JPH0249660B2 - HENTAIRYORITSUNOSOKUTEIHOHO - Google Patents

HENTAIRYORITSUNOSOKUTEIHOHO

Info

Publication number
JPH0249660B2
JPH0249660B2 JP10731483A JP10731483A JPH0249660B2 JP H0249660 B2 JPH0249660 B2 JP H0249660B2 JP 10731483 A JP10731483 A JP 10731483A JP 10731483 A JP10731483 A JP 10731483A JP H0249660 B2 JPH0249660 B2 JP H0249660B2
Authority
JP
Japan
Prior art keywords
signal
rate
transformation
alternating current
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10731483A
Other languages
Japanese (ja)
Other versions
JPS59231446A (en
Inventor
Katsuhiro Kawashima
Masaaki Hatsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10731483A priority Critical patent/JPH0249660B2/en
Priority to DE8484902367T priority patent/DE3477423D1/en
Priority to PCT/JP1984/000309 priority patent/WO1985000058A1/en
Priority to EP84902367A priority patent/EP0146638B1/en
Priority to US06/705,467 priority patent/US4740747A/en
Publication of JPS59231446A publication Critical patent/JPS59231446A/en
Publication of JPH0249660B2 publication Critical patent/JPH0249660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼等金属材料の組織変態、たとえば
オーステナイト相からフエライト相へ或はその逆
の過程において生じる電磁気的な変化を検出し
て、被検体(金属材料)の変態量率を装置する方
法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention detects electromagnetic changes that occur during the structural transformation of metal materials such as steel, for example, from an austenite phase to a ferrite phase, or vice versa. The present invention relates to a method for measuring the transformation rate of an object (metallic material).

〔従来の技術〕[Conventional technology]

従来、鋼等金属材料の変態量率を測定する方法
として、放射線を利用する方法や直流磁界を利用
する直流磁界法或は被検体の変態過程において生
じる電磁気的な変化をインピーダンスの変化とし
て検出する方法が知られている。
Conventionally, methods for measuring the transformation rate of metal materials such as steel include methods that use radiation, direct current magnetic field methods that use direct current magnetic fields, or detect electromagnetic changes that occur during the transformation process of the specimen as changes in impedance. method is known.

放射線を利用する変態量率の測定方法は、オー
ステナイトからフエライトへの変化に伴う格子定
数の変化によつてX線回折角が変化することを利
用する方法であるがX線が被検体を透過し難いた
め、表層(表面から数10μm深さ)の情報しか得
られないとか、被検体がたとえば熱間圧延中の鋼
ストリツプであるような場合、被検体は測定中に
激しく上下方向に変位する(ばたつく)が、この
ような状態下で精度高く変態量率を測定すること
ができない、という欠点がある。
The method of measuring the transformation rate using radiation is a method that takes advantage of the fact that the X-ray diffraction angle changes due to the change in the lattice constant associated with the change from austenite to ferrite. Because of the difficulty, information on only the surface layer (several tens of micrometers below the surface) can be obtained, or when the specimen is a hot-rolled steel strip, for example, the specimen may be violently displaced vertically during measurement ( However, the disadvantage is that the transformation rate cannot be measured with high accuracy under such conditions.

また、直流磁界法は、被検体に直流磁界を与え
ホール素子で磁界を測定する方法であるが、変態
量率と測定値の間に著しい非線型性があるととも
に、変態が始まつて被検体が強磁性体になると、
直流磁界が被検体の表層部のみに流れるようにな
るため、変態の開始点或はその近傍しか測定でき
ない、という欠点がある。
In addition, the DC magnetic field method is a method in which a DC magnetic field is applied to the specimen and the magnetic field is measured using a Hall element, but there is significant nonlinearity between the transformation rate and the measured value, and the When becomes a ferromagnetic material,
Since the DC magnetic field flows only to the surface layer of the object, there is a drawback that it is possible to measure only the starting point of transformation or the vicinity thereof.

次に、本発明と同じような、被検体の変態過程
における電磁気的な変化をコイルで検出する従来
の変態量率の測定方法について詳しく述べる。こ
の種の変態量率の測定方法として、第1図に示す
ように構成された変態量率測定方法がある。
Next, a conventional method for measuring the rate of transformation, which uses a coil to detect electromagnetic changes during the transformation process of a subject, similar to the present invention, will be described in detail. As a method for measuring the rate of transformation of this kind, there is a method of measuring the rate of transformation configured as shown in FIG.

第1図において、1は発振器であつて、被検体
の変態量の測定に対して適切な周波数の正弦波電
流を出力する。2は被検体であつて、変態量を測
定する対象である。
In FIG. 1, reference numeral 1 denotes an oscillator that outputs a sine wave current of a frequency appropriate for measuring the amount of transformation of a subject. Reference numeral 2 is a subject, and the amount of metamorphosis is to be measured.

