JPS6057190A - Condensation system of power generating plant - Google Patents

Condensation system of power generating plant

Info

Publication number
JPS6057190A
JPS6057190A JP16416183A JP16416183A JPS6057190A JP S6057190 A JPS6057190 A JP S6057190A JP 16416183 A JP16416183 A JP 16416183A JP 16416183 A JP16416183 A JP 16416183A JP S6057190 A JPS6057190 A JP S6057190A
Authority
JP
Japan
Prior art keywords
condenser
steam
condensor
water
minimum flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16416183A
Other languages
Japanese (ja)
Other versions
JPS6260636B2 (en
Inventor
Kiyozumi Ito
伊藤 清純
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16416183A priority Critical patent/JPS6057190A/en
Publication of JPS6057190A publication Critical patent/JPS6057190A/en
Publication of JPS6260636B2 publication Critical patent/JPS6260636B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B7/00Combinations of two or more condensers, e.g. provision of reserve condenser

Abstract

PURPOSE:To allow the operation of only one condensating pump having a large capacity and a high overall lift during night time hours in a mutiple axis power generating plant so as to reduce the power consumption by auxiliary systems by disposing a ground steam condensor in the middle of a feed water pipe which supplies the water in a feed water tank to a condensor. CONSTITUTION:A ground steam condensor 9 is disposed in the middle of a feed water pipe 25 to a condensor 7, and a valve 26 for separation is provided at a feed water inlet of the condensor 7. Between the outlet side of the ground condensor 9 and a feed water tank 12, a minimum flow pipe 28 and a minimum flow valve 27 are provided in order to secure the minimum flow to the ground condensor 9. The water at a reduced temperature to a temperature reducer 17 is supplied from a ground steam temperature reducing water feed pipe 31 which is brfanched from the feed water pipe 25. When shafts are stopped during night time hours, the valve 26 is closed and the minimum flow value 27 is opened so that the cooling is conducted while the minimum flow to the ground steam condensor 9 is secured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電プラントの復水系統に係り、特に脱気器を
設置せず、起動、停止の頻度が多く、かつ復水器への補
給が多く、シかも1プラントが複数発電ユニットで構成
されているか、または複数発電プラントが隣設されてい
る条件において、一部の発電ユニットまたは発電プラン
トが夜間等の停止時に、補機駆動用所内動力を大幅に節
減し、かつ復水器の脱気性能の向上によりプラント再起
動時間の短縮を計るに好適な復水系統に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a condensate system of a power generation plant, and particularly relates to a condensate system of a power generation plant, which does not require a deaerator, is frequently started up and stopped, and requires no replenishment to the condenser. In many cases, in conditions where one plant is composed of multiple power generation units or where multiple power generation plants are installed next to each other, when some power generation units or power generation plants are stopped at night, etc., the in-house power for driving auxiliary equipment is The present invention relates to a condensate system suitable for reducing plant restart time by significantly reducing the amount of water and improving the deaeration performance of the condenser.

〔発明の背景〕[Background of the invention]

従来技術の一例として、ガスタービンと蒸気タービンの
コンバインド発電プラントにつぃて第1図及び第2図に
より説明する。図において、ガスタービン1の燃焼器2
で圧縮機3により圧縮された空気と燃料のLNGガスを
混合燃焼させた高温の燃焼ガスによりガスタービン1を
回転させ発電する。ガスタービン1で仕事をした後の高
温の排ガスは排熱回収ボイラ4で復水を加熱蒸発させ、
この蒸気で蒸気タービン5を回転させ発電する。
As an example of the prior art, a combined power generation plant using a gas turbine and a steam turbine will be explained with reference to FIGS. 1 and 2. In the figure, a combustor 2 of a gas turbine 1
The gas turbine 1 is rotated by high-temperature combustion gas obtained by mixing and burning the air compressed by the compressor 3 and the fuel LNG gas, thereby generating electricity. The high-temperature exhaust gas after working in the gas turbine 1 heats and evaporates condensate in the exhaust heat recovery boiler 4.
This steam rotates the steam turbine 5 to generate electricity.

6は発電機を示す。蒸気タービン5で仕事をした蒸気は
復水器7で凝縮復水化され、復水ポンプ8で汲み出され
、グランド蒸気復水器9を介し排熱回収ボイラ4に給水
される。
6 indicates a generator. The steam that has done work in the steam turbine 5 is condensed in a condenser 7, pumped out by a condensate pump 8, and supplied to the exhaust heat recovery boiler 4 via a grand steam condenser 9.

