JPH02168669A - Solid-state image sensing element - Google Patents

Solid-state image sensing element

Info

Publication number
JPH02168669A
JPH02168669A JP63288262A JP28826288A JPH02168669A JP H02168669 A JPH02168669 A JP H02168669A JP 63288262 A JP63288262 A JP 63288262A JP 28826288 A JP28826288 A JP 28826288A JP H02168669 A JPH02168669 A JP H02168669A
Authority
JP
Japan
Prior art keywords
light
photoelectric conversion
reflected
incident
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63288262A
Other languages
Japanese (ja)
Inventor
Hirofumi Yagi
宏文 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63288262A priority Critical patent/JPH02168669A/en
Publication of JPH02168669A publication Critical patent/JPH02168669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilize incident light and improve the optical sensitivity of the title element itself by forming a vertical scanning line which divides optoelectric transducers and, at the same time, becomes part of an electric charge transfer device to have such a shape that can make reflected rays of light from light reflecting films incident on each corresponding optoelectric transducer again by reflection. CONSTITUTION:A vertical scanning line 41 made of, for example, aluminum is formed on a silicon oxide film 6 separating adjacent photodetectors 1 and 1 from each other and pays its original role of scanning a vertical CCD. At the same time, the line 41 has a shape of a vertically standing partition wall with flat reflecting surfaces 41a and 41a on both sides so that the line 41 can divide the adjacent photodetectors 1 and 1 and reflect reflected rays of light from light reflecting films 8 which reflect transmitted rays of light so as to make the reflected rays of light incident on each photodetector 1 and 1 again. Therefore, incidence of infrared rays reflected by the light reflecting films made of aluminum on the photodetector can be prevented so that crosstalk can be prevented, the incident infrared rays can be utilized effectively, and the optical sensitivity can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固体撮像素子、特に裏面入射型の固体撮像
素子に関し、さらに詳しくは、クロストークを抑制でき
て、しかも光感度を向上し得るようにした裏面入射型の
固体撮像素子の改良に係るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a solid-state imaging device, particularly a back-illuminated solid-state imaging device, and more specifically, to a solid-state imaging device that can suppress crosstalk and improve photosensitivity. The present invention relates to an improvement of a back-illuminated solid-state image sensor as described above.

〔従来の技術〕[Conventional technology]

光学的な画像を電気的な信号に変換するための装置構成
には、一般に固体撮像素子が使用されており、この種の
固体撮像素子としては、従来から半導体基板および金属
珪化物からなるショットキ接合を用いた複数の光電変換
素子と、電荷転送素子(COD)とを、同一の半導体基
板上に集積化して構成される裏面入射型の赤外線固体撮
像素子がある。
A solid-state image sensor is generally used in a device configuration for converting an optical image into an electrical signal, and this type of solid-state image sensor has traditionally been based on a Schottky junction made of a semiconductor substrate and a metal silicide. There is a back-illuminated infrared solid-state imaging device that is configured by integrating a plurality of photoelectric conversion elements using a photoelectric conversion device and a charge transfer device (COD) on the same semiconductor substrate.

こSで、この従来例による裏面入射型の赤外線固体撮像
素子における光電変換素子回りの配置構成の概要を第4
図に示し、また、同第4図V−V線部での模式的に表わ
した断面構成を第5図に示す。
This section provides an overview of the arrangement around the photoelectric conversion element in this conventional back-illuminated infrared solid-state image sensor.
FIG. 5 shows a schematic cross-sectional configuration taken along line V--V in FIG. 4.

すなわち、まず、第4図に示す従来例での光電変換素子
回りの配置構成において、符号lは光電変換素子として
の白金珪化物を用いて相互に隣接するように配置された
複数のショットキバリアダイオード光検出器であり、2
は赤外光検出によって光電変換素子で生じた各信号電荷
を、図示しない電荷転送素子に送るためのトランスファ
ーゲートを示し、また、3はこれらの各光検出器1間に
あって信号電荷を垂直方向に転送する垂直CCDのチャ
ネル、4は同上アルミを用いた垂直走査線である。つい
で、第5図に示す同上断面構成において、5はシリコン
半導体基板であり、また、6は素子間分離用の酸化珪素
膜、7は絶縁用の酸化珪素膜をそれぞれに示し、さらに
、8は各光検出器l上に対向して設けられるアルミを用
いた光反射膜である。
That is, first, in the arrangement around the photoelectric conversion element in the conventional example shown in FIG. is a photodetector, and 2
3 indicates a transfer gate for sending each signal charge generated in the photoelectric conversion element by infrared light detection to a charge transfer element (not shown), and 3 is located between each of these photodetectors 1 to transfer the signal charge in the vertical direction. Channel 4 of the vertical CCD for transfer is a vertical scanning line made of aluminum. Next, in the same cross-sectional configuration shown in FIG. 5, 5 is a silicon semiconductor substrate, 6 is a silicon oxide film for isolation between elements, 7 is a silicon oxide film for insulation, and 8 is a silicon oxide film for isolation. This is a light reflecting film made of aluminum and provided facing each photodetector l.