3は検出コイルであり、被検体2の上部に近接
して置かれ、変態量を検出するセンサーとして機
能する。4はブリツジ回路で、検出コイル3のイ
ンピーダンスの変化を検知する。5は信号処理装
置で、ブリツジ回路4の検出信号を利用し易い形
態に変化させる。この従来の変態量測定装置の動
作を、以下に説明する。
A detection coil 3 is placed close to the upper part of the subject 2 and functions as a sensor for detecting the amount of metamorphosis. A bridge circuit 4 detects a change in impedance of the detection coil 3. 5 is a signal processing device that changes the detection signal of the bridge circuit 4 into a form that is easy to use. The operation of this conventional transformation amount measuring device will be explained below.

板状の被検体2の近傍に検出コイル3を置い
て、発振器1によつて発生した、連続した正弦波
電流を検出コイル3に流す。而して、被検体2の
表面に渦電流が生じ、コイルの見掛けのインピー
ダンスが変化する。このコイルインピーダンスに
影響を与える渦電流の大きさは、被検体2の材質
(透磁率、伝導率、センサーと被検体2間の距離、
その他)に依存する。被検体2が、オーステナイ
トからフエライトへ変態しつつある場合、被検体
2中にはオーステナイトに対しててフエライトの
占める比率が大きくなるため、透磁率は大きく変
わる。その結果、被検体2の表面を流れている渦
電流は変化して、被検体2の近傍に置かれている
検出コイル3のインピーダンスは変化する。この
検出コイル3におけるインピーダンスの変化を、
検出コイル3に続くブリツジ回路4によつて検出
し、信号処理装置5で検出信号を利用し易い形態
に変化させ、表示部6で表示する。
A detection coil 3 is placed near a plate-shaped subject 2, and a continuous sinusoidal current generated by an oscillator 1 is passed through the detection coil 3. Thus, an eddy current is generated on the surface of the subject 2, and the apparent impedance of the coil changes. The magnitude of the eddy current that affects this coil impedance is determined by the material of the object 2 (magnetic permeability, conductivity, distance between the sensor and the object 2),
Others). When the specimen 2 is undergoing transformation from austenite to ferrite, the ratio of ferrite to austenite in the specimen 2 increases, so the magnetic permeability changes significantly. As a result, the eddy current flowing on the surface of the subject 2 changes, and the impedance of the detection coil 3 placed near the subject 2 changes. The change in impedance in this detection coil 3 is
A bridge circuit 4 following the detection coil 3 detects the detection signal, a signal processing device 5 changes the detection signal into an easily usable form, and the display unit 6 displays the detected signal.

被検体2の変態過程における電磁気的な変化を
コイルで検出する上記従来技術は、叙上のように
構成されているから、板状の被検体の透磁率の変
化を感知するのみならず、その他の因子、特に被
検体と検出コイルの間の距離に鋭敏に反応し、従
つて、被検体と検出コイルの間隔を一定に保たな
ければならない。また、センサー出力と被検体の
変態量率の間には著しい非線型性が存在するか
ら、変態の開始点或はその近傍における変態量率
は測定できるけれども、変態の開始点から終了点
までの変態量率を測定することができない。この
従来技術には、このような種々の問題がある。
The above-mentioned conventional technology that uses a coil to detect electromagnetic changes during the metamorphosis process of the object 2 is configured as described above, so it can not only detect changes in magnetic permeability of a plate-shaped object, but also detect other changes. The distance between the subject and the detection coil must therefore be kept constant. Furthermore, since there is significant nonlinearity between the sensor output and the rate of transformation of the subject, although the rate of transformation at or near the start point of metamorphosis can be measured, the rate from the start point to the end point of metamorphosis can be measured. It is not possible to measure the rate of metamorphosis. This conventional technology has various problems as described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記従来技術における問題を解決
し、被検体とセンサーの間の距離が変化する場
合、たとえば熱間圧延中の鋼ストリツプのよう
に、被検体が激しく上下動する(ばたつく)場合
でも被検体の変態量率を精度高く測定できるとと
もに、被検体の板厚の広い範囲に亘つて、変態の
開始点から終了点までの変態量率を測定すること
ができる、変態量率の測定方法を提供することを
目的としてなされた。
The present invention solves the above-mentioned problems in the prior art, and even when the distance between the object and the sensor changes, for example when the object moves up and down (flapping) violently, such as a steel strip during hot rolling. A method for measuring the transformation amount rate that can measure the transformation amount rate of a specimen with high accuracy and also measure the transformation amount rate from the start point to the end point of the transformation over a wide range of plate thicknesses of the specimen. It was made with the purpose of providing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴とする処は、送信コイルと、被検
体を挟んで相対して位置する受信コイルを設け、
前記送信コイルに交流電流を供給して受信コイル
に生じる電気信号から被検体の変態量率を測定す
る方法であつて、被検体の変態の初期から、出力
信号の大きさと変態量率の関係が線型的に変化す
る間においては、連続波交流電流を送信コイルに
供給して測定を行い、被検体の変態が進行し出力
信号の対数値と変態量率の関係が非線型となると
き以前からパルス波交流電流に切換え送信コイル
に供給して測定を行うことにある。
The present invention is characterized by providing a transmitting coil and a receiving coil located opposite to each other with the subject in between,
This is a method of measuring the rate of metamorphosis of a subject from an electric signal generated in a receiving coil by supplying an alternating current to the transmitting coil, and the relationship between the magnitude of the output signal and the rate of metamorphosis is determined from the initial stage of metamorphosis of the subject. During linear changes, measurement is performed by supplying a continuous wave alternating current to the transmitting coil, and even before the transformation of the object progresses and the relationship between the logarithm of the output signal and the transformation amount rate becomes non-linear. The purpose is to perform measurements by switching to pulsed alternating current and supplying it to the transmitting coil.

