JPH0216874B2 - - Google Patents

Info

Publication number
JPH0216874B2
JPH0216874B2 JP57077789A JP7778982A JPH0216874B2 JP H0216874 B2 JPH0216874 B2 JP H0216874B2 JP 57077789 A JP57077789 A JP 57077789A JP 7778982 A JP7778982 A JP 7778982A JP H0216874 B2 JPH0216874 B2 JP H0216874B2
Authority
JP
Japan
Prior art keywords
temperature
metal material
thickness direction
ultrasonic
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57077789A
Other languages
Japanese (ja)
Other versions
JPS58195148A (en
Inventor
Katsuhiro Kawashima
Yoichi Fujikake
Hideki Oyamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57077789A priority Critical patent/JPS58195148A/en
Publication of JPS58195148A publication Critical patent/JPS58195148A/en
Publication of JPH0216874B2 publication Critical patent/JPH0216874B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、電磁超音波を利用して鋼材の結晶変
態率を非破壊的に測定する方法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for non-destructively measuring the crystal transformation rate of steel materials using electromagnetic ultrasound.

造船材料、建築用材料等の厚鋼板の圧延におい
て、鋼材の変態温度近辺のオーステナイト相とフ
エライト相がまざりあつているときに圧延を行う
と(二相域圧延)、圧延された厚板の強度、じん
性が向上するが、この場合、α相(フエライト
相)とγ相(オーステナイト相)の比率が40〜60
%の範囲で圧延すると最もその効果があがること
がわかつている。従つて、鋼材の結晶変態率を測
定することは有意義である。
When rolling thick steel plates for shipbuilding materials, construction materials, etc., when rolling is performed when the austenite phase and ferrite phase near the transformation temperature of the steel material are mixed together (two-phase region rolling), the strength of the rolled plate will decrease. , the toughness improves, but in this case, the ratio of α phase (ferrite phase) to γ phase (austenite phase) is 40 to 60.
It has been found that the effect is most enhanced when rolling is performed within the range of %. Therefore, it is meaningful to measure the crystal transformation rate of steel materials.

ところがこれは高温(約700℃)で測定しなけ
ればならないため困難な点が多く、従来の方法と
しては、α相とγ相の比率と磁性との関係を利用
した測定方法がある。これを第1図に示す。図に
おいて圧延中の厚板2に磁極1を厚板の上下に設
け、磁束密度測定センサー3を介在せしめてい
る。4は中心を流れる磁束、5は厚板の表面に沿
つた磁束を示す。圧延中の厚板の上下に磁束(N
極、S極)を配置し、この中を通る鋼材の磁性
(すなわちα相とγ相の比率)により、磁束密度
が変化することを利用したものであり、磁束密度
はホール素子等のセンサーで測定している。
However, this method has many difficulties because it must be measured at high temperatures (approximately 700°C), and conventional methods use the relationship between the ratio of α and γ phases and magnetism. This is shown in FIG. In the figure, magnetic poles 1 are provided on the top and bottom of a thick plate 2 being rolled, and magnetic flux density measuring sensors 3 are interposed therebetween. 4 indicates the magnetic flux flowing through the center, and 5 indicates the magnetic flux along the surface of the plank. Magnetic flux (N
This method takes advantage of the fact that the magnetic flux density changes depending on the magnetism of the steel material (i.e., the ratio of α phase and γ phase) that passes through the magnetic flux (pole, south pole), and the magnetic flux density can be measured by a sensor such as a Hall element. Measuring.

ところがこの方法であると、まず鋼材表面温度
が下がつて表面層のα相の比率が大となり、表面
相の透磁率が大きくなると磁束が表面に沿うよう
に流れはじめるため充分に内部まで浸透せず、単
に表面のみの変態率が測測定されるのみであり、
その役目を充分果しているとはいい難い点があつ
た。そこで、本発明者らが特開昭56−158941号で
述べた変態率測定方法により、圧延途中の厚板の
変態率を測定し、最適な変態率の時に圧延をおこ
なつた結果、強度、じん性等を向上させることが
できた。
However, with this method, the steel surface temperature first decreases and the ratio of the α phase in the surface layer increases, and as the magnetic permeability of the surface layer increases, the magnetic flux begins to flow along the surface, so it cannot penetrate sufficiently into the interior. Instead, the transformation rate of only the surface is measured;
There were some points where it was difficult to say that it was fully fulfilling its role. Therefore, the present inventors measured the transformation rate of a thick plate during rolling using the transformation rate measurement method described in JP-A-56-158941, and as a result of rolling when the transformation rate was optimal, the strength, It was possible to improve toughness, etc.

