまでステップS107にとどまる。
In step 104 following step 103, the light source state is acquired by acquiring the light source resistance value, and if the light source resistance value is less than the reference resistance value, the process returns to step S102 with the light source lit, and the reference resistance value is returned. If the above is the case, the process proceeds to step S105. In step S105, the light source 101 is turned off, and the physical quantity is calculated based on the measured output (maximum value) held.
In step S106 following step S105, it is determined whether the physical quantity measuring device 100 has received the measurement end command, and if the result is true, the measurement is ended, and if the result is false, the process proceeds to step S107. In step S107, it is determined whether a predetermined time has elapsed since the light source was turned off immediately before, and the process remains in step S107 until the determination result becomes true.

ステップS107の次のステップ108では、ステップ101と同様に測定出力(最大値)を初期化して光源101を点灯する。ステップS108の次のステップS109では、ステップS102と同様に測定出力(最新値)を取得する。ステップS109の次のステップS110では、ステップS103と同様に測定出力(最大値)を更新する。ステップS110の次のステップS111では、直前の光源点灯から規定時間経過しているかを判定し、判定結果が偽ならばステップS109に戻り、真ならばステップS112に進む。
ステップS112では、ステップS105と同様に光源101を消灯し、保持している測定出力(最大値)に基づいて物理量を算出する。ステップS112の次のステップS113では、ステップS106と同様に物理量測定装置100が測定終了の命令を受けている場合は測定を終了し、そうでない場合はステップS107に戻る。
In step 108 following step S107, the measurement output (maximum value) is initialized and the light source 101 is turned on in the same manner as in step 101. In step S109 following step S108, the measurement output (latest value) is acquired in the same manner as in step S102. In step S110 following step S109, the measurement output (maximum value) is updated in the same manner as in step S103. In step S111 following step S110, it is determined whether a predetermined time has elapsed since the light source was turned on immediately before, and if the determination result is false, the process returns to step S109, and if true, the process proceeds to step S112.
In step S112, the light source 101 is turned off in the same manner as in step S105, and the physical quantity is calculated based on the measured output (maximum value) held. In step S113 following step S112, the measurement is terminated when the physical quantity measuring device 100 is instructed to end the measurement as in step S106, and the process returns to step S107 otherwise.

本実施形態における物理量測定装置100は、光源101を周期的に駆動して物理量を算出するが、第2周期目以降の測定についてはステップS107からステップS113までを繰り返すことで一定時間周期で光源101を点灯、消灯する。一方、第1周期目の測定については光源101点灯後、光源抵抗値が基準光源抵抗値以上になるまで消灯を行わない。この基準光源抵抗値には第2周期目以降に一定時間周期での光源101の点灯、消灯を十分に繰り返した場合にステップS112で光源101を消灯する直前の光源抵抗値を用いる。
こうすることで、本実施形態における物理量測定装置100は、第1周期目から定常動作時の測定出力(最大値)と同等の値を用いて物理量を算出することができ、精度よく測定対象分子の数量や密度を算出することができる。
The physical quantity measuring device 100 in the present embodiment periodically drives the light source 101 to calculate the physical quantity, but for the measurement after the second cycle, the light source 101 is periodically repeated from step S107 to step S113. Turns on and off. On the other hand, for the measurement in the first cycle, after the light source 101 is turned on, it is not turned off until the light source resistance value becomes equal to or higher than the reference light source resistance value. For this reference light source resistance value, the light source resistance value immediately before turning off the light source 101 in step S112 is used when the light source 101 is turned on and off sufficiently repeatedly in a fixed time cycle after the second cycle.
By doing so, the physical quantity measuring device 100 in the present embodiment can calculate the physical quantity using a value equivalent to the measurement output (maximum value) during steady operation from the first cycle, and the molecule to be measured with high accuracy. The quantity and density of can be calculated.