以下に、本発明を詳細に説明する。 The present invention will be explained in detail below.

第2図に、本発明の変態量率の測定方法を実施
するときの装置の構成を示す。
FIG. 2 shows the configuration of an apparatus for carrying out the method for measuring the transformation rate of the present invention.

第2図において、21は送信コイルである。2
2は受信コイルであつて、板状の被検体23を挟
んで送信コイル21に相対した位置に配置され
る。24は発振器であつて、送信コイル21に被
検体23の変態量率の測定に適した連続した交流
電流たとえば正弦波交流電流、或はパルス波電流
を発生する。本発明では、連続した交流電流たと
えば正弦波交流電流ならびにパルス波交流電流を
総称して交流電流と呼ぶ。
In FIG. 2, 21 is a transmitting coil. 2
Reference numeral 2 denotes a receiving coil, which is arranged at a position opposite to the transmitting coil 21 with the plate-shaped subject 23 in between. Reference numeral 24 denotes an oscillator, which generates in the transmitting coil 21 a continuous alternating current, such as a sine wave alternating current, or a pulse wave current suitable for measuring the rate of transformation of the subject 23. In the present invention, continuous alternating current, such as sinusoidal alternating current and pulsed alternating current, is collectively referred to as alternating current.

25は、パルス信号−連続信号切り換え装置、
26は、パワーアンプであつて、パルス電流或い
は連続した交流電流たとえば正弦波交流電流にパ
ワーを与える。27は増幅器およびチユーンドア
ンプであつて、受信コイル22に発生した電圧を
増幅する。
25 is a pulse signal-continuous signal switching device;
26 is a power amplifier which supplies power to a pulsed current or continuous alternating current, such as a sine wave alternating current. 27 is an amplifier and tuned amplifier, which amplifies the voltage generated in the receiving coil 22.

増幅器およびチユーンドアンプ27は、切り換
え装置25によつて切り換えられる。
The amplifier and tuned amplifier 27 are switched by a switching device 25.

28は信号処理回路であつて、受信信号を処理
する。信号処理回路28は受信した透過信号と回
りこみ信号を分離して、所定の変態量率の基準値
に置き替えるための回路である。29は表示部で
あつて、信号処理回路28からの信号を表示す
る。
28 is a signal processing circuit that processes the received signal. The signal processing circuit 28 is a circuit for separating the received transmission signal and wraparound signal and replacing them with a reference value of a predetermined transformation amount rate. 29 is a display section that displays the signal from the signal processing circuit 28.

次に、第2図に示す装置の動作を説明する。 Next, the operation of the apparatus shown in FIG. 2 will be explained.

本発明においては、被検体23の変態初期にお
いて、送信コイル21に連続した交流電流たとえ
ば正弦波交流電流を供給し、変態がある程度進行
した段階で、パルス信号−連続信号切り換え装置
25によつて、送信コイル21に供給される電流
を連続した交流電流たとえば正弦波交流電流から
パルス波交流電流に切り換える。
In the present invention, a continuous alternating current, for example, a sinusoidal alternating current, is supplied to the transmitting coil 21 at the beginning of the metamorphosis of the subject 23, and when the metamorphosis has progressed to a certain extent, the pulse signal/continuous signal switching device 25 The current supplied to the transmitting coil 21 is switched from a continuous alternating current, such as a sinusoidal alternating current, to a pulsed alternating current.

送信コイル21に連続した交流電流たとえば正
弦波交流電流を供給すると、板状の被検体23の
表面に渦電流が生じる。この渦電流は、被検体2
3の厚さ方向下方へ伝播して行き、受信コイル2
2の周囲に高周波の磁場を作る。この磁場の変化
によつて、受信コイル22の両端に電圧が誘起さ
れる。受信22に誘起される電圧は、近似的に次
式で与えられる。
When a continuous alternating current, for example a sinusoidal alternating current, is supplied to the transmitting coil 21, an eddy current is generated on the surface of the plate-shaped object 23. This eddy current
3 and propagates downward in the thickness direction of the receiving coil 2.
Create a high-frequency magnetic field around 2. This change in magnetic field induces a voltage across the receiving coil 22. The voltage induced in the receiver 22 is approximately given by the following equation.