しかし、この方法はα相とγ相の縦波超音波伝
搬速度および横波超音波伝搬速度が温度に関係せ
ず一定としたが、これらの伝搬速度は、温度によ
り変化するものであり、また圧延途中の厚鋼板内
部には温度分布が存在すると考えられるので、精
密な意味での変態率測定という点で不十分であつ
た。
However, in this method, the longitudinal and transverse ultrasonic propagation velocities of the α and γ phases are constant regardless of temperature, but these propagation velocities change depending on the temperature. Since it is thought that there is a temperature distribution inside the thick steel plate in the middle, it was insufficient in terms of measuring the transformation rate in a precise sense.

本発明は、電磁超音波を利用して鋼材の結晶変
態率を非破壊的に測定する方法(特開昭56−
158941)に超音波伝搬速度の温度変化も考慮して
さらに精度のよい鋼材の変態率さらには温度分布
も測定する手段を得ることを目的としてなされた
ものである。
The present invention describes a method for non-destructively measuring the crystal transformation rate of steel materials using electromagnetic ultrasonic waves (Japanese Patent Application Laid-Open No.
158941), with the aim of obtaining a means to more accurately measure the transformation rate and temperature distribution of steel materials by taking into account temperature changes in the ultrasonic propagation velocity.

厚鋼板内部の超音波縦波音速v1および超音波横
波音速vsの温度変化曲線を第2図に示す。両音速
共に温度上昇と共にその値を減ずるが、減ずる割
合は比例せず、独立に変化している。音速が大き
く変化している点は変態の起こる点であるが、こ
れによると音速を測定すれば、温度がわかり、ひ
いては変態点が測定できることになる。
FIG. 2 shows temperature change curves of the ultrasonic longitudinal sound velocity v 1 and the ultrasonic shear wave sound velocity V s inside the thick steel plate. The values of both sound velocities decrease as the temperature rises, but the rate of decrease is not proportional and changes independently. Points where the speed of sound changes significantly are points where transformation occurs, and according to this, if you measure the speed of sound, you can determine the temperature and, in turn, measure the transformation point.

また、厚鋼板内部の板厚方向の温度分布を種々
の場合について測定したところ、ほぼ2次式で表
わされしかも板中心に関してほぼ対称であると近
似できることがわかつた。この近似による図が第
3図で、これを式で表わすと(1)式を得る。
Furthermore, when the temperature distribution in the thickness direction inside a thick steel plate was measured in various cases, it was found that it can be approximated as approximately quadratic and approximately symmetrical with respect to the center of the plate. A diagram based on this approximation is shown in FIG. 3, and when this is expressed as an equation, equation (1) is obtained.

θ(x)=4(θs−θc)/D2(x−D/2)2 +θc ……(1) ここで、 θ(x):金属板(厚鋼板)表面から板厚方向へ
xの距離における温度 θs:金属板(厚鋼板)表面の温度 θc:金属板(厚鋼板)の板厚方向中心における
温度 D:金属板(厚鋼板)の厚さ x:金属板(厚鋼板)表面から板厚方向への距
離である。
θ (x) = 4 (θ s - θ c ) / D 2 (x - D / 2) 2 + θ c ... (1) where, θ (x): From the metal plate (thick steel plate) surface to the thickness direction Temperature at distance x to Thick steel plate) Distance from the surface in the thickness direction.