図4(a)乃至(d)は、本実施形態における物理量測定装置が有する光源制御方法の優位性を示す実測データを示す図である。
実測データを取得する際における物理量測定装置100は、光源101の点灯時には光源101を定電流駆動している。図4(a),(b)は、それぞれ光源制御方法で光源101を駆動した際の駆動電流波形と、測定用光検出部102の出力波形である。また、図4(c),(d)は、それぞれ、第1周期目から第2周期目以降と同様の光源101の点灯、消灯を行った際の駆動電流波形と測定用光検出部102の出力波形である。
4 (a) to 4 (d) are diagrams showing actual measurement data showing the superiority of the light source control method possessed by the physical quantity measuring device in the present embodiment.
The physical quantity measuring device 100 when acquiring the actual measurement data drives the light source 101 with a constant current when the light source 101 is lit. 4 (a) and 4 (b) are a drive current waveform when the light source 101 is driven by the light source control method, and an output waveform of the measurement light detection unit 102, respectively. Further, FIGS. 4 (c) and 4 (d) show the drive current waveform and the measurement light detection unit 102 when the light source 101 is turned on and off in the same manner as in the first to second cycles, respectively. This is the output waveform.

図4(d)の測定用光検出部102の出力波形は、第1周期目には第2周期目以降と比べて小さな出力しか得られていないが、図4(b)の測定用光検出部102の出力波形は、第1周期目から第2周期目以降と同等の出力を得ることが出来ていることがわかる。これは図4(c)と図4(a)を比較すればわかるように、光源101が冷えている第1周期目のみ以降より長い時間駆動することで実現されている。
なおここでは、第1周期目にのみ、光源101の状態を取得するステップが存在しているが、本発明はこの形態のみに限られず、第2周期目以降にも光源101の状態を取得するステップを有してもよい。またここでは、光源101の状態を光源抵抗値に基づいて取得するステップが存在しているが、本発明はこの形態のみに限られず、参照用光検出部の出力に基づいて光源101の状態を取得するステップを有してもよい。
The output waveform of the measurement light detection unit 102 of FIG. 4 (d) is smaller than that of the second and subsequent cycles in the first cycle, but the measurement light detection of FIG. 4 (b) is obtained. It can be seen that the output waveform of the unit 102 can obtain the same output as that of the first cycle to the second cycle and thereafter. As can be seen by comparing FIG. 4 (c) and FIG. 4 (a), this is realized by driving the light source 101 for a longer time than after only the first period in which it is cold.
Here, there is a step of acquiring the state of the light source 101 only in the first cycle, but the present invention is not limited to this embodiment, and the state of the light source 101 is acquired in the second and subsequent cycles as well. It may have steps. Further, here, there is a step of acquiring the state of the light source 101 based on the light source resistance value, but the present invention is not limited to this embodiment, and the state of the light source 101 is obtained based on the output of the reference light detection unit. It may have a step to acquire.

図5は、本実施形態における物理量測定装置で実施される他の物理量測定方法を説明するためのフローチャートを示す図である。
図5に示すように、本実施形態における物理量測定装置100は、まずステップS201では測定出力(最大値)を初期化して光源101を点灯する。ステップS201の次のステップS202では、測定用光検出部102から最新の測定出力、測定出力(最新値)を取得する。ステップS202の次のステップS203では、ステップS202で取得した測定出力(最新値)がその時点で保持している測定出力(最大値)より大きければ測定出力(最新値)を新たな測定出力(最大値)として更新する。ただし、測定出力(最大値)の初期化後1回目の測定出力(最新値)に対しては、S203内の真偽判定は常に真とする。
FIG. 5 is a diagram showing a flowchart for explaining another physical quantity measuring method implemented by the physical quantity measuring device in the present embodiment.
As shown in FIG. 5, the physical quantity measuring device 100 in the present embodiment first initializes the measurement output (maximum value) in step S201 and turns on the light source 101. In step S202 following step S201, the latest measurement output and measurement output (latest value) are acquired from the measurement light detection unit 102. In step S203 following step S202, if the measurement output (latest value) acquired in step S202 is larger than the measurement output (maximum value) held at that time, the measurement output (latest value) is changed to a new measurement output (maximum value). Value) to update. However, for the first measurement output (latest value) after the initialization of the measurement output (maximum value), the authenticity determination in S203 is always true.