V=V0・exp(−√d) ……(1) ここで、:周波数 μ:透磁率 σ:伝導率
d:被検体23の厚さ である。
V=V 0 · exp (−√d) ... (1) where: Frequency μ: Magnetic permeability σ: Conductivity d: Thickness of the object 23.

処で、被検体23の変態の進行に伴つて、オー
ステナイトからフエライトへ変わり、全量(オー
ステナイト+フエライト)に対するフエライトの
比率に応じて被検体23の透磁率は大きくなつて
行く。全量に対するフエライトの比率をKとし
て、オーステナイトおよびフエライトの透磁率、
伝導率をそれぞれμ1,μ2,σ1,σ2とすると、受信
コイル22の両端に生じる誘起電圧は、 V=V0・exp(−√1 1(1−K)d −√2 2Kd) ……(2) ここで、K:フエライト/(オーステナイト+
フエライト) となる。ここで、Kは変態量率と対応していて、
K以外の値は既知であるから、誘起電圧を測定す
ることによつて目的とする変態量率を求めること
ができる。
As the transformation of the object 23 progresses, austenite changes to ferrite, and the magnetic permeability of the object 23 increases in accordance with the ratio of ferrite to the total amount (austenite + ferrite). The magnetic permeability of austenite and ferrite, where the ratio of ferrite to the total amount is K,
When the conductivities are μ 1 , μ 2 , σ 1 , and σ 2 , respectively, the induced voltage generated across the receiving coil 22 is V=V 0・exp(−√ 1 1 (1−K) d −√ 2 2 Kd) ...(2) Here, K: Ferrite/(Austenite +
ferrite). Here, K corresponds to the metamorphosis rate,
Since the values other than K are known, the desired transformation rate can be determined by measuring the induced voltage.

このように、本発明の基本原理は、(2)に従つて
いる。
Thus, the basic principle of the present invention follows (2).

処で、(2)式においては、センサーと板状の被検
体23の距離(間隔)を表す項はなく、誘起電圧
はセンサーと板状の被検体23間の距離(間隔)
とは無関係であり、誘起電圧によつて得られる変
態量率もセンサーと板状の被検体23間の距離
(間隔)には影響を受けない。即ち、板状の被検
体23が送信コイルと受信コイル間で“ばたつ
き”を生じても、変態量率の測定精度を低下させ
ることがない。
However, in equation (2), there is no term representing the distance (interval) between the sensor and the plate-shaped object 23, and the induced voltage is determined by the distance (interval) between the sensor and the plate-shaped object 23.
The rate of transformation obtained by the induced voltage is not affected by the distance (spacing) between the sensor and the plate-shaped object 23. That is, even if the plate-shaped object 23 causes "flapping" between the transmitting coil and the receiving coil, the accuracy of measuring the rate of transformation will not be reduced.

また、(2)式の対数をとると、オーステナイトの
透磁率に比しフエライトの透磁率は十分に大きい
から、(3)式に示すように誘起電圧の対数は、変態
量率Kに線型となる。
Furthermore, if we take the logarithm of equation (2), since the magnetic permeability of ferrite is sufficiently larger than that of austenite, the logarithm of the induced voltage is linear with the transformation rate K as shown in equation (3). Become.

1n(V/V0)=−(√1 1(1−K)d +√2 2Kd)μ2≫μ1であるから、近似的
に、 1n(V/V0)=−√2 2Kd ……(3) となる。処で、被検体23である金属板材の厚さ
dが大きく、変態が十分に進行している場合に
は、第3図に示すように、透過信号30によつて
生じる誘起電圧Vは、被検体23を回り込んでく
る信号31によつて生じる誘起電圧Vεによつて
埋没してしまう。
Since 1n(V/V 0 )=−(√ 1 1 (1−K)d +√ 2 2 Kd)μ 2 ≫μ 1 , approximately, 1n(V/V 0 )=−√ 2 2 Kd...(3) becomes. However, if the thickness d of the metal plate material that is the object 23 is large and the transformation has progressed sufficiently, the induced voltage V generated by the transmitted signal 30 will be The specimen 23 is buried by the induced voltage Vε generated by the signal 31 that goes around the specimen 23.

そこで、本発明においては、第4図に示すよう
に、(3)式が成立する領域内においては連続する交
流電流たとえば正弦波交流電流を送信コイルに供
給し、それ以外の領域ではパルス波交流電流を使
用するようにしている。
Therefore, in the present invention, as shown in FIG. 4, a continuous alternating current, such as a sinusoidal alternating current, is supplied to the transmitting coil in the region where equation (3) holds, and a pulsed alternating current is supplied in other regions. It uses electric current.