そこで、第2図に示すように超音波縦波、横波
の音速v1,vsは次式のように各鋼種毎に温度の関
数として与えられることがわかつている。
Therefore, as shown in FIG. 2, it is known that the sound velocities v 1 and v s of ultrasonic longitudinal waves and transverse waves are given as a function of temperature for each steel type as shown in the following equation.

v1=v1(θ(x)) ……(2) vs=vs(θ(x)) ……(3) 第4図に示すような縦波電磁超音波振動子12
および横波電磁超音波振動子13から発せられた
縦波14および横波15が厚鋼板11の内部のα
相16、γ相17、α相18を順に通り抜け鋼材
下面で反射され、鋼材表面にもどつてくる時間
T1,Tsはそれぞれ(4),(5)式で表わせる。
v 1 = v 1 (θ(x)) ...(2) v s = v s (θ(x)) ...(3) Longitudinal wave electromagnetic ultrasonic transducer 12 as shown in Fig. 4
And the longitudinal waves 14 and transverse waves 15 emitted from the transverse electromagnetic ultrasonic transducer 13 are α inside the thick steel plate 11.
The time it takes to pass through phase 16, γ phase 17, and α phase 18 in order, be reflected at the lower surface of the steel material, and return to the surface of the steel material.
T 1 and T s can be expressed by equations (4) and (5), respectively.

T1=2∫D 0dx/v1(θ(x)) ……(4) Ts=2∫D 0dx/vs(θ(x)) ……(5) (4),(5)式において、T1,Tsを測定すれば未知
数はv1(θ(x)),vs(θ(x))に含まれているθ
c
θsだけであるので、これを求めることができる。
T 1 =2∫ D 0 d x /v 1 (θ(x)) ...(4) T s =2∫ D 0 d x /v s (θ(x)) ...(5) (4), In equation (5), if T 1 and T s are measured, the unknowns are θ included in v 1 (θ(x)) and v s (θ(x)).
c ,
Since there is only θ s , this can be found.

θc,θsがわかれば、(1)式より厚鋼板内部の温度
分布がわかり、変態率も容易に推定できる。
If θ c and θ s are known, the temperature distribution inside the thick steel plate can be determined from equation (1), and the transformation rate can also be easily estimated.

そこで本発明者らが特開昭56−158941で述べた
電磁超音波による鋼材内部の縦波、横波の伝搬時
間測定方法を実施例に基いて詳細に説明する。第
5図に示すように厚さ200mmの厚板21の表面に
マグネツトコア30、マグネツト用コイル31、
超音波発生・検出用コイル32から構成される電
磁超音波センサー35を置く。超音波発生検出用
コイル32はパルス電流発生器37と導通されて
いる。マグネツト用コイル31にマグネツト用電
源36をつなぎ電流(20A)を流すとマグネツト
コア30が磁化され、厚板21の表面近傍に磁束
B(5KG)が生ずる。また超音波発生検出用コイ
ル32にパルス電流発生器37をつなぎ、パルス
電流(中心周波数500KHz、尖頭値1000A)を流
すと、電磁誘導の法則により厚板21の表面近傍
には紙面に垂直な方向に流れる誘導電流Iが流れ
る。
Therefore, the method for measuring the propagation time of longitudinal waves and transverse waves inside a steel material using electromagnetic ultrasonic waves described by the present inventors in JP-A-56-158941 will be explained in detail based on an example. As shown in FIG. 5, a magnetic core 30, a magnetic coil 31,
An electromagnetic ultrasonic sensor 35 composed of an ultrasonic generation/detection coil 32 is placed. The ultrasonic generation/detection coil 32 is electrically connected to a pulse current generator 37 . When a magnet power source 36 is connected to the magnet coil 31 and a current (20 A) is applied, the magnet core 30 is magnetized and a magnetic flux B (5 KG) is generated near the surface of the thick plate 21. In addition, when a pulse current generator 37 is connected to the ultrasonic generation/detection coil 32 and a pulse current (center frequency 500 KHz, peak value 1000 A) is applied, a pulse current (center frequency 500 KHz, peak value 1000 A) is applied near the surface of the thick plate 21 due to the law of electromagnetic induction. An induced current I flows in the direction.

