JPH02169807A - Combined power plant - Google Patents

Combined power plant

Info

Publication number
JPH02169807A
JPH02169807A JP13014489A JP13014489A JPH02169807A JP H02169807 A JPH02169807 A JP H02169807A JP 13014489 A JP13014489 A JP 13014489A JP 13014489 A JP13014489 A JP 13014489A JP H02169807 A JPH02169807 A JP H02169807A
Authority
JP
Japan
Prior art keywords
condensate
condenser
storage tank
water storage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13014489A
Other languages
Japanese (ja)
Other versions
JP2764825B2 (en
Inventor
Iwao Kusaka
日下 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Publication of JPH02169807A publication Critical patent/JPH02169807A/en
Application granted granted Critical
Publication of JP2764825B2 publication Critical patent/JP2764825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To shorten the time of manipulation of start of a power plant unit without the use of complicated system by returning condensate water which has been transferred into a reserving tank insulated from the atmosphere during stop of the unit, at the time when the vacuum increases before the start. CONSTITUTION:Upon stop of a unit, condensate in a condenser 6 is transferred into a reserving tank 51 before vacuum break of a condensate pump 7. Thereby the condensate pump 7 is stopped to give a vacuum break. Thereafter, the degree of vacuum of a condenser 6 is raised during start thereof up to a predetermined value, and thereafter, shut-off valves 52, 53 are opened so as to automatically lay water in the condensor 6 without driving the other drive pump. With this arrangement, condensate may be returned to the condenser 6 in a low dissolved oxygen concentration condition without being exposed to the atmosphere, thereby it is possible to restart the unit in a short time without using deaeration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複合発電プラントに係り、特にプラント起動時
間を短縮するのに好適なプラント系統に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combined power generation plant, and particularly to a plant system suitable for shortening plant start-up time.

〔従来の技術〕[Conventional technology]

複合サイクル発電プラントは、ガスタービンの高温化に
伴ないプラント効率が良い(ガスタービン入口ガス温度
が1300℃級でプラント効率は46〜47%程度)こ
と。また起動停止操作が容易かつ起動時間も早いことか
ら、DSS (毎日起動停止)あるいは中間負荷運用に
適したプラントである。
A combined cycle power plant has good plant efficiency as the gas turbine temperature rises (plant efficiency is about 46-47% when the gas turbine inlet gas temperature is 1300°C). In addition, the plant is suitable for DSS (daily start and stop) or intermediate load operation, as the start and stop operations are easy and the start time is quick.

特に原子力発電設備の発を量に占める割合いが増大する
につれて、増々その設備計画が増える傾向にある。
In particular, as the proportion of nuclear power generation equipment in total output increases, the number of equipment plans for nuclear power generation equipment increases.

従来の蒸気サイクルプラントの系統の概要を第3図に示
すが、給水中の溶存酸素(Dot)11度を可能な限り
低く抑え、系内の腐食による事故防止のための脱気器1
2を設置している。
An overview of the system of a conventional steam cycle plant is shown in Figure 3. A deaerator 1 is installed to keep the dissolved oxygen (Dot) in the water supply as low as possible, and to prevent accidents due to corrosion within the system.
2 is installed.

なお、図中の1は廃熱回収ボイラ、2は高圧主蒸気、3
は低圧主蒸気、4は蒸気タービン、5は発電機、6は復
水器、7は復水ポンプ、8はグランドコンデンサ、9は
復水再循環系、10は加熱用蒸気、11は給水止弁、1
2は脱気器、13は給水ポンプである。
In addition, 1 in the figure is a waste heat recovery boiler, 2 is a high pressure main steam, and 3 is a waste heat recovery boiler.
is low pressure main steam, 4 is steam turbine, 5 is generator, 6 is condenser, 7 is condensate pump, 8 is ground condenser, 9 is condensate recirculation system, 10 is heating steam, 11 is water stop valve, 1
2 is a deaerator, and 13 is a water supply pump.

複合発電プラントの場合、単位ユニットの出力が小さい
故に通常、複数ユニ・ントより1プラントを構成し60
あるいは100万KWの発電を行なう。
In the case of a combined cycle power plant, since the output of each unit is small, one plant is usually composed of multiple units.
Or generate 1 million kW of power.