この点を詳細に説明すると、先ず送信コイルに
供給する電流は、連続する交流電流たとえば正弦
波交流電流である方が、被検体23の変態率の測
定精度を高い水準とすることができる。しかしな
がら、先に述べたように、被検体23の厚さdが
大きく変態が進行している場合、(第4図に、“連
続法による測定”を示す実線の右方非線型部分)
被検体23を回り込んでくる信号31(第3図参
照)によつて生じる誘起電圧Vεによつて、透過
信号30によつて生じる誘起電圧Vが埋没してし
まい、変態率の測定ができなくなる。しかし、送
信コイル21にパルス波交流電流を供給して変態
率を測定すると、真の信号(透過信号30によつ
て生じる誘起電圧V)と、被検体23を回り込ん
でくる信号31(第3図参照)によつて生じる誘
起電圧Vεの分離が可能となり、第4図に、“連続
法による測定”を示す実線の右方非線型部分にお
いても変態率の測定ができる。
To explain this point in detail, first, if the current supplied to the transmitting coil is a continuous alternating current, for example, a sinusoidal alternating current, the accuracy of measuring the transformation rate of the subject 23 can be made to a higher level. However, as mentioned above, when the thickness d of the specimen 23 is large and the transformation is progressing (in Fig. 4, the nonlinear part to the right of the solid line indicating "measurement by continuous method")
The induced voltage V generated by the transmitted signal 30 is buried by the induced voltage Vε generated by the signal 31 (see FIG. 3) that goes around the object 23, making it impossible to measure the transformation rate. . However, when the transformation rate is measured by supplying pulsed AC current to the transmitting coil 21, the true signal (induced voltage V generated by the transmitted signal 30) and the signal 31 (third (see figure), it becomes possible to separate the induced voltage Vε generated by the method (see figure), and the transformation rate can also be measured in the nonlinear portion to the right of the solid line indicating "measurement by the continuous method" in FIG.

しかし、送信コイル21にパルス波交流電流を
供給して変態率を測定する場合、含まれる周波数
が必ずしも単一とはならない。そのため、受信信
号は、意図した周波数を中心とする周波数群総和
となり、単一の周波数を用いる連続法(連続する
交流電流たとえば正弦波交流電流を送信コイルに
供給して変態率を測定する方法)に比し、本質的
に測定精度は低くなる。従つて本発明では、連続
法で測定可能な部分(第4図における実線の線型
部分)は連続法によつて測定し、連続法による測
定ができない部分は、精度は落ちるけれども測定
可能なパルス法によつて測定するようにしてい
る。こうすることによつて、広い測定範囲を確保
している。
However, when measuring the transformation rate by supplying pulsed alternating current to the transmitting coil 21, the included frequencies are not necessarily single. Therefore, the received signal is the sum of a group of frequencies centered around the intended frequency, and the continuous method using a single frequency (method of measuring the transformation rate by supplying a continuous alternating current, such as a sine wave alternating current, to a transmitting coil) Compared to this, the measurement accuracy is essentially lower. Therefore, in the present invention, parts that can be measured by the continuous method (the solid linear part in Figure 4) are measured by the continuous method, and parts that cannot be measured by the continuous method are measured by the pulse method, which can be measured although the accuracy is lower. I try to measure it by. This ensures a wide measurement range.

本発明を実施するに際し、連続法からパルス法
に切り換えるタイミングを判別するには、予め第
4図を求めて置き、出力の測定値lo(V)が非線
型となる測定値のlo(V)Linitを決定し、この値lo
(V)Linitよりも出力の測定値lo(V)が小さくなつ
たときに、連続法からパルス法に切り換える。
When carrying out the present invention, in order to determine the timing to switch from the continuous method to the pulse method, first obtain the diagram in FIG . V) Determine Linit and set this value l o
(V) When the measured output value l o (V) becomes smaller than Linit , switch from the continuous method to the pulse method.

次に、パルス法による場合の動作について説明
する。
Next, the operation using the pulse method will be explained.

送信コイル21にパルス波交流電流を流すと、
板状の被検体23の表面に渦電流が生じる。この
渦電流は、被検体23の厚さ方向下方に伝播して
行き、受信コイル22の周囲にパルス状の磁場を
作る。この磁場の変化によつて、受信コイル22
の両端に電圧が誘起される。パルス電流Iを次式
で定義すると、近似的に、 I=I0(t)(nT≦t<nT+t0) =0 (nT+t0≦t<(n+1)T) ただし、n=0,1,2,3…… 中心周波数をとすると、誘起電圧Vは、 V=K∂/∂t(I0(t−Δt)exp) −√dで与えられる。
When a pulse wave alternating current is passed through the transmitting coil 21,
Eddy currents are generated on the surface of the plate-shaped object 23. This eddy current propagates downward in the thickness direction of the subject 23 and creates a pulsed magnetic field around the receiving coil 22. Due to this change in magnetic field, the receiving coil 22
A voltage is induced across the . When the pulse current I is defined by the following formula, approximately I=I 0 (t) (nT≦t<nT+t 0 ) =0 (nT+t 0 ≦t<(n+1)T) where n=0, 1, 2, 3... Assuming the center frequency, the induced voltage V is given by: V=K∂/∂t(I 0 (t−Δt)exp)−√d.