この誘導電流Iは磁束Bの垂直方向成分Bv
相互作用して水平方向のローレンツ力FHを発生
する。また水平方向成分BHとの相互作用により
垂直方向のローレンツ力Fvを発生する。水平方
向の力FHは横波超音波Wsを生じ、垂直方向の力
Fvは縦波超音波W1を生ずる。Ws,W1はそれぞ
れ矢印の方向に進行し、α相22、γ相23、α
相24を順に通り抜け、厚板下面で反射され、音
速の大きい縦波がまず厚板表面にもどつてき、つ
いで横波がもどつてくる。もどつてきた超音波は
発生の際と全く逆の原理により超音波発生・検出
用コイルにより検出され電気信号となる。
This induced current I interacts with the vertical component Bv of the magnetic flux B to generate a horizontal Lorentz force FH . In addition, a vertical Lorentz force Fv is generated by interaction with the horizontal component BH . The horizontal force F H produces a transverse ultrasound wave W s and the vertical force
F v produces longitudinal ultrasound W 1 . W s and W 1 advance in the direction of the arrows, respectively, α phase 22, γ phase 23, α
Passing through the phase 24 in order, the waves are reflected by the lower surface of the slab, and the longitudinal waves with high sound speeds first return to the slab surface, followed by the transverse waves. The returning ultrasonic waves are detected by the ultrasonic wave generation/detection coil using a principle completely opposite to that used when they were generated, and become an electrical signal.

このような原理で超音波の送受信がおこなわれ
るため、表面の凹凸は特に支障とはならない。検
出された電気信号は増幅器45により増幅され、
オシロスコープ40に表示される。図中41はウ
エーブメモリ、42はコンピユータ、43は表示
器を示す。第5図のオシロスコープ表示におい
て、Pは超音波を発生させるためにパルス電流発
生器から超音波発生検出用コイル32に流したパ
ルス電流の波形であり、Lは底面で反射されても
どつてきて超音波発生検出用コイル32で検出さ
れた縦波W1の波形である。同様にSは横波Ws
波形である。T1は縦波がステンレスラブ21の
内部を往復するに要する伝播時間であり、Ts
同じく横波の伝播時間である。従つて、このよう
な方法で、T1とTsを測定し、X線厚み計により
板厚Dを測定すれば(1)〜(5)式により、鋼材内部の
温度分布がわかり、変態率も容易に指定できる。
Since ultrasonic waves are transmitted and received based on this principle, surface irregularities do not pose any particular problem. The detected electrical signal is amplified by an amplifier 45,
displayed on the oscilloscope 40. In the figure, 41 is a wave memory, 42 is a computer, and 43 is a display. In the oscilloscope display in Fig. 5, P is the waveform of the pulsed current passed from the pulsed current generator to the ultrasonic generation detection coil 32 to generate ultrasonic waves, and L is the waveform of the pulsed current that is reflected from the bottom surface and returns. This is the waveform of the longitudinal wave W1 detected by the ultrasonic generation detection coil 32. Similarly, S is the waveform of the transverse wave Ws . T 1 is the propagation time required for the longitudinal wave to reciprocate inside the stainless steel rub 21, and T s is the propagation time of the transverse wave. Therefore, by measuring T 1 and T s using this method and measuring the plate thickness D using an can also be easily specified.

しかしながら、(2),(3)式のv1,vsは複雑な関数
であり、しかもそれらが積分されているので(1)〜
(5)式により、未知数θs,θcを求めることは容易で
ない。そこで、実際は計算機を利用し試行錯誤に
より求めたので、その方法を厚板での実施例で説
明する。
However, v 1 and v s in equations (2) and (3) are complex functions, and since they are integrated, (1) ~
It is not easy to find the unknowns θ s and θ c using equation (5). Therefore, since it was actually determined by trial and error using a computer, the method will be explained using an example using a thick plate.