従ってプラント敷地の有効活用を図る目的から、第4図
に示す如く脱気器をボイラに組込む方法も採られている
。(特開昭57−84903号公轢参照) この方法はボイラのガス最下流域に脱気ボイラ35を設
置し、自ら発生した脱気用加熱蒸気40で給水の脱気を
行なうものである。
Therefore, in order to make effective use of the plant site, a method of incorporating a deaerator into the boiler as shown in FIG. 4 has been adopted. (Refer to Japanese Unexamined Patent Publication No. 57-84903.) In this method, a deaeration boiler 35 is installed in the lowest gas region of the boiler, and the feed water is deaerated using the heated deaeration steam 40 generated by the boiler.

なお、図中の30は高圧過熱器、31は高圧蒸発器、3
2は高圧節炭器、33は低圧蒸発器、34は低圧節炭器
、35は脱気ボイラ、36は給水予熱器、37は低圧給
水ポンプ、38は高圧給水ポンプ、40は脱気用加熱蒸
気である。
In addition, 30 in the figure is a high pressure superheater, 31 is a high pressure evaporator, 3
2 is a high pressure energy saver, 33 is a low pressure evaporator, 34 is a low pressure energy saver, 35 is a deaeration boiler, 36 is a feed water preheater, 37 is a low pressure feed water pump, 38 is a high pressure feed water pump, 40 is a heating for deaeration It's steam.

−gに蒸気タービン4の復水器6は、それ自体で脱気す
る機能があり、−度負荷が上昇すれば、給水中のDO□
濃度は10ppb以下に保持され、給水基1#値を満足
することが出来る。
The condenser 6 of the steam turbine 4 has a deaeration function by itself, and if the -degree load increases, the DO□ in the water supply increases.
The concentration is maintained at 10 ppb or less and can satisfy the water supply group 1# value.

但し、起動時のDoztn度を制?11する場合には別
の機能の追加が必要となり、第5図に示すような復水再
vfi環系統9によって復水を再循環しつつ、加温用蒸
気10を復水器6に導入することにより、給水の脱気の
目的が達せられる。
However, is it possible to control the Doztn degree at startup? 11, it is necessary to add another function, and the heating steam 10 is introduced into the condenser 6 while the condensate is recirculated by the condensate re-VFI ring system 9 as shown in FIG. This achieves the purpose of degassing the feed water.

その実施効果は既に実機にて確認されており、該方式を
復水器脱気方式と称している。
The effectiveness of this method has already been confirmed in actual equipment, and this method is called the condenser degassing method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図に示す従来の脱気ボイラ35の場合は、熱効率の
問題より脱気ボイラ35のガス後流側に給水予熱器36
を設置する必要があり、従って脱気前の給水を通水する
為、DSS運用プラントの場合毎起動時DO2が高く管
内腐蝕が生じ易い。
In the case of the conventional degassing boiler 35 shown in FIG. 4, a feed water preheater 36 is installed on the gas downstream side of the degassing boiler 35 due to thermal efficiency issues.
Therefore, in the case of a DSS operation plant, the DO2 is high every time the plant is started up and corrosion is likely to occur in the pipes, as the water is passed through before deaeration.

更に、第7図に示す如くガスタービンのガスMWg、ガ
ス温度Tg特性から(a)の範囲では脱気蒸気が不足し
、(b)の範囲では脱気ボイラ35からの蒸気が余る為
過不足分の蒸気の導入、排気用の系統を必要とし複雑な
系統制御構成を余儀なくされるという問題がある。
Furthermore, as shown in Fig. 7, from the gas turbine gas MWg and gas temperature Tg characteristics, in the range (a) there is a shortage of degassed steam, and in the range (b) there is excess steam from the degassed boiler 35, so there is no excess or deficiency. There is a problem in that a system for introducing and exhausting steam is required, which necessitates a complicated system control configuration.