伝播時間Δtは、 Δt=√4×d ここで、μ:透磁率 :周波数 σ:伝導率
d:被検体の厚さ 透過速度vは、 v=√4 と近似的になる。この渦電流の透過速度vは、
=1kHZ、μ=150×4μ×10-7H/m、σ=8×
106v/m、d=3mmの場合、約3m/sであり、
電磁波の進行速度3×108m/s、即ち回り込み
信号の進行速度に比較して非常に低い。
The propagation time Δt is: Δt=√4×d Here, μ: Magnetic permeability: Frequency σ: Conductivity d: Thickness of the object The transmission speed v is approximated as v=√4. The transmission speed v of this eddy current is
=1kHZ, μ=150×4μ×10 -7 H/m, σ=8×
When 10 6 v/m and d=3 mm, it is about 3 m/s,
The traveling speed of the electromagnetic waves is 3×10 8 m/s, which is very low compared to the traveling speed of the loop signal.

本発明は、このことを利用している。即ち、被
検体23を透過してくる信号は、被検体を回り込
んでくる信号に比しΔtだけ遅れるから、被検体
23を透過してくる信号と被検体を回り込んでく
る信号を分離することが可能となる。
The present invention takes advantage of this fact. That is, since the signal passing through the object 23 is delayed by Δt compared to the signal going around the object, the signal passing through the object 23 and the signal coming around the object are separated. becomes possible.

第5図に、送信パルスの形状と、被検体23の
変態進行に伴う受信パルスの形状の一例を示す。
第5図1は送信波形、2,3,4,5は、変態率
0%、20%、40%、80%の場合の受信パルスの波
形である。この中で、回り込みの成分は、パルス
波形開始から1msまでに含まれている。真の信号
(透過信号)は、2,3,4,5において、時間
的にずれて行くピークに含まれている。2,3で
は、このピークの位置と回り込み信号とは、ほぼ
重なつた位置にあるが、真の信号(透過信号)が
十分大きいため回り込み信号は観察できない。
FIG. 5 shows an example of the shape of the transmitted pulse and the shape of the received pulse as the metamorphosis of the subject 23 progresses.
5. FIG. 1 shows the transmitted waveform, and 2, 3, 4, and 5 show the received pulse waveforms when the transformation rate is 0%, 20%, 40%, and 80%. Among these, the wrap-around component is included within 1 ms from the start of the pulse waveform. The true signal (transmission signal) is included in peaks 2, 3, 4, and 5 that are shifted in time. In Nos. 2 and 3, the position of this peak and the wraparound signal almost overlap, but the wraparound signal cannot be observed because the true signal (transmitted signal) is sufficiently large.

4については、最初に回り込み信号が見られる
が、真の信号(透過信号)のために形が崩れてい
る。5については、最初の信号が回り込み信号で
あり、次のなだらかなピークが真の信号(透過信
号)である。回り込み信号と真の信号(透過信
号)とが完全に分離している。
Regarding No. 4, a wraparound signal is first seen, but its shape is distorted due to the true signal (transmission signal). Regarding No. 5, the first signal is the wraparound signal, and the next gentle peak is the true signal (transmission signal). The loop signal and the true signal (transmission signal) are completely separated.

このように、パルス法では、回り込み信号が真
の信号(透過信号)に影響を与える部分では、
4,5のように、真の信号(透過信号)が回り込
み信号と分離された形で測定できる。この真の信
号(透過信号)のピーク値によつて予め検量線を
求めて置き、これを基に変態量率を求める。
In this way, in the pulse method, in the part where the wraparound signal affects the true signal (transmitted signal),
4 and 5, the true signal (transmitted signal) can be measured separately from the loop signal. A calibration curve is determined in advance using the peak value of this true signal (transmission signal), and the transformation amount rate is determined based on this.

また、真の信号(透過信号)が回り込み信号に
比し十分に大きい2,3の場合は、そのまま真の
信号(透過信号)のピーク値を使用する。この真
の信号(透過信号)のピークが、回り込み信号と
分離し始めた場合、分離した真の信号(透過信
号)のピーク値使用する。
Further, in the case of 2 or 3 where the true signal (transmitted signal) is sufficiently larger than the wraparound signal, the peak value of the true signal (transmitted signal) is used as is. When the peak of this true signal (transmitted signal) begins to separate from the loop signal, the peak value of the separated true signal (transmitted signal) is used.

回り込み信号は、 V=Vε(nT≦t<nT+t0)=0 (nT+t0≦t<(n+1)T) となる。従つて、受信コイル22で受信された信
号を増幅器27によつて増幅し、信号処理回路2
8において、nT+t0≦t<(n+1)Tのみの信
号に着目すると、回り込み信号の効果を消去する
ことが可能となる。このように、回り込み信号と
真の信号(透過信号)が分離され、この真の信号
(透過信号)の大きさによつて変態量率を計算し、
表示部28で表示する。
The wraparound signal is as follows: V=Vε(nT≦t<nT+t 0 )=0 (nT+t 0 ≦t<(n+1)T). Therefore, the signal received by the receiving coil 22 is amplified by the amplifier 27, and the signal processing circuit 2
In 8, if attention is paid to only the signal where nT+t 0 ≦t<(n+1)T, it becomes possible to eliminate the effect of the wraparound signal. In this way, the wrap-around signal and the true signal (transmitted signal) are separated, and the transformation amount rate is calculated based on the magnitude of this true signal (transmitted signal).
It is displayed on the display unit 28.