燃焼器2での窒素酸化物(NOx)発生を抑制するため
、本例の場合は蒸気タービン5の抽気と復水ポンプ8よ
シの復水を減温器10で混合し、蒸気噴射装置11を介
して燃焼器2に噴射する、いわゆる蒸気噴射方式を採用
した例を示している。
In order to suppress the generation of nitrogen oxides (NOx) in the combustor 2, in this example, the extracted air from the steam turbine 5 and the condensate from the condensate pump 8 are mixed in the desuperheater 10, and the steam injection device 11 An example is shown in which a so-called steam injection method is adopted in which steam is injected into the combustor 2 via the steam injection method.

この蒸気噴射のために、消費される抽気及び復水量は、
復水器7より吸出し、送水される復水量の10〜30%
にも達する。この不足水を補うため、補給水タンク12
内の貯水を補給水ポンプ13、復水器7のホットウェル
水位調整弁14を介して復水器7に大量の補給水が供給
される。この際、補給水中の溶存酸素濃度は、第3図に
示す如く、約50〜1ooppbと高く、大量の補給に
よシ復水器7出口における復水中の溶存酸素濃度を上げ
ることになり、補給水量としては排熱回収ボイラ4の要
求する値を満足できなくなる可能性を有している。
The amount of extracted air and condensate consumed for this steam injection is:
10 to 30% of the amount of condensate sucked out and sent from the condenser 7
reach even. To make up for this water shortage, the make-up water tank 12
A large amount of make-up water is supplied to the condenser 7 via the make-up water pump 13 and the hot well water level adjustment valve 14 of the condenser 7. At this time, the dissolved oxygen concentration in the make-up water is as high as about 50 to 1 ooppb, as shown in Figure 3, and a large amount of make-up water increases the dissolved oxygen concentration in the condensate at the outlet of the condenser 7. There is a possibility that the amount of water cannot satisfy the value required by the exhaust heat recovery boiler 4.

この対策として、例えば脱気器を設ければ良いが、コン
バインドプラントの如く平屋配置の場合には十分な静水
頭を与えるために商い建屋としなければならないと共に
、脱気器自身のコストアップもあり、一般には脱気器を
設けない。このため、復水器7に脱気性能を持たせる構
造としているのが本例の場合である。
As a countermeasure for this, for example, a deaerator can be installed, but in the case of a one-story plant such as a combined plant, it must be built in a commercial building to provide sufficient hydrostatic head, and the cost of the deaerator itself increases. , generally no deaerator is provided. Therefore, in this example, the condenser 7 is structured to have deaeration performance.

即ち、蒸気タービン5よりの蒸気の凝縮復水がホットウ
ェルに落下する前に、復水器7内部で一部のタービン排
気と接触させて再熱脱気を行うものである。本例のコン
バインドプラントの場合は、排熱回収ボイラ4、ガスタ
ービン1、蒸気タービン5、復水器7等を1ユニツトと
し、これらを7ユニツト設け、1つの発電プラントを構
成するいわゆる多軸型としている。これは、夜間等にお
ける起動停止の運用性の良さを生かす点等を配慮したも
のである。
That is, before the condensed water from the steam turbine 5 falls into the hot well, it is brought into contact with a portion of the turbine exhaust inside the condenser 7 to perform reheat deaeration. In the case of the combined plant of this example, the exhaust heat recovery boiler 4, the gas turbine 1, the steam turbine 5, the condenser 7, etc. are considered as one unit, and seven units of these are provided, making up a so-called multi-shaft type power generation plant. It is said that This is to take advantage of the ease of operation of starting and stopping at night, etc.

次に夜間停止の運用の方法について説明する。Next, we will explain how to operate the night stop.