第6図はθs,θcを求め変態率を決定するロジツ
クを示す図で、50は計算機部分を示す。温度と
超音波縦波音速および横波音速の関係を鋼種別に
記憶装置51に記憶させておく。前述の電磁超音
波の縦波、横波の伝搬時間測定装置52により、
厚板内部の往復の伝搬時間(T1,Ts)を測定し、
比較部55に入力する。またX線厚み計53で板
厚を測定し、計算部54に入力する。そこで初期
値(θs,θc)が計算部54に与えられ(4),(5)式に
より、(T1,Ts)を計算し、比較部55におい
て、先の(T1,Ts)測定値と比較し、設定誤差
範囲内なら(θs,θc)が決定される。しかし設定
誤差範囲外なら(θs,θc)を変えて計算部54に
フイードバツクし、再び同操作を(T1,Ts)が
設定誤差範囲に入るまで繰り返し、(θs,θc)を
決定する。
FIG. 6 is a diagram showing the logic for obtaining θ s and θ c and determining the transformation rate, and 50 indicates a computer section. The relationship between temperature, ultrasonic longitudinal wave sound velocity, and transverse wave sound velocity is stored in the storage device 51 for each type of steel. By the electromagnetic ultrasonic longitudinal wave and transverse wave propagation time measurement device 52,
Measure the round trip propagation time (T 1 , T s ) inside the thick plate,
The data is input to the comparison section 55. Further, the plate thickness is measured using an X-ray thickness meter 53 and inputted to the calculation section 54. Therefore, the initial values (θ s , θ c ) are given to the calculation unit 54, which calculates (T 1 , T s ) using equations (4) and (5), and the comparison unit 55 calculates the previous values (T 1 , T s ) is compared with the measured value, and if it is within the setting error range, (θ s , θ c ) is determined. However, if it is outside the setting error range, (θ s , θ c ) is changed and fed back to the calculation unit 54, and the same operation is repeated again until (T 1 , T s ) falls within the setting error range, and (θ s , θ c ) Determine.

決定された(θs,θc)は、変態率計算部56に
入る。ここでは、まず(1)式により、厚板の板厚方
向の温度分布を計算し、表示装置57に表示す
る。また鋼種別の変態温度θpをあらかじめ記憶さ
せておき、(1)式においてθ(x)=θpと置くことに
より、第4図に示すα相の厚さxpが求め、次式に
より変態率を求め、表示装置57に表示する。
The determined (θ s , θ c ) are entered into the transformation rate calculation section 56 . Here, first, the temperature distribution in the thickness direction of the thick plate is calculated using equation (1) and displayed on the display device 57. In addition, by memorizing the transformation temperature θ p for each type of steel in advance and setting θ (x) = θ p in equation (1), the thickness x p of the α phase shown in Fig. 4 can be obtained using the following equation. The metamorphosis rate is determined and displayed on the display device 57.

(変態率)=2xp/D この変態率は、厚板上面の電磁超音波センサー
のある部分のみの厚み方向の変態率であるが、セ
ンサーを幅方向に走査して測定することにより第
7図に示すような厚鋼板の断面の変態状況が2次
元的にわかる。これにより面積率による変態率も
測定できることになる。この結果も表示装置57
に表示できる。
(Transformation rate) = 2x p /D This transformation rate is the transformation rate in the thickness direction only in the area where the electromagnetic ultrasonic sensor is located on the top surface of the plate, but it can be measured by scanning the sensor in the width direction. The transformation status of the cross section of a thick steel plate as shown in the figure can be seen two-dimensionally. This makes it possible to measure the transformation rate based on the area ratio. This result is also displayed on the display device 57.
can be displayed.

このように本方法によれば、鋼材内部の温度分
布ならびに変態率が測定できる。鋼材内部温度が
すべて変態点以下の場合又は以上の場合、いずれ
でも温度分布が同様に本方法で測定できることは
当然である。
As described above, according to the present method, the temperature distribution and transformation rate inside the steel material can be measured. It goes without saying that the temperature distribution can be similarly measured by this method regardless of whether the internal temperatures of the steel material are all below or above the transformation point.