叙上のように、本発明は、交流による金属材料
の変態量率測定方法において、出力である測定値
が変態量率に線型的に変化する領域では、送信コ
イル21に連続した交流電流たとえば正弦波交流
電流を供給し、線型性が崩れる領域即ち、回り込
み信号の影響がある領域ではパルス波交流電流を
送信コイル21に供給するように構成している。
As described above, in the method for measuring the rate of transformation of a metallic material using alternating current, in a region where the measured value as the output changes linearly to the rate of transformation, the transmitting coil 21 is provided with a continuous alternating current, such as a sine current. A pulse wave alternating current is supplied to the transmitting coil 21, and a pulse wave alternating current is supplied to the transmitting coil 21 in a region where the linearity collapses, that is, in a region where there is an influence of a loop signal.

本発明の他の実施態様として、連続法におい
て、受信信号の振幅を情報として利用している
が、位相も同様の情報をもつているから、変態量
率を知るために位相を利用してもよい。また、パ
ルス法については、信号処理回路28において、
回り込み信号と真の信号(透過信号)を分離し、
真の信号(透過信号)の大きさによつて変態量率
を求めたが、真の信号(透過信号)の時間遅れを
調べることによつて、変態量率を求めることも可
能である。
As another embodiment of the present invention, in the continuous method, the amplitude of the received signal is used as information, but since the phase also has similar information, it is also possible to use the phase to know the metamorphosis rate. good. Regarding the pulse method, in the signal processing circuit 28,
Separates the loop signal and the true signal (transparent signal),
Although the transformation rate was determined based on the magnitude of the true signal (transmission signal), it is also possible to determine the transformation rate by examining the time delay of the true signal (transmission signal).

送信コイル21の直前にあるパワーアンプ、受
信コイルの後段にあるチユーンドアンプ、増幅器
は、本発明の構成における必須の構成要素ではな
く、場合によつては省くことも可能であり、それ
らに準ずるもの、たとえばチユーンドアンプをロ
ツクインアンプによつて代替してもよい。
The power amplifier located immediately before the transmitting coil 21, the tuned amplifier and amplifier located after the receiving coil are not essential components in the configuration of the present invention, and may be omitted in some cases, and the same may be applied. For example, a tuned amplifier may be replaced by a lock-in amplifier.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、被検体の変態初
期においては、測定の精度を高くするのに好まし
い周波数を使用する連続した交流電流を用いて測
定精度を確保し、連続法が適用できない領域で
は、パルス法を用いることによつて広い測定範囲
を確保している。
As described above, the present invention secures measurement accuracy by using a continuous alternating current that uses a frequency preferable to increase measurement accuracy in the early stages of metamorphosis of the subject, and in areas where the continuous method cannot be applied. By using the pulse method, a wide measurement range is ensured.

このように、本発明は、連続法とパルス法を切
り換え使用することによつて、厚い被検体の変態
量率を変態の開始点から終了点まで広い範囲に亘
つて、精度良く測定することができる効果が奏す
る。
As described above, the present invention makes it possible to accurately measure the transformation rate of a thick specimen over a wide range from the start point to the end point by switching between the continuous method and the pulse method. The effect that can be achieved is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の変態量率測定装置の構成を示
す説明図、第2図は、本発明の一実施態様を示す
構成図、第3図は、回り込み現象を示す説明図、
第4図は、連続法による測定パルス法による測定
の切り換え点を示す説明図、第5図は、送信パル
スと被検体の変態の進行に伴う受信パルスの変化
を示す波形図である。 1:発振器、2:被検体、3:検出コイル、
4:ブリツジ回路、5:信号処理装置、6:表示
部。
FIG. 1 is an explanatory diagram showing the configuration of a conventional transformation rate measuring device, FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIG. 3 is an explanatory diagram showing the wrap-around phenomenon.
FIG. 4 is an explanatory diagram showing switching points in measurement by the measurement pulse method using the continuous method, and FIG. 5 is a waveform diagram showing changes in the transmitted pulse and the received pulse as the metamorphosis of the subject progresses. 1: Oscillator, 2: Subject, 3: Detection coil,
4: bridge circuit, 5: signal processing device, 6: display unit.