また後者の復水器脱気方式の場合、設備としては面素化
されるが起動前の前準備に要する時間がかかるという問
題があった。即ち、DSSプラントでの夜間の所内動力
の低減を目的として復水器の真空を破壊し、翌朝の起動
を待つが、このため復水は空気中の0□を吸収し、起動
時のDO□は約10,000ppbにも達する。
In addition, in the case of the latter condenser deaeration method, although the equipment is simple, there is a problem in that it takes time to prepare before starting up. In other words, the vacuum of the condenser is destroyed in order to reduce the power consumption at night in the DSS plant, and the vacuum in the condenser is awaited for the next morning's start-up.As a result, the condensate absorbs the 0□ in the air, and the DO□ at the time of start-up is reduced. reaches approximately 10,000 ppb.

第6図は第5図の復水再循環系9及び加熱1気10によ
るDO□濃度の時間的変化を示すが、目標値1oppb
に達するには約1時間の起動前操作時間を必要とする。
FIG. 6 shows the temporal change in DO□ concentration due to the condensate recirculation system 9 and heating 10 in FIG.
Approximately 1 hour of pre-startup operation time is required to reach this point.

本発明の目的は、複雑な系統を要せず、起動操作時間を
短縮できる複合発電プラントを提供することにある。
An object of the present invention is to provide a combined power generation plant that does not require a complicated system and can shorten startup operation time.

〔課題を解決するための手段〕[Means to solve the problem]

前述の目的を達成するため、本発明(第1の発明)は、
第5図の復水器脱気方式において、ユニット停止時で真
空破壊前に復水器内の復水を大気と遮断した貯水タンク
に移送すると共に停止中Dot濃度を上げないように保
持し、起動前の復器内真空上昇した時点で復水器に戻す
ように構成されていることを特徴とするものである。
In order to achieve the above-mentioned object, the present invention (first invention)
In the condenser degassing method shown in Fig. 5, when the unit is stopped, the condensate in the condenser is transferred to a water storage tank isolated from the atmosphere before the vacuum is broken, and the Dot concentration is maintained so as not to increase while the unit is stopped. It is characterized in that it is configured to return to the condenser when the vacuum inside the condenser rises before startup.

前述の目的を達成するため、さらに本発明(第2の発明
)は、ユニット運転中でも前記復水器で脱気した給水を
大気から遮断するための貯水タンクを設け、必要時に復
水をその貯水タンクに移送し、また貯水タンクより前記
ボイラに給水できるように構成されていることを特徴と
するものである。
In order to achieve the above-mentioned object, the present invention (second invention) further provides a water storage tank for isolating the feed water deaerated by the condenser from the atmosphere even during unit operation, and stores the condensate when necessary. It is characterized in that it is configured so that water can be transferred to a tank and also supplied to the boiler from the water storage tank.

〔作用〕[Effect]

前記第1の発明では、復水は復水器が真空破壊されてい
る期間中大気と隔離されるため酸素が復水中に溶は込む
ことが無く、かつ復水器真空上昇後に戻すため、復水へ
のo2溶は込みが無い。
In the first invention, since the condensate is isolated from the atmosphere during the period when the condenser is vacuum-broken, oxygen does not dissolve into the condensate, and the condensate is returned after the vacuum rises in the condenser. There is no problem in dissolving O2 in water.

前記第2の発明では、復水は復水器内復水のDOz濃度
いかんにかかわらず隔離された貯水タンクに必要量保持
され、復水再循環系により復水器での脱気完了までの間
にその貯水タンク内低DO□給水をHR3Gに送給可能
であるから、脱気待ち時間が不要となり、短時間起動が
できる。
In the second invention, the necessary amount of condensate is retained in an isolated water storage tank regardless of the DOz concentration of the condensate in the condenser, and the condensate recirculation system is used until the deaeration in the condenser is completed. In the meantime, the low DO□ water in the water storage tank can be sent to the HR3G, so there is no need to wait for degassing, and startup can be done in a short time.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の第1実施例を示す系統図である。 FIG. 1 is a system diagram showing a first embodiment of the present invention.