ステップ203の次のステップ204では、光源抵抗値を取得することで光源状態を取得し、光源抵抗値が基準抵抗値未満であればステップS202に、基準抵抗値以上であればステップS205に進む。ステップS205では光源101を消灯し、保持している測定出力(最大値)に基づいて物理量を算出する。ステップS205の次のステップS206では、物理量測定装置100が測定終了の命令を受けているかを判定し、その結果が真であれば測定を終了し、偽であればステップS207に進む。ステップS207では、直前の光源消灯から既定時間経過しているかを判定し、判定結果が真となるまでステップS207にとどまり、判定結果が真となるとステップS201に戻る。 In step 204 following step 203, the light source state is acquired by acquiring the light source resistance value, and if the light source resistance value is less than the reference resistance value, the process proceeds to step S202, and if the light source resistance value is equal to or more than the reference resistance value, the process proceeds to step S205. In step S205, the light source 101 is turned off, and the physical quantity is calculated based on the measured output (maximum value) held. In step S206 following step S205, it is determined whether the physical quantity measuring device 100 has received the measurement end command, and if the result is true, the measurement is ended, and if the result is false, the process proceeds to step S207. In step S207, it is determined whether or not a predetermined time has elapsed since the light source was turned off immediately before, and the process remains in step S207 until the determination result becomes true, and returns to step S201 when the determination result becomes true.

本実施形態における物理量測定装置100は、光源101を周期的に駆動して物理量を算出するが、光源101点灯後、光源抵抗値が基準光源抵抗値以上になるまで消灯を行わない。この基準光源抵抗値には十分に長い時間一定時間周期での光源101の点灯、消灯を十分に繰り返した場合の光源101を消灯する直前の光源抵抗値を用いる。
こうすることで、本実施形態における物理量測定装置100は、毎回の光源101の消灯時の状態を一致させることができ、その結果、単に既定の時間で点灯と消灯を周期的に繰り返す場合と比べて、次の点灯開始時の光源101の状態を毎回揃えることができ、これにより毎周期、既定の定常動作時の測定出力(最大値)と同等の値を用いて物理量を算出することができ、精度よく測定対象分子の数量や密度を算出することができる。
以上、本発明の各実施形態について説明したが、本発明の技術的範囲は、上述した実施形態に記載の技術的範囲には限定されない。上述した実施形態に、多様な変更又は改良を加えることも可能であり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
The physical quantity measuring device 100 in the present embodiment periodically drives the light source 101 to calculate the physical quantity, but does not turn off the light source 101 until the light source resistance value becomes equal to or higher than the reference light source resistance value after the light source 101 is turned on. For this reference light source resistance value, the light source resistance value immediately before turning off the light source 101 when the light source 101 is turned on and off sufficiently repeatedly for a sufficiently long period of time is used.
By doing so, the physical quantity measuring device 100 in the present embodiment can match the state when the light source 101 is turned off each time, and as a result, as compared with the case where the light source 101 is turned on and off periodically at a predetermined time. Therefore, the state of the light source 101 at the start of the next lighting can be adjusted every time, and the physical quantity can be calculated using a value equivalent to the measurement output (maximum value) at the time of the predetermined steady operation every cycle. , The quantity and density of the molecule to be measured can be calculated accurately.
Although each embodiment of the present invention has been described above, the technical scope of the present invention is not limited to the technical scope described in the above-described embodiment. From the description of the scope of claims, it is possible to make various changes or improvements to the above-described embodiments, and the technical scope of the present invention may include such modifications or improvements. it is obvious.

100 物理量測定装置
101 光源
102 測定用光検出器
103 光源制御部
104 演算部
105 光源状態検出部
100 Physical quantity measuring device 101 Light source 102 Photodetector for measurement 103 Light source control unit 104 Calculation unit 105 Light source state detection unit

Claims (6)