以上の方法では、実操業中に試行錯誤による計
算を行つたが、事前に鋼種、温度、板厚に関して
多種の組み合わせで(T1,Ts)を測定し、前述
と同じロジツクで(θs,θc)を決定し、(T1,Ts
と(θs,θc)の関係を計算機に記憶させておき、
実操業中で(T1,Ts)を測定し、その際の鋼種、
板厚に一致するフアイルから(T1,Ts)の測定
値に対応した(θs,θc)を選び出す方法でもよ
い。
In the above method, calculations were performed by trial and error during actual operation, but (T 1 , T s ) were measured in advance with various combinations of steel type, temperature, and plate thickness, and (θ s ) was calculated using the same logic as above. , θ c ) and (T 1 , T s )
The relationship between and (θ s , θ c ) is memorized in the computer, and
(T 1 , T s ) was measured during actual operation, and the steel type at that time,
A method may also be used in which (θ s , θ c ) corresponding to the measured values of (T 1 , T s ) are selected from a file that matches the plate thickness.

第5図において代表的な例として1個の電磁超
音波センサーによつて縦波超音波と横波超音波を
発生検出する場合を述べたが、縦波超音波専用の
センサーと横波超音波専用のセンサーの2個を用
いても目的は達せられる。
In Fig. 5, as a typical example, we have described the case where one electromagnetic ultrasonic sensor generates and detects longitudinal and transverse ultrasonic waves. The purpose can also be achieved using two sensors.

また第5図においては、超音波が往復する時間
を測定したが、超音波発生専用センサーを上面
に、検出専用センサーを下面におき、片道の伝播
時間を測定しても(4),(5)式をそれぞれ(6),(7)式の
ように変えれば、目的は達せられる。
Furthermore, in Figure 5, the time taken for the ultrasonic wave to travel back and forth was measured, but the one-way propagation time could also be measured by placing a sensor dedicated to ultrasonic generation on the top surface and a sensor dedicated to detection on the bottom surface (4), (5) ) can be changed to equations (6) and (7), respectively, to achieve the objective.

T1=∫D 0dx/v1(θ(x)) ……(6) Ts=∫D 0dx/vs(θ(x)) ……(7) この場合にもそれぞれのセンサーは縦波と横波
の兼用型でもよいし、それぞれの専用のものを2
組使用しても目的は達せられる。
T 1 =∫ D 0 d x /v 1 (θ(x)) ...(6) T s =∫ D 0 d x /v s (θ(x)) ...(7) In this case, each The sensor may be of a dual type for both longitudinal and transverse waves, or two sensors dedicated to each type may be used.
The purpose can be achieved even if used in combination.