排熱回収ボイラ(HR3G)1で発生した高圧主蒸気2
、低圧主蒸気3は蒸気タービン4に導入され。回転動力
を発電機5に与えて電気に置換される。
High pressure main steam 2 generated in exhaust heat recovery boiler (HR3G) 1
, low pressure main steam 3 is introduced into a steam turbine 4. The rotational power is given to the generator 5 and replaced with electricity.

仕事を終えた蒸気は復水器6で復水され、再び復水ポン
プ7にてHR3G1に給水として送られる。
The steam that has finished its work is condensed in the condenser 6, and sent again to the HR3G1 as water supply by the condensate pump 7.

ユニット停止時には所内動力低減を目的とし、復水器6
の真空を破壊するのが通例で、この場合復水器6に大気
が充満し復水の中にO!が溶は込み、翌朝起動時には飽
和点の9000〜10000ppbまでDog濃度が上
昇する。この場合)IR3GIに通水可能なりO2?I
4度toppbまで脱気することが必要で、復水を復水
再循環系9にて再循環すると共に復水器6の中で加温蒸
気10を吹き込むことにより、約1時間の後に通水可能
な基準値に至達することができる。
When the unit is stopped, the condenser 6 is
In this case, the condenser 6 is filled with air and O! is destroyed in the condensate. is dissolved, and the Dog concentration rises to the saturation point of 9,000 to 10,000 ppb at startup the next morning. In this case) Is it possible to pass water to IR3GI? I
It is necessary to deaerate to 4 degrees TOPPB, and by recirculating the condensate in the condensate recirculation system 9 and blowing heated steam 10 into the condenser 6, water can be passed after about 1 hour. Possible reference values can be reached.

通常、発電所では朝5〜6時頃負荷立上げを必要とする
が、従来法では更に1時間前より起動操作に入る必要が
あった。
Normally, a power plant needs to start up the load around 5 to 6 a.m., but in the conventional method, it was necessary to start the start-up operation an hour earlier.

本発明に依れば、停止時復水ポンプ7の真空破壊前に該
ポンプ7の稼働中に貯水タンク51に復水器6中の復水
を送水し、その後復水ポンプ7を停止して、真空破壊を
実施する。起動時には復水器6の真空度を上昇させて規
定の真空度に達した後、止弁52.53を開くことによ
り自動的に他の駆動ポンプを介することなく復水器6に
水張りを可能とする。
According to the present invention, before the vacuum of the condensate pump 7 is broken when the condensate pump 7 is stopped, the condensate in the condenser 6 is sent to the water storage tank 51 while the pump 7 is in operation, and then the condensate pump 7 is stopped. , carry out vacuum breakdown. At startup, the degree of vacuum in the condenser 6 is increased and after reaching the specified degree of vacuum, by opening the stop valves 52 and 53, it is possible to automatically fill the condenser 6 with water without going through other drive pumps. shall be.

かくして復水は、プラントの停止時に大気に触れること
が無い状態で貯水タンク51で貯蔵されるので、前記再
循環による脱気操作無しで即起動開始が可能である。復
水器6内の復水を貯水タンク51に移し替えても配雀内
の給水DOtflA度が上昇する可能性があるが、系内
残留給水容積は移し替えた復水の1/20程度の微量で
あり、また弁により遮断することも可能なので、高DO
7の滞留水はごく少量である。従って貯水タンク51内
の給水と混合した後では、はとんど問題視する程のDo
、では無くなり脱気操作を必要としても短時間で済むこ
とになる。
In this way, the condensate is stored in the water storage tank 51 in a state where it does not come into contact with the atmosphere when the plant is stopped, so that it is possible to start up the plant immediately without the deaeration operation by recirculation. Even if the condensate in the condenser 6 is transferred to the water storage tank 51, the water supply DOtflA degree in the condenser may increase, but the residual water supply volume in the system is about 1/20 of the transferred condensate. Since the amount is small and can be shut off with a valve, high DO
The amount of retained water in No. 7 is extremely small. Therefore, after mixing with the water supply in the water storage tank 51, the Do
, and even if a degassing operation is required, it will only take a short time.