夜間は7軸のうち1軸のみ運転を継続1〜、他の6軸は
排熱回収ボイラ4、ガスタービン1、蒸気タービン5を
停止させる。しかし、停市後再起動の時間を短縮させる
ためには、真空上昇時間の短縮、復水中の溶存酸素濃度
の低減による排熱回収ボイラ給水水質の早期確立(脱気
)が必要となる。このため停止中の6軸についても、蒸
気タービン5のグランドシールと真空を保持する必要が
ある。
At night, only one of the seven shafts continues to operate, and the other six shafts, including the exhaust heat recovery boiler 4, gas turbine 1, and steam turbine 5, are stopped. However, in order to shorten the restart time after a shutdown, it is necessary to quickly establish the quality of the exhaust heat recovery boiler feed water (deaeration) by shortening the vacuum rise time and reducing the dissolved oxygen concentration in the condensate. For this reason, it is necessary to maintain the ground seal and vacuum of the steam turbine 5 even for the six shafts that are stopped.

グランドシール用の蒸気は、運転の1軸の主蒸気管15
より分岐し減圧弁16を介して各軸に供給される。供給
された蒸気は復水ポンプ8の吐出復水と減温器17で混
合され、蒸気タービングランド部18に供給し蒸気シー
ルを行う。大気中より吸い込んだ空気とシール蒸気のリ
ークオフはグランド蒸気復水器9で凝縮され、ドレンは
ドレンUシール管19、ドレン回収タンク20、ドレン
回収ポンプ21を介して復水器7に回収される。
The steam for grand sealing is supplied from the main steam pipe 15 of the single axis of operation.
It is then branched out and supplied to each shaft via a pressure reducing valve 16. The supplied steam is mixed with the condensate discharged from the condensate pump 8 in the desuperheater 17, and is supplied to the steam turbine gland section 18 for steam sealing. Leak-off of air and seal steam sucked in from the atmosphere is condensed in the gland steam condenser 9, and drain is collected in the condenser 7 via the drain U seal pipe 19, drain recovery tank 20, and drain recovery pump 21. .

一方、非凝縮空気はブロア22で大気に放出される。ま
た真空は真空ポンプ23により確保される。
On the other hand, non-condensed air is discharged to the atmosphere by the blower 22. Further, vacuum is ensured by a vacuum pump 23.

夜間停止時は他の6軸分もグランド蒸気復水器9に冷却
水としての復水を供給するため復水ポンプ8を継続運転
しなければならない。このとき、排熱回収ボイラ4は停
止しているため復水再循環弁24を開け、復水を復水器
7に戻す小閉回路によりグランド蒸気復水器9の冷却水
を確保する。
When the system is stopped at night, the condensate pump 8 must be continuously operated for the other six axes to supply condensate as cooling water to the gland steam condenser 9. At this time, since the exhaust heat recovery boiler 4 is stopped, the condensate recirculation valve 24 is opened, and cooling water for the grand steam condenser 9 is secured through a small closed circuit that returns condensate to the condenser 7.

ここで、復水ポンプ8は途中に脱気器がなく、かつNO
x対策としての蒸気噴射としてタービンの抽気に打ち勝
つ復水圧力を要求されることにより、通常の火力発電プ
ラント等に比ペボンブ全揚程が高くなっている。
Here, the condensate pump 8 has no deaerator in the middle and NO
As a result of the requirement for condensate pressure to overcome the bleed pressure of the turbine for steam injection as a countermeasure against x, the total head of the specific bomb has become high in ordinary thermal power plants and the like.

このように高全揚程ポンプをグランド蒸気復水器9の冷
却だけの目的で夜間7台共運転するのは補機動が非常に
大きく、起動停止の頻度の高いプラントの運用性のメリ
ット、デメリットを左右する大きな問題である。
In this way, operating seven high total head pumps together at night for the sole purpose of cooling the grand steam condenser 9 requires a very large amount of auxiliary machinery, which has the advantage and disadvantage of operability in a plant that frequently starts and stops. It's a big issue that affects the world.

以上述べたように従来技術においては、次のような問題
点がある。
As described above, the conventional technology has the following problems.

(1)高全揚程の復水ボンダ8全部を夜間も継続運転す
ることにより補機動力の消費が多大となる。
(1) Continuous operation of all 8 condensate bonders with a high total head even at night consumes a large amount of auxiliary power.

(2)復水器7へ大量の補給水を供給することにより排
熱回収ボイラ4への復水中の溶存酸素が増大するので、
水質確保のための脱気に費やす時間が長くなり、再起動
時間が長くなる。
(2) By supplying a large amount of make-up water to the condenser 7, dissolved oxygen in the condensate to the exhaust heat recovery boiler 4 increases.
The time spent degassing to ensure water quality becomes longer, and the restart time becomes longer.