次に、前記構成による赤外線固体撮像素子の動作につい
て簡単に述べる。
Next, the operation of the infrared solid-state imaging device with the above configuration will be briefly described.

p型シリコン基板5の下部、つまり裏面から入射される
赤外光は、ショットキバリアダイオード光検出器lに到
達し、そこで光電変換されて信号電荷を生じ、この信号
電荷がショットキ接合に蓄積される。そして、この蓄積
された信号電荷は、トランスファーゲート2を開くこと
により垂直CCDのチャネル3に移され、かつこの垂直
CODによって垂直方向に転送される。ついで、この信
号電荷は、水平CODによって水平方向に転送された後
、電荷検出部から映像信号として外部に読み出される。
Infrared light incident from the bottom, that is, the back surface, of the p-type silicon substrate 5 reaches the Schottky barrier diode photodetector l, where it is photoelectrically converted to generate signal charges, which are accumulated in the Schottky junction. . The accumulated signal charges are transferred to the channel 3 of the vertical CCD by opening the transfer gate 2, and are transferred in the vertical direction by the vertical COD. Next, this signal charge is transferred in the horizontal direction by the horizontal COD, and then read out from the charge detection section as a video signal.

すなわち、このようにして、この素子構成では、赤外光
検出部に入射される赤外光量に対応した映像信号が得ら
れるのである。
That is, in this way, with this element configuration, a video signal corresponding to the amount of infrared light incident on the infrared light detection section can be obtained.

また、この赤外光の検出に際して、アルミを用いた光反
射膜8は、ショットキバリアダイオード光検出器lで吸
収されずに透過した赤外光を、再度、光検出器lに入射
させるように反射して、光検出感度の改善を図るのであ
る。
In addition, when detecting this infrared light, the light reflection film 8 made of aluminum is configured to allow the infrared light that has passed through the Schottky barrier diode photodetector l without being absorbed to enter the photodetector l again. The light is reflected to improve the light detection sensitivity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記のように構成される従来の裏面入射
型の赤外線固体撮像素子においては、固体撮像素子に入
射した後、そのショットキバリアダイオード光検出器1
で吸収されずに透過した赤外光が、アルミを用いた光反
射膜8で反射される場合にあって、例えば、矢印b1で
示すように、その反射光が、隣接する光検出器1に入射
されてクロストークの原因になったり、あるいはまた、
矢印b2に見られるように、その反射光が、同様にアル
ミを用いた垂直走査線4の上面4aで再反射されて、光
検出器lには再入射されずに外部へ逃逸することがあり
、このために入射赤外光の有効利用を図れなくなると云
う不都合があった。
However, in the conventional back-thinned infrared solid-state imaging device configured as described above, after the light enters the solid-state imaging device, the Schottky barrier diode photodetector 1
When the infrared light that has passed through without being absorbed is reflected by the light reflection film 8 made of aluminum, for example, as shown by the arrow b1, the reflected light is reflected by the adjacent photodetector 1. may be incident and cause crosstalk, or
As shown by arrow b2, the reflected light may be re-reflected on the upper surface 4a of the vertical scanning line 4, which is also made of aluminum, and escape to the outside without being re-injected into the photodetector l. Therefore, there is a disadvantage that it is not possible to effectively utilize the incident infrared light.

この発明は、従来のこのような問題点を解消するために
なされたもので、その目的とするところは、アルミ光反
射膜で反射される赤外光を隣接する光検出器に入射させ
ないようにして、クロストークを低減させ、併せて入射
赤外光の有効利用を図って光感度を向上させ得るように
した。この種の固体撮像素子、こSでは裏面入射型の赤
外線固体撮像素子を提供することである。
This invention was made to