尚、貯水タンク51は密封型とし浮き型タンク方式でも
良く、また図示の如く、圧力制御方式で常に例えばN、
供給段(l?ti54からのNff1ガスの供給によっ
て圧力制御する型式でもよい。なお図中の55は圧力調
整弁、56は検知装置である。
The water storage tank 51 may be of a sealed type or of a floating type, and as shown in the figure, it may be of a pressure control type, such as N,
A type in which the pressure is controlled by supplying Nff1 gas from a supply stage (l?ti 54) may also be used. In the figure, 55 is a pressure regulating valve, and 56 is a detection device.

本実施例によれば次のような効果をあげることが出来る
According to this embodiment, the following effects can be achieved.

り移動時間を約1時間短縮出来る。The travel time can be reduced by about 1 hour.

少なくとも運転員の労働時間は1時間低減出来、経費節
減を可能とする。
The operator's working time can be reduced by at least one hour, making it possible to save costs.

2)脱気の為のポンプ動力、加温用蒸気の節約で1ユニ
ット当り毎起動時の1熱量換算2X10bKcal相当
であり、年間の石油換算で約50)ン/ユニットである
2) Saving pump power for deaeration and steam for heating is equivalent to 2x10 bKcal of calorie per unit at each start-up, which is approximately 50 tons/unit in oil equivalent per year.

3)高Dotru度の給水を系内に廻さなくとも済む為
、低級材料を使用することが可能である。
3) It is possible to use low grade materials because there is no need to circulate high Dotru water into the system.

4)従来、緊急にプラント立上げを要する場合、復水器
内の高DOt’1M度復水を放出し、低DO!濃度の補
給水を入れ替えており、給水の無駄があったが節水をも
可能とする。
4) Conventionally, when it is necessary to start up a plant urgently, the high DOt'1M degree condensate in the condenser is discharged, resulting in a low DO! Concentrated make-up water is replaced, which used to waste water, but now it is possible to save water.

本発明の他の実施例としては、前述の如く貯水タンク5
1の代りに補給水タンクを使用しても機能上は同様であ
る。また第8図に本発明の第2実施例を示すが復水再循
環系9内に脱気器12を設けた例である。
As another embodiment of the present invention, as described above, the water storage tank 5
Even if a make-up water tank is used instead of 1, the function is the same. FIG. 8 shows a second embodiment of the present invention, in which a deaerator 12 is provided within the condensate recirculation system 9.

本実施例の効果は、 1)主系統とは別の為、1/10〜1/2oの容量で済
み、この場合復水の15〜20)ンを対象にすれば良い
、従って設備費も安価となる。
The effects of this embodiment are as follows: 1) Since it is separate from the main system, the capacity is only 1/10 to 1/2 o, in this case it is sufficient to target 15 to 20 o of condensate, and therefore the equipment cost is also reduced. It will be cheaper.

2)復水脱気の併用であり、脱気完了まで従来の1/6
〜115程度まで短縮が可能である。
2) Combined with condensate deaeration, the time required to complete deaeration is 1/6 of that of conventional methods.
It is possible to shorten the number to about 115.

第2図は本発明の第3実施例を示すもので、この実施例
の場合、復水器6内の空間を利用してその空間に貯水タ
ンク51を設けている。
FIG. 2 shows a third embodiment of the present invention. In this embodiment, the space inside the condenser 6 is utilized and a water storage tank 51 is provided in that space.

第9図は、本発明の第4実施例を説明するための系統図
である。
FIG. 9 is a system diagram for explaining a fourth embodiment of the present invention.

この実施例によれば、貯水タンク60へ復水を供給する
復水供給系統61を、復水ポンプ7出口より)(R3G
1入口の主給水系より分岐する。そして復水戻り系統6
2を復水ポンプ7とポンプ入口止弁64との間に接続し
、また貯水タンク60の空洞部(汽胴部)と復水器6の
空洞部との間を復水器連絡管63で接続したものである
According to this embodiment, the condensate supply system 61 that supplies condensate to the water storage tank 60 is connected to the condensate pump 7 outlet (R3G
Branches from the main water supply system at the 1st inlet. And condensate return system 6
2 is connected between the condensate pump 7 and the pump inlet stop valve 64, and a condenser connecting pipe 63 is connected between the cavity of the water storage tank 60 (steam trunk) and the cavity of the condenser 6. It is connected.