(3)復水再循環弁24の下流側が真空の復水器7であ
るため、復水再循環弁24における絞シ(差圧)が大き
く、弁シート部の損耗、弁下流配管のエロージョン等に
より配管、弁の寿命が短かくなる問題の他、弁周りの振
動、騒音も問題となる。
(3) Since the downstream side of the condensate recirculation valve 24 is the vacuum condenser 7, the restriction (differential pressure) in the condensate recirculation valve 24 is large, resulting in wear and tear of the valve seat, erosion of the piping downstream of the valve, etc. In addition to shortening the lifespan of piping and valves, vibration and noise around the valves also become a problem.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の諸問題点を解消し得る発電
プラントの復水系統を提供することにある。
An object of the present invention is to provide a condensate system for a power plant that can solve the problems of the prior art.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明の発電プラントの復
水系統は、グランド蒸気復水器を、補給水夕/りの貯水
を復水器へ送る補給水配管の途中に設置したことを特徴
とする。
In order to achieve this objective, the condensation system of the power plant of the present invention is characterized in that a ground steam condenser is installed in the middle of the make-up water piping that sends the make-up water storage water to the condenser. shall be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第4図、第5図により説明す
る。第4図において、第1図、第2図と同一符号のもの
は同じもの、もしくは相当するものを表わしている。本
発明による復水系統は、グランド蒸気復水器9を、復水
器7への補給水配管25の途中に設置し、復水器7の補
給水入口に隔離用の弁26を設け、またグランド蒸気復
水器9の出口側と補給水タンク12との間に、グランド
蒸気復水器9の最小流量を確保するためのミニマムフロ
ー配管28、ミニマムフロー弁27を設け、減温器17
への減温水を補給水配管25より分岐したグランド蒸気
減温水注入管31より供給する構成となっている。
An embodiment of the present invention will be described below with reference to FIGS. 4 and 5. In FIG. 4, the same reference numerals as in FIGS. 1 and 2 represent the same or equivalent components. In the condensation system according to the present invention, a grand steam condenser 9 is installed in the middle of the make-up water piping 25 to the condenser 7, an isolation valve 26 is provided at the make-up water inlet of the condenser 7, and A minimum flow pipe 28 and a minimum flow valve 27 are provided between the outlet side of the grand steam condenser 9 and the make-up water tank 12 to ensure the minimum flow rate of the grand steam condenser 9.
The structure is such that deheated water is supplied from a gland steam deheated water injection pipe 31 branched from the make-up water pipe 25.

次に運用について説明する。Next, we will explain the operation.

夜間の6軸停止時は、弁26を閉じ、ミニマムフロー弁
27を開状態にし7Llユ、グランド蒸気復水器9の最
小流量を確保しながら冷却を行う。またグランド蒸気の
減温器17への減温水はグランド蒸気復水器9出口の補
給水配管25よジグランド蒸気減温水注入管31を介し
て与える。尚、この期間は駆動していない系統の復水ポ
ンプ8を停止して良い。グランド蒸気復水器9の凝縮水
量は復水器7の貯水容量に比較すると無視できる程少な
く、夜間8時間程度では復水器7の水位が高くなるが警
報が出る等の問題発生には至らない。また、これに関し
ては第5図に示す運用をとることによシ万全を期すこと
は可能である。
When the six shafts are stopped at night, the valve 26 is closed and the minimum flow valve 27 is opened to perform cooling while ensuring the minimum flow rate of the grand steam condenser 9. Further, the deheated water of the gland steam to the desuperheater 17 is supplied through the make-up water pipe 25 at the outlet of the gland steam condenser 9 and the deheated water injection pipe 31 of the desuperheated gland steam. Note that during this period, the condensate pumps 8 of the systems that are not being driven may be stopped. The amount of condensed water in the grand steam condenser 9 is negligibly small compared to the storage capacity of the condenser 7, and although the water level in the condenser 7 becomes high for about 8 hours at night, it does not cause problems such as alarms. do not have. Furthermore, in this regard, it is possible to ensure complete safety by adopting the operation shown in FIG.

即ち、夜間停止に入る前に6軸分の復水器7の設定水位
(NWL)を復水器水位調節器29の設定値変更によシ
夜間NWLに下げておけば良い。
That is, before entering the night shutdown, the set water level (NWL) of the condenser 7 for six axes may be lowered to the night NWL by changing the set value of the condenser water level regulator 29.