以上示した変態率測定方法により、圧延途中の
厚鋼板の変態率を測定し、最適な変態率の時に圧
延を行なつた結果、本発明者らが特開昭56−
158941号で述べた変態率測定方法により制御して
圧延を行なつた結果よりもさらに強度、じん性等
が向上した。
The present inventors measured the transformation rate of a thick steel plate during rolling using the transformation rate measuring method described above, and performed rolling when the transformation rate was optimal.
The strength, toughness, etc. were further improved compared to the results obtained when rolling was controlled using the transformation rate measurement method described in No. 158941.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法の測定説明図、第2図は超音波
縦波、横波音波の温度との関係を示す図、第3図
は厚鋼板の板厚方向温度分布の近似図、第4図は
変態途上の厚鋼板の電磁超音波伝搬を示す図、第
5図は縦波、横波伝搬時間測定図、第6図は本発
明の実施方法を示す図、第7図は厚鋼板断面図で
ある。 1:磁極、2:厚板、3:センサー、4:磁
束、5:磁束、11:厚鋼板、12:縦波電磁超
音波振動子、13:横波電磁超音波振動子、1
4:縦波、15:横波、16:α相、17:β
相、18:α相、21:厚板、22:α相、2
3:γ相、24:α相、30:マグネツトコア、
31:マグネツトコイル、32:超音波発生検出
用コイル、35:電磁超音波センサー、36:電
源、37:パルス電流発生器、40:オシロスコ
ープ、41:ウエーブメモリ、43:表示器、4
5:増幅器、50:計算機、52:超音波縦波・
横波伝搬時間測定装置、53:X線厚み計、5
7:表示装置。
Figure 1 is a diagram explaining measurement using the conventional method, Figure 2 is a diagram showing the relationship between ultrasonic longitudinal waves and transverse sound waves with temperature, Figure 3 is an approximate diagram of the temperature distribution in the thickness direction of a thick steel plate, and Figure 4 Figure 5 is a diagram showing the propagation of electromagnetic ultrasonic waves in a thick steel plate in the process of transformation, Figure 5 is a diagram showing longitudinal wave and transverse wave propagation time measurements, Figure 6 is a diagram showing the method of implementing the present invention, and Figure 7 is a cross-sectional view of a thick steel plate. be. 1: Magnetic pole, 2: Thick plate, 3: Sensor, 4: Magnetic flux, 5: Magnetic flux, 11: Thick steel plate, 12: Longitudinal wave electromagnetic ultrasonic transducer, 13: Transverse wave electromagnetic ultrasonic transducer, 1
4: Longitudinal wave, 15: Transverse wave, 16: α phase, 17: β
Phase, 18: α phase, 21: Thick plate, 22: α phase, 2
3: γ phase, 24: α phase, 30: magnetic core,
31: Magnetic coil, 32: Ultrasonic generation/detection coil, 35: Electromagnetic ultrasonic sensor, 36: Power supply, 37: Pulse current generator, 40: Oscilloscope, 41: Wave memory, 43: Display, 4
5: Amplifier, 50: Computer, 52: Ultrasonic longitudinal wave
Transverse wave propagation time measuring device, 53: X-ray thickness meter, 5
7: Display device.

Claims (1)

【特許請求の範囲】 1 複数種類の組織を有する金属材料の厚さ方向
に縦波超音波および横波超音波を透入し、該縦波
超音波および横波超音波の金属材料厚さ方向の伝
播時間T1、Tsを検出するとともに、該伝播時間
T1、Tsおよび記憶装置51に貯蔵された、鋼種
別の、温度と超音波縦波音速v1および超音波横波
音速vsの関係ならびに別途測定された上記金属材
料の厚さDおよび金属材料表面温度θsと板厚方向
中心の温度θcの初期値とから下記式により金属材
料表面温度θsと板厚方向中心の温度θcおよび板厚
方向における温度分布を求め、該温度分布および
別途記憶装置に貯蔵された鋼種別の変態温度θp
ら変態後の組織の厚さxpを求め、これにより変態
量率を求めるようにしたことを特徴とする金属材
料の内部温度および組織を測定する方法。 T1=2∫D 0dx/{v1(θ(x))} Ts=2∫D 0dx/{vs(θ(x))} θ(x)=〔4(θs−θc)〕/D2・(x−D/2)
2
θc ここで、 T1:縦波超音波の金属材料厚さ方向の伝播時
間 Ts:横波超音波の金属材料厚さ方向の伝播時
間 V1:超音波縦波音速 Vs:超音波横波音速 x:金属材料表面からの板厚方向距離 θ(x):金属材料表面からの板厚方向距離xに
おける温度 θs:金属材料表面温度 θc:金属材料の板厚方向中心の温度 D:金属材料の厚さ
[Claims] 1. Transmitting longitudinal ultrasound waves and transverse ultrasound waves in the thickness direction of a metal material having multiple types of structures, and propagating the longitudinal ultrasound waves and shear wave ultrasound waves in the thickness direction of the metal material. Detect the times T 1 and T s and the propagation time
T 1 , T s and the relationship between temperature and ultrasonic longitudinal sound velocity v 1 and ultrasonic transverse sound velocity V s for each type of steel, and the separately measured thickness D of the metal material and metal From the material surface temperature θ s and the initial value of the temperature θ c at the center in the thickness direction, calculate the metal material surface temperature θ s , the temperature θ c at the center in the thickness direction, and the temperature distribution in the thickness direction using the following formula, and calculate the temperature distribution. The internal temperature and structure of the metal material are characterized in that the thickness x p of the structure after transformation is determined from the transformation temperature θ p of each steel type stored in a storage device separately, and the transformation rate is determined from this. How to measure. T 1 =2∫ D 0 dx/{v 1 (θ(x))} T s =2∫ D 0 dx/{v s (θ(x))} θ(x) = [4(θ s −θ c )]/D 2・(x-D/2)
2 +
θ c where, T 1 : Propagation time of longitudinal ultrasonic wave in the thickness direction of metal material T s : Propagation time of shear wave ultrasonic wave in the thickness direction of metal material V 1 : Ultrasonic longitudinal wave sound velocity V s : Ultrasonic shear wave Speed of sound x: Distance in the thickness direction from the metal material surface θ(x): Temperature at distance x in the thickness direction from the metal material surface θ s : Metal material surface temperature θ c : Temperature at the center of the metal material in the thickness direction D: Metal material thickness
JP57077789A 1982-05-08 1982-05-08 Method and device for measuring internal temperature and texture of metallic material Granted JPS58195148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077789A JPS58195148A (en) 1982-05-08 1982-05-08 Method and device for measuring internal temperature and texture of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077789A JPS58195148A (en) 1982-05-08 1982-05-08 Method and device for measuring internal temperature and texture of metallic material