装置本体内に収納された光源を周期的に点灯及び消灯するように駆動する光学式物理量測定装置であって、
前記光源が出力する光に応じた信号を測定出力として出力する測定用光検出部と、
前記光源の状態を取得する光源状態検出部と、
前記光源の駆動状態を制御する光源制御部と、
前記測定用光検出部からの測定出力に基づいて測定対象分子の数量又は密度を算出する演算部と、
を備え、
前記光源状態検出部が、前記光源と前記光源制御部の間に設けられ、前記光源の抵抗値を取得し、取得した前記抵抗値と基準抵抗値とを比較することで前記光源の状態を取得するものであって、
前記光源制御部が、前記光源を予め設定した周期目に駆動する際は、前記抵抗値が前記基準抵抗値より小さい間は前記光源を継続して点灯状態に維持し、前記抵抗値が前記基準抵抗値以上となったとき前記光源を消灯し、前記光源の消灯から既定時間経過後に前記光源を点灯し、以後、前記光源を前記周期的に点灯及び消灯するように駆動する光学式物理量測定装置。
An optical physical quantity measuring device that drives the light source housed in the device body to turn on and off periodically.
A photodetector for measurement that outputs a signal corresponding to the light output by the light source as a measurement output,
A light source state detection unit that acquires the state of the light source,
A light source control unit that controls the driving state of the light source,
A calculation unit that calculates the quantity or density of the molecule to be measured based on the measurement output from the measurement light detection unit.
With
The light source state detection unit is provided between the light source and the light source control unit, acquires the resistance value of the light source, and acquires the state of the light source by comparing the acquired resistance value with the reference resistance value. To do
When the light source control unit drives the light source in a preset period, the light source is continuously kept lit while the resistance value is smaller than the reference resistance value, and the resistance value is the reference. An optical physical quantity measuring device that turns off the light source when the resistance value or more is reached, turns on the light source after a predetermined time has elapsed from the turning off of the light source, and then drives the light source to turn on and off periodically. ..
前記光源制御部が、測定開始後の第1周期目のみ前記光源を点灯した後の前記光源の状態に基づいて前記光源を継続して点灯し、その後消灯するように制御する請求項1に記載の光学式物理量測定装置。 The first aspect of the present invention, wherein the light source control unit controls the light source to be continuously turned on and then turned off based on the state of the light source after the light source is turned on only in the first cycle after the start of measurement. Optical physical quantity measuring device. 前記光源制御部が、前記演算部からの命令により前記光源に対して複数の駆動条件で電力供給状態を制御し、かつ、前記光源状態検出部から取得される光源状態に応じて電力供給状態を制御する請求項1又は請求項2に記載の光学式物理量測定装置。 The light source control unit controls the power supply state for the light source under a plurality of drive conditions by a command from the calculation unit, and sets the power supply state according to the light source state acquired from the light source state detection unit. The optical physical quantity measuring device according to claim 1 or 2, which is controlled. 前記演算部が、前記光源制御部を介して前記光源を周期的に駆動する請求項1から請求項3のいずれか一項に記載の光学式物理量測定装置。 The optical physical quantity measuring device according to any one of claims 1 to 3, wherein the calculation unit periodically drives the light source via the light source control unit. 光源を周期的に点灯及び消灯するように駆動する光学式物理量測定装置の光源制御方法であって、
第n(nは1以上の整数)周期目の開始時に前記光源を点灯する第1のステップと、
前記第1のステップの期間中の所定のタイミングで前記光源の抵抗値を取得し、取得した前記抵抗値と基準抵抗値とを比較することで前記光源の状態を取得する第2のステップと、
前記第2のステップで取得した前記光源の状態が、前記抵抗値が前記基準抵抗値より小さい間は前記光源を継続して点灯状態に維持し、前記抵抗値が前記基準抵抗値以上となったとき前記光源を消灯する第3のステップと、
前記第3のステップにおいて前記光源を消灯した場合に、前記光源の消灯から既定時間経過後に前記光源を点灯する第4のステップと、を有し、
前記第4のステップ以後、前記光源を前記周期的に点灯及び消灯するように駆動する光学式物理量測定装置の光源制御方法。
A light source control method for an optical physical quantity measuring device that drives a light source to turn on and off periodically.
The first step of turning on the light source at the start of the nth (n is an integer of 1 or more) period, and
The second step of acquiring the resistance value of the light source at a predetermined timing during the period of the first step and acquiring the state of the light source by comparing the acquired resistance value with the reference resistance value.
While the state of the light source acquired in the second step is smaller than the reference resistance value, the light source is continuously maintained in a lit state, and the resistance value becomes equal to or higher than the reference resistance value. When the third step of turning off the light source and
It has a fourth step of turning on the light source after a predetermined time has elapsed from turning off the light source when the light source is turned off in the third step .
A method for controlling a light source of an optical physical quantity measuring device that drives the light source to be turned on and off periodically after the fourth step .
前記nが1である請求項5に記載の光学式物理量測定装置の光源制御方法。 The light source control method for an optical physical quantity measuring device according to claim 5, wherein n is 1.
JP2016033226A 2016-02-24 2016-02-24 Optical physical quantity measuring device and its light source control method Active JP6826814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033226A JP6826814B2 (en) 2016-02-24 2016-02-24 Optical physical quantity measuring device and its light source control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033226A JP6826814B2 (en) 2016-02-24 2016-02-24 Optical physical quantity measuring device and its light source control method