また、制御範囲が低水位レベル(LWL>に達し、低水
位スイッチ30により警報が発生しないよう制御範囲を
選定するのは言うまでもない。尚、ΔL1は昼間の制御
範囲、ΔL2は夜間の制御範囲を示す。
It goes without saying that the control range should be selected so that the control range does not reach the low water level (LWL>) and an alarm is generated by the low water level switch 30. Note that ΔL1 is the daytime control range, and ΔL2 is the nighttime control range. show.

一方、昼間の通常運転時には弁26を開、ミニマムフロ
ー弁27を閉じ、復水器7への補給を行う。
On the other hand, during normal operation during the day, the valve 26 is opened and the minimum flow valve 27 is closed to replenish the condenser 7.

以上説明したように、本実施例においては次のような効
果が得られる。
As explained above, the following effects can be obtained in this embodiment.

(1)夜間に大容量、高全揚程の復水ポンプ8を6台停
止させるため、10100O級のコンバインドプラント
の試算では約6000MW−I(/年の所内動力の節減
となる。
(1) Six large-capacity, high-head condensate pumps 8 are stopped during the night, resulting in a savings of approximately 6,000 MW-I (/year) of in-plant power for a 10,100 O class combined plant.

(9) (2)復水器7への補給水がグランド蒸気復水器9に工
り加温され、復水器7内の飽和温度よυ高温となって復
水器7にスゲレイされるだめ、加温無し補給水に比べて
スプレィ時のフラッシュによる脱気効果が増大する。従
って、復水器7の脱気性能を向上させる。
(9) (2) Make-up water to the condenser 7 is heated in the grand steam condenser 9, reaches a temperature υ higher than the saturation temperature in the condenser 7, and is transferred to the condenser 7. No, the deaeration effect of the flash during spraying increases compared to unheated make-up water. Therefore, the deaeration performance of the condenser 7 is improved.

(3)復水器7への補給水のスプレィ脱気後の溶存酸素
濃度を一定とした場合、スプレィ所要圧力は補給水の加
熱有りと無しでは、第6図の如く差が生じ、30%補給
水量(最大)の時には、加温の場合は加温無しの約半分
と推定される。
(3) Spray make-up water into condenser 7 If the dissolved oxygen concentration after deaeration is constant, the required spray pressure will differ by 30% as shown in Figure 6 with and without heating the make-up water. At the time of make-up water (maximum), it is estimated that the amount of water with heating is about half of that without heating.

その結果、補給水ポンプ13の全揚程が小さくなり、ポ
ンプ駆動用の所内動力も大幅に低減する。
As a result, the total head of the make-up water pump 13 becomes smaller, and the internal power for driving the pump is also significantly reduced.

(4)夜間における復水再循環弁24の運転が不要とな
り、配管、弁の寿命を確保できると共に、振動、騒音を
回避できる。
(4) It is not necessary to operate the condensate recirculation valve 24 at night, which makes it possible to ensure the service life of piping and valves, and to avoid vibrations and noise.

(5)復水再循環弁24は復水ポンプ8のミニマムフロ
ー確保のためポンプ起動過程の短時間開き運転を行うが
、グランド蒸気復水器9のミニマ(10) ムフローに比べて復水ポンプ8のミニマムフローは約3
0〜b 24の容量を小さくできる。
(5) The condensate recirculation valve 24 is opened for a short time during the pump startup process to ensure the minimum flow of the condensate pump 8, but the condensate recirculation valve 24 is opened for a short period of time during the pump startup process to ensure the minimum flow of the condensate pump 8. The minimum flow of 8 is approximately 3
The capacity of 0 to b24 can be reduced.

尚、前述の実施例において、グランド蒸気復水器9のミ
ニマムフロー管28の戻り先を、補給水ポンプ13人口
側の補給水配管25としても良い。
In the above embodiment, the return destination of the minimum flow pipe 28 of the grand steam condenser 9 may be the make-up water pipe 25 on the population side of the make-up water pump 13.

第7図は本発明の他の実施例として蒸気タービン発電プ
ラントに適用した例を示す。この発電プラントのように
蒸気タービン5の抽気を工場用補助蒸気として送気消費
し、大量に復水器7への補給を行い、かつ複数の発電プ
ラントが隣設し、お互いに蒸気のバックアップを行う場
合に有効とな、る。
FIG. 7 shows another embodiment of the present invention applied to a steam turbine power plant. In this power generation plant, the extracted air from the steam turbine 5 is sent and consumed as auxiliary steam for the factory, and a large amount of air is supplied to the condenser 7, and multiple power generation plants are installed next to each other, each providing steam backup. It is effective if you do it.