Publications (2)

Publication Number Publication Date
JPS58195148A JPS58195148A (en) 1983-11-14
JPH0216874B2 true JPH0216874B2 (en) 1990-04-18

Family

ID=13643741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077789A Granted JPS58195148A (en) 1982-05-08 1982-05-08 Method and device for measuring internal temperature and texture of metallic material

Country Status (1)

Country Link
JP (1) JPS58195148A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709169B2 (en) * 2002-03-04 2005-10-19 株式会社荏原製作所 Method and apparatus for diagnosing damage to conductive material
JP4843790B2 (en) * 2006-09-15 2011-12-21 国立大学法人長岡技術科学大学 Temperature measurement method using ultrasonic waves
JP5058196B2 (en) * 2009-03-19 2012-10-24 新日本製鐵株式会社 Apparatus and method for measuring phase transformation rate of material

Also Published As

Publication number Publication date
JPS58195148A (en) 1983-11-14

Similar Documents

Publication Publication Date Title
US4686471A (en) System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
US5467655A (en) Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
JPH0216874B2 (en)
EP0146638B1 (en) Method for measuring transformation rate
JP3299505B2 (en) Ultrasonic flaw detection method using magnetostriction effect
Murayama Study of driving mechanism on electromagnetic acoustic transducer for Lamb wave using magnetostrictive effect and application in drawability evaluation of thin steel sheets
JPH0242402B2 (en)
JP2009068914A (en) Inner state measuring instrument, inner state measuring method, program and computer readable storage medium
JPS6229022B2 (en)
RU2480708C2 (en) Method and device for measuring thickness of layer of partially crystallised melts
JP5031314B2 (en) Electromagnetic ultrasonic sensor and electromagnetic ultrasonic detection system
RU2231055C1 (en) Device for ultrasonic monitoring of strength characteristics of material of moving rolled sheets
JPH11166919A (en) Method and device for detecting completion of transformation
JPH0249660B2 (en) HENTAIRYORITSUNOSOKUTEIHOHO
JPS58179305A (en) Electromagnetic ultrasonic measuring device
JP3770522B2 (en) Method and apparatus for measuring internal temperature of steel material
JP2000304725A (en) Method for measuring thickness of transformation layer of steel material
JPH06347449A (en) Crystal grain size evaluation method for metallic sheet
JPH11166918A (en) Method and device for measuring rate of transformation
JPH039013Y2 (en)
JPH08211086A (en) Method and device for measuring flow velocity
Koch et al. A Modulus for the Evaluations of the Dynamic Magnetostriction as a Measured Quantity of the 3MA Method
JPS6031009A (en) Apparatus for measuring thickness of solidified cast piece
JP2001249118A (en) Method for ultrasonically detecting degradation of metal
RU166262U1 (en) ELECTROMAGNETIC ACOUSTIC CONVERTER