プラント運転中、復水器6内の復水は十分低いD Ot
となっており、この復水は7kg/am”から60kg
/cm”程度にポンプアップできるから、止め弁aを開
くことにより貯水タンク60への給水が容易に行なわれ
る。
During plant operation, the condensate in the condenser 6 is sufficiently low DOt
This condensate is 7 kg/am” to 60 kg.
/cm'', water can be easily supplied to the water storage tank 60 by opening the stop valve a.

プラント停止時は、止め弁a、b、cを閉じれば、給水
器6を真空破壊したとしても完全に大気と遮断され、貯
水タンク60中のDo、?!1度を上昇させることはな
い。
When the plant is stopped, if the stop valves a, b, and c are closed, even if the water supply device 6 is vacuum-broken, it is completely cut off from the atmosphere, and the Do, ? ! It does not increase the temperature by 1 degree.

さらに起動時は再循環系統9の起動により復水器脱気が
開始されるが、HR3GIも同様に起動させ、復水器脱
気が完了し復水器6からの給水が可能になるまでの間は
貯水タンク60より復水戻り系統62より給水する。こ
の時止め弁aを開いてもすでに真空が立っており復水器
6からの空気が貯水タンク60に入り込むことはなく、
貯水タンク60中の低D Oz水のみがボイラに送り込
まれることになり、そのため復水器脱気完了までの時間
待ちがなく、短時間起動が可能となる。
Furthermore, at startup, condenser deaeration is started by starting the recirculation system 9, but HR3GI is also started in the same way, until the condenser deaeration is completed and water can be supplied from the condenser 6. During this time, water is supplied from the condensate return system 62 from the water storage tank 60. Even if stop valve a is opened at this time, a vacuum has already been created and air from the condenser 6 will not enter the water storage tank 60.
Only the low D Oz water in the water storage tank 60 is sent to the boiler, so there is no waiting time until the condenser degassing is completed, and a short start-up is possible.

第10図は、本発明の第5実施例を説明するための系統
図である。
FIG. 10 is a system diagram for explaining the fifth embodiment of the present invention.

この実施例の場合、給水ポンプの予備機あるいは50%
容量のポンプ2台?A、7Bを利用し、再循環系統9と
貯水タンク60からの給水系を併動運転させている。
In the case of this example, the water supply pump standby unit or 50%
Two capacity pumps? A and 7B are used to operate the recirculation system 9 and the water supply system from the water storage tank 60 in parallel.

また、複合発電プラントは複数のユニットより構成され
ているため、貯水タンク60を共用することができ、こ
の場合は貯水タンク60からの給水を専用のポンプ1台
別置して、各ユニット毎には予備ポンプを削除すること
も可能である。
In addition, since the combined power generation plant is composed of multiple units, the water storage tank 60 can be shared, and in this case, one dedicated pump is installed separately to supply water from the water storage tank 60, and each unit is separately supplied with water. It is also possible to remove the spare pump.

このように本実施例では、ポンプの共用化、台数の削減
ならびに系統の簡素化を図ることができる。
In this way, in this embodiment, it is possible to share pumps, reduce the number of pumps, and simplify the system.

前記第4実施例ならびに第5実施例のように、復水器6
と貯水タンク60とを連絡管63で接続することにより
、送、抽水時の容易性、空気の洩れ込み防止のための例
えば窒素ガスなどのガスボンベも不要であり、かつ圧力
制御装置なども不要となる。
As in the fourth and fifth embodiments, the condenser 6
By connecting the water storage tank 60 with the connecting pipe 63, it is easy to transfer water and extract water, and there is no need for a gas cylinder such as nitrogen gas to prevent air leakage, and there is no need for a pressure control device. Become.

窒素ガスを使用する場合、毎起動時約30〜4ONm3
を捨て去ることになるため、10100O級のプラント
では501X130atgボンベで年間約1万本程度の
消費となるから、ボンベの取替え、充填作業なども含め
て考慮すると大幅な省力化となる。
When using nitrogen gas, approximately 30 to 4 ONm3 at each startup
As a result, in a 10100O class plant, approximately 10,000 501x130atg cylinders are consumed per year, so when cylinder replacement and filling work are taken into consideration, this is a significant labor saving.