第8図も本発明の他の実施例として火力発電プラントに
適用した例を示し、プラント起動時ボイラ32による蒸
気が発生する前段階では、重油焚きによる所内ボイラ3
3にて発生した所内蒸気を所内蒸気管34、所内蒸気供
給弁35を介してタービンのグランドシール蒸気として
使用するようにしたものである。
FIG. 8 also shows an example in which the present invention is applied to a thermal power plant as another embodiment of the present invention.
The in-house steam generated in step 3 is used as ground seal steam for the turbine via an in-house steam pipe 34 and an in-house steam supply valve 35.

(11) 従って、この実施例の如く、多軸のコンバインド発電プ
ラント、または複数ユニットではなく単機ユニットの場
合でも本発明は実施が可能であり、無負荷中の復水ポン
プ8停止による真空及びグランドシール維持が可能であ
る。
(11) Therefore, as in this embodiment, the present invention can be implemented even in the case of a multi-shaft combined power generation plant or a single unit rather than multiple units, and the vacuum and grounding can be achieved by stopping the condensate pump 8 during no load. It is possible to maintain the seal.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、次のような効果
がある。
As explained above, the present invention has the following effects.

(1)多軸型の発電プラントにあっては、夜間に大容量
、高全揚程の復水ポンプを1台のみ運転すればよいので
、補機動力の消費を大幅に低減できる。
(1) In a multi-shaft power generation plant, only one large-capacity, high-head condensate pump needs to be operated at night, so the consumption of auxiliary power can be significantly reduced.

(2)復水器への補給水を加温してスプレィできるので
、復水器の脱気性能を向上させることができる。
(2) Since the make-up water to the condenser can be heated and sprayed, the deaeration performance of the condenser can be improved.

(3)復水器の脱気性能の向上により水質確保のための
脱気時間が短かくなり、再起動時間を短かくできる。
(3) Improved deaeration performance of the condenser reduces deaeration time to ensure water quality, and restart time can be shortened.

(4)夜間における復水再循環弁の運転が不要となり、
配管、弁の寿命を確保できると共に、振動、(12) 騒音を回避できる。
(4) No need to operate the condensate recirculation valve at night,
Not only can the lifespan of piping and valves be secured, but also vibration and (12) noise can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の多軸型コンバインド発電プラントの
概略系統図、第2図は第1図の1ユニット部分の詳細系
統図、第3図は復水器ホットウェル水温度、真空度と0
2濃度の特性を示す線図、第4図は本発明の一実施例を
示し、本発明による復水系統を備えた多軸型コンバイン
ド発電プラントにおける1ユニット部分の詳細系統図、
第5図は復水器ホットウェル水位の夜間の運用を示す説
明図、第6図は補給水量と復水器所要スプレィ圧力の特
性を示す線図、第7図及び第8図は本発明の他の実施例
を示す概略系統図である。 5・・・蒸気タービン、7・・・復水器、9・・・グラ
ンド蒸気復水器、12・・・補給水タンク、13・・・
補給水ポンプ、25・・・補給水配管、26・・・弁、
27・・・ミニマムフロー弁、28・・・ミニマムフロ
ー管。 代理人 弁理士 秋本正実 (13) 第S 圀 活ら区 有り含水量 謬”T5 第30
Figure 1 is a schematic system diagram of a conventional multi-shaft combined power generation plant, Figure 2 is a detailed diagram of one unit in Figure 1, and Figure 3 is a diagram showing condenser hotwell water temperature, degree of vacuum, and
FIG. 4 is a diagram showing an embodiment of the present invention, and is a detailed system diagram of one unit in a multi-shaft combined power generation plant equipped with a condensate system according to the present invention.
Fig. 5 is an explanatory diagram showing the nighttime operation of the condenser hot well water level, Fig. 6 is a diagram showing the characteristics of make-up water amount and condenser required spray pressure, and Figs. 7 and 8 are diagrams showing the characteristics of the condenser hotwell water level. FIG. 3 is a schematic system diagram showing another example. 5... Steam turbine, 7... Condenser, 9... Grand steam condenser, 12... Make-up water tank, 13...
Make-up water pump, 25... Make-up water piping, 26... Valve,
27... Minimum flow valve, 28... Minimum flow pipe. Agent Patent Attorney Masami Akimoto (13) No. S Kokukatsu et al. Water content error” T5 No. 30