Claims (1)

【特許請求の範囲】[Claims] 1 送信コイルと、被検体を挟んで相対して位置
する受信コイルを設け、前記送信コイルに交流電
流を供給して受信コイルに生じる電気信号から被
検体の変態量率を測定する方法であつて、被検体
の変態の初期から、出力信号の大きさと変態量率
の関係が線型的に変化する間においては、連続波
交流電流を送信コイルに供給して測定を行い、被
検体の変態が進行し出力信号の対数値と変態量率
の関係が非線型となるとき以前からパルス波交流
電流に切換え送信コイルに供給して測定を行うこ
とを特徴とする変態量率の測定方法。
1. A method in which a transmitting coil and a receiving coil are provided opposite to each other with a subject in between, and the rate of metamorphosis of the subject is measured from an electric signal generated in the receiving coil by supplying an alternating current to the transmitting coil. From the initial stage of metamorphosis of the subject, while the relationship between the magnitude of the output signal and the rate of metamorphosis changes linearly, measurement is performed by supplying continuous wave alternating current to the transmitting coil, and the metamorphosis of the subject progresses. A method for measuring the rate of transformation, characterized in that before the relationship between the logarithm value of the output signal and the rate of transformation becomes non-linear, the current is switched to a pulsed wave alternating current and supplied to a transmitting coil for measurement.
JP10731483A 1983-06-15 1983-06-15 HENTAIRYORITSUNOSOKUTEIHOHO Expired - Lifetime JPH0249660B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10731483A JPH0249660B2 (en) 1983-06-15 1983-06-15 HENTAIRYORITSUNOSOKUTEIHOHO
DE8484902367T DE3477423D1 (en) 1983-06-15 1984-06-14 Method for measuring transformation rate
PCT/JP1984/000309 WO1985000058A1 (en) 1983-06-15 1984-06-14 Method and apparatus for measuring transformation rate
EP84902367A EP0146638B1 (en) 1983-06-15 1984-06-14 Method for measuring transformation rate
US06/705,467 US4740747A (en) 1983-06-15 1984-06-14 Method of and apparatus for measuring transformation degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10731483A JPH0249660B2 (en) 1983-06-15 1983-06-15 HENTAIRYORITSUNOSOKUTEIHOHO

Publications (2)

Publication Number Publication Date
JPS59231446A JPS59231446A (en) 1984-12-26
JPH0249660B2 true JPH0249660B2 (en) 1990-10-30

Family

ID=14455928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10731483A Expired - Lifetime JPH0249660B2 (en) 1983-06-15 1983-06-15 HENTAIRYORITSUNOSOKUTEIHOHO

Country Status (1)

Country Link
JP (1) JPH0249660B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527091C2 (en) * 2003-12-31 2005-12-20 Abb Ab Method and apparatus for contactless measurement of thickness and electrical conductivity of a measuring object
JP2007093518A (en) * 2005-09-30 2007-04-12 Marktec Corp Wall thickness measuring instrument
JP6432645B1 (en) * 2017-06-28 2018-12-05 Jfeスチール株式会社 Magnetic transformation rate measuring method and apparatus for measuring magnetic transformation rate of steel sheet in annealing furnace, continuous annealing process, continuous hot dip galvanizing process

Also Published As

Publication number Publication date
JPS59231446A (en) 1984-12-26

Similar Documents

Publication Publication Date Title
US10144987B2 (en) Sensors
US4686471A (en) System for online-detection of the transformation value and/or flatness of steel or a magnetic material by detecting changes in induced voltages due to interlinked magnetic fluxes in detecting coils
JPH02504077A (en) Non-destructive measurement method and device for magnetic properties of test object
EP0146638B1 (en) Method for measuring transformation rate
US5121058A (en) Method and apparatus for using magneto-acoustic remanence to determine embrittlement
US5420518A (en) Sensor and method for the in situ monitoring and control of microstructure during rapid metal forming processes
JPH0249660B2 (en) HENTAIRYORITSUNOSOKUTEIHOHO
Ahn et al. Application of the acoustic resonance method to evaluate the grain size of low carbon steels
DE50013642D1 (en) METHOD AND DEVICE FOR INITIATING DETERMINATION OF THE CONVERSION RATE OF A NONMAGNETIC PHASE TO A FERROMAGNETIC PHASE OF A METALLIC WORKPIECE
JP2000266727A (en) Carburized depth measuring method
JPH0242402B2 (en)
JPS59231447A (en) Measurement of transformation amount ratio by pulse current
JPS6229022B2 (en)
KR100270114B1 (en) Method and apparatus for distortion of hot metal plate
JPH0249659B2 (en)
SU1383195A1 (en) Method of measuring layer thickness of multilayer articles
KR100299445B1 (en) Apparatus and method for measuring transformation amount of high temperature hot-rolled steel plate
JPH0216874B2 (en)
RU179750U1 (en) Device for local monitoring of the content of ferromagnetic phases in austenitic steels
RU2131592C1 (en) Method determining mechanical stresses in articles made from ferromagnetic materials and gear to realize it
JPH11287830A (en) Detection method and device of phase component of sign wave signal
JPS59109859A (en) Measuring device of grain size of steel plate
KR900005481B1 (en) On-line inspection instrument for aknomal quantities and flatness of iron matters
Wormley et al. The Ultrasonic Measurement of Stress on Ferrous Plate
JP2001033430A (en) Eddy-current flaw detection apparatus