〔発明の効果〕〔Effect of the invention〕

前記第1の発明によれば、ユニット停止時復水器中の復
水を貯水タンクに移し替え、再起動時に大気に曝すこと
なく低DO□濃度の状態で復水器に戻すことが出来るの
で、脱気操作を不要として短時間で再起動を可能とする
According to the first invention, when the unit is stopped, the condensate in the condenser can be transferred to the water storage tank, and when the unit is restarted, it can be returned to the condenser in a low DO□ concentration state without being exposed to the atmosphere. , which eliminates the need for degassing operations and enables restarting in a short time.

前記第2の発明によれば、復水は復水器内復水のDO2
t11度いかんにかかわらず隔離された貯水タンクに必
要量保持され、再循環系により復水器での脱気完了まで
の間にその貯水タンク内低D Oz給水をHR3Gに送
給可能であるから、脱気待ち時間が不要となり、さらに
短時間起動ができる。
According to the second invention, the condensate is DO2 of condensate in the condenser.
Regardless of the temperature, the required amount is maintained in an isolated water storage tank, and the recirculation system allows the low D Oz feed water in the storage tank to be sent to the HR3G until deaeration is completed in the condenser. , there is no need to wait for degassing, allowing for even shorter startup times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る複合発電プラントの
系統図、第2図は他の実施例に係る一部拡大図、第3図
、第4図、第5図は従来例の系統図、第6図は復水器の
脱気特性図、第7図は脱気ボイラの負荷特性図、第8図
、第9図、第10図はさらに他の実施例に係る複合発電
プラントの系統図である。 1・・・・・・・・・HR3G、4・・・・・・・・・
蒸気タービン、5・・・・・・・・・発電機、6・・・
・・・・・・復水器、7・・・・・・・・・復水ポンプ
、51.60・・・・・・・・・貯水タンク、61・・
・・旧・・復水供給系統、62・・・・・・・・・復水
戻り系統、63・・・・・・・・・復水器連絡管、64
・・・・・・・・・ポンプ入口止弁。 第3図 第4図 第2図 第5図 第6図 to tsa tsA 第7図 第8図 第9図 第10図
Fig. 1 is a system diagram of a combined power generation plant according to the first embodiment of the present invention, Fig. 2 is a partially enlarged view of another embodiment, and Figs. 3, 4, and 5 are diagrams of the conventional example. System diagram, Figure 6 is a degassing characteristic diagram of the condenser, Figure 7 is a load characteristic diagram of the degassing boiler, and Figures 8, 9, and 10 are combined power generation plants according to other embodiments. This is a system diagram of 1・・・・・・・・・HR3G, 4・・・・・・・・・
Steam turbine, 5... Generator, 6...
...... Condenser, 7... Condensate pump, 51.60... Water storage tank, 61...
... Old condensate supply system, 62 ... Condensate return system, 63 ... Condenser connection pipe, 64
・・・・・・・・・Pump inlet stop valve. Figure 3 Figure 4 Figure 2 Figure 5 Figure 6 to tsa tsA Figure 7 Figure 8 Figure 9 Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)ボイラと、蒸気タービンと、発電機と、復水器と
を備えた複合発電プラントにおいて、ユニット停止時に
前記復水器内の復水を大気から遮断するための貯水タン
クを設け、ユニット停止時に復水をその貯水タンクに移
送し、ユニット起動時に貯水タンクの復水を復水器に戻
すように構成されていることを特徴とする複合発電プラ
ント。
(1) In a combined power generation plant equipped with a boiler, a steam turbine, a generator, and a condenser, a water storage tank is provided to cut off the condensate in the condenser from the atmosphere when the unit is stopped, and the unit A combined power generation plant characterized in that it is configured to transfer condensate to its water storage tank when the unit is stopped and to return condensate from the water storage tank to the condenser when the unit is started.
(2)ボイラと、蒸気タービンと、発電機と、復水器と
を備えた複合発電プラントにおいて、ユニット運転中に
前記復水器で脱気した給水を大気から遮断するための貯
水タンクを設け、必要時に復水をその貯水タンクに移送
し、また貯水タンクより前記ボイラに給水できるように
構成されていることを特徴とする複合発電プラント。
(2) In a combined power generation plant equipped with a boiler, a steam turbine, a generator, and a condenser, a water storage tank is provided to isolate the feed water deaerated by the condenser from the atmosphere during unit operation. . A combined power generation plant, characterized in that it is configured such that condensate can be transferred to the water storage tank when necessary, and water can be supplied from the water storage tank to the boiler.
(3)請求項(2)記載において、前記貯水タンクへの
復水供給系統を復水ポンプ出口よりボイラ入口間の主給
水系統より分岐し、貯水タンクからの戻り系統を復水ポ
ンプ入口止弁の後流側に接続し、かつ貯水タンクと復水
器の空洞とを接続する連絡管を設けたことを特徴とする
複合発電プラント。
(3) In claim (2), the condensate supply system to the water storage tank is branched from the main water supply system between the condensate pump outlet and the boiler inlet, and the return system from the water storage tank is connected to the condensate pump inlet stop valve. A combined power generation plant characterized by having a connecting pipe connected to the downstream side of the water storage tank and the condenser cavity.
JP1130144A 1988-09-19 1989-05-25 Power plant and start-up method thereof Expired - Fee Related JP2764825B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23229588 1988-09-19
JP63-232295 1988-09-19