Publications (2)

Publication Number Publication Date
JP2017150930A JP2017150930A (en) 2017-08-31
JP6826814B2 true JP6826814B2 (en) 2021-02-10

Family

ID=59741704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033226A Active JP6826814B2 (en) 2016-02-24 2016-02-24 Optical physical quantity measuring device and its light source control method

Country Status (1)

Country Link
JP (1) JP6826814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202119019A (en) * 2019-11-05 2021-05-16 華碩電腦股份有限公司 Appearance image capturing device and appearance detecting device including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115279A (en) * 1976-03-23 1977-09-27 Matsushita Electric Ind Co Ltd Gas analyzer
JPH07117454B2 (en) * 1986-12-22 1995-12-18 株式会社島津製作所 Spectrophotometer
US4981362A (en) * 1989-10-16 1991-01-01 Xerox Corporation Particle concentration measuring method and device
US5926262A (en) * 1997-07-01 1999-07-20 Lj Laboratories, L.L.C. Apparatus and method for measuring optical characteristics of an object
JPH10339697A (en) * 1997-06-09 1998-12-22 Kubota Corp Lamp burnout detector of colorimetry analyzer
CN104937395B (en) * 2013-01-17 2018-07-31 皇家飞利浦有限公司 Horizontal method and apparatus for monitoring interested gaseous species

Also Published As

Publication number Publication date
JP2017150930A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US11275059B2 (en) Apparatus and method for in-situ calibration of a photoacoustic sensor
US10508988B2 (en) Method and system for gas detection
JP5371242B2 (en) Infrared radiation source adjustment method and apparatus using the adjustment method
JP2021062289A (en) Substance concentration monitoring apparatuses and methods
CN108426837B (en) Photoacoustic gas analyzer
US20130265579A1 (en) Optical gas sensor
US20150189714A1 (en) Sensors with LED Light Sources
JP2023056000A (en) Spectroscopic detector
JP6826814B2 (en) Optical physical quantity measuring device and its light source control method
JP2006010697A (en) Method for preventing condensation in gas sensor structure
US8665424B2 (en) Optical absorption gas analyser
JP2007064632A (en) Spectrophotometer
JP5175654B2 (en) Gas sample chamber and concentration measuring apparatus including the gas sample chamber
Chowdhury et al. MEMS infrared emitter and detector for capnography applications
US20150338339A1 (en) Co2 concentration sensor
JP2005098765A (en) Light source apparatus and analyzer using the same
JP7438774B2 (en) measuring device
JP6248460B2 (en) Excitation light irradiation device
JP2010060484A (en) Gas cell, gas sample chamber and concentration measuring instrument
Shen et al. Analysis of infrared radiator of NDIR based on electro-thermal modelling
JP6062767B2 (en) Gas measuring device and gas measuring method
JP6421500B2 (en) Gas analyzer
JP2010060485A (en) Gas cell, gas sample chamber and concentration measuring instrument
JP6543126B2 (en) Gas concentration measuring device
Ling et al. A double closed-loop control system for driving high brightness LED applied in spectral measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6826814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150