Claims (1)

【特許請求の範囲】 1、蒸気タービンよりの蒸気を凝縮する復水器と、蒸気
タービンのグランドシール蒸気を凝縮するグランド蒸気
復水器と、復水器へ復水をポンプと配管を介して補給す
る補給水タンクとを備えた発電プラントの復水系統にお
いて、前記グランド蒸気復水器を、補給水タンクの貯水
を復水器へ送る補給水配管の途中に設置したことを特徴
とする発電プラントの復水系統。 2、特許請求の範囲第1項において、グランド蒸気復水
器の下流側と補給水タンクとの間には、グランド蒸気復
水器の最小流量を確保するための配管及び弁が設けられ
ていることを特徴とする発電プラントの復水系統。
[Claims] 1. A condenser that condenses steam from a steam turbine, a gland steam condenser that condenses steam from the steam turbine, and a pump and piping to supply condensate to the condenser. In a condensation system of a power generation plant equipped with a make-up water tank for replenishment, the ground steam condenser is installed in the middle of a make-up water piping that sends water stored in the make-up water tank to the condenser. Plant condensate system. 2. In claim 1, piping and valves are provided between the downstream side of the grand steam condenser and the make-up water tank to ensure the minimum flow rate of the grand steam condenser. A condensate system for a power generation plant characterized by the following.
JP16416183A 1983-09-08 1983-09-08 Condensation system of power generating plant Granted JPS6057190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16416183A JPS6057190A (en) 1983-09-08 1983-09-08 Condensation system of power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16416183A JPS6057190A (en) 1983-09-08 1983-09-08 Condensation system of power generating plant

Publications (2)

Publication Number Publication Date
JPS6057190A true JPS6057190A (en) 1985-04-02
JPS6260636B2 JPS6260636B2 (en) 1987-12-17

Family

ID=15787886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16416183A Granted JPS6057190A (en) 1983-09-08 1983-09-08 Condensation system of power generating plant

Country Status (1)

Country Link
JP (1) JPS6057190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094718A (en) * 2018-12-11 2020-06-18 東芝プラントシステム株式会社 Condenser and deaeration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094718A (en) * 2018-12-11 2020-06-18 東芝プラントシステム株式会社 Condenser and deaeration method

Also Published As

Publication number Publication date
JPS6260636B2 (en) 1987-12-17

Similar Documents

Publication Publication Date Title
EP0615061A1 (en) Combined cycle power plant and method of operating it
JPH08114104A (en) Composite gas-steam turbine power plant
CN111255536B (en) FCB operation method of gas-steam unit power plant
JP3431435B2 (en) Combined power plant and closed air-cooled gas turbine system
JP6162002B2 (en) Power augmentation system and method for grid frequency control
JPH0693879A (en) Combined plant and operation thereof
JPH10306708A (en) Combined cycle generating plant
JPS6057190A (en) Condensation system of power generating plant
JPH0763010A (en) Starting method for single type combined cycle power generating facility
CN207920680U (en) The bypath system of double reheat Turbo-generator Set
CN219197411U (en) Steam supply system of steam turbine shaft seal
US11448100B1 (en) Combined cycle unit standby system with integrated auxiliary gas turbine generator
JP3222035B2 (en) Double pressure type waste heat recovery boiler feeder
EP0978636B1 (en) Combined cycle power plant
CN110159360A (en) A kind of Gas-steam Combined Cycle power plant shaft seal steam supply system and steam supplying method
JPH0326806A (en) Vacuum maintaining system utilizing auxiliary steam
JPH066908B2 (en) Cogeneration facility
JPS58217709A (en) Composite cycle power generating plant
JPH0275731A (en) Turbine plant
JP2003148166A (en) Combined power plant, and closed air cooling gas turbine system
JP2764825B2 (en) Power plant and start-up method thereof
JPH0148372B2 (en)
JPS6280492A (en) Condensate recirculating device
JP2000045712A (en) Combined cycle generating plant
JP3101451B2 (en) Exhaust-reburn combined cycle power plant