Publications (2)

Publication Number Publication Date
JPH02169807A true JPH02169807A (en) 1990-06-29
JP2764825B2 JP2764825B2 (en) 1998-06-11

Family

ID=16936978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130144A Expired - Fee Related JP2764825B2 (en) 1988-09-19 1989-05-25 Power plant and start-up method thereof

Country Status (1)

Country Link
JP (1) JP2764825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163346A (en) * 2010-02-11 2011-08-25 IFP Energies Nouvelles Device for controlling working fluid with low freezing point circulating in closed circuit operating according to rankine cycle and method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374908U (en) * 1986-11-05 1988-05-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374908U (en) * 1986-11-05 1988-05-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163346A (en) * 2010-02-11 2011-08-25 IFP Energies Nouvelles Device for controlling working fluid with low freezing point circulating in closed circuit operating according to rankine cycle and method using the same

Also Published As

Publication number Publication date
JP2764825B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
JPS6026107A (en) Power generation plant with multistage turbine
KR20140054266A (en) Backup nuclear reactor auxiliary power using decay heat
CN103398385A (en) Waste heat recovery system and method for marine incinerator and marine power device
CN110726132B (en) Method and system for supplying water to steam generator of nuclear power station under low-power working condition
JPH02169807A (en) Combined power plant
JPH08319805A (en) Thermal power plant and operating method thereof
JPH06146815A (en) Gas turbine composite power generator
JP2726463B2 (en) Fuel cell power generation system
JP2599095B2 (en) Crude oil fractionation combined cycle power generation system
CN219197411U (en) Steam supply system of steam turbine shaft seal
JPS6189486A (en) Condenser in combined plant
JPS61218703A (en) Turbine shaft seal for bwr power plant
JP3101451B2 (en) Exhaust-reburn combined cycle power plant
JPH0233845B2 (en) JOKITAABIN PURANTONONTENHOHO
JPH0445644B2 (en)
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
JPS62232597A (en) Auxiliary steam system
JP2708758B2 (en) Exhaust heat recovery boiler and its operation method
CN116734238A (en) Nuclear power plant heating system
JP2000320308A (en) Method and device for effective use of steam for steam injection-type gas turbine cogeneration
JPS62106202A (en) Combined cycle power plant
CN116313174A (en) Pressurized water reactor nuclear power plant waste heat discharging system and method
JPS6057190A (en) Condensation system of power generating plant
JPS6022185B2 (en) Exhaust gas heat recovery device for marine engines
JPS6267206A (en) Warming up device for intermediate pressure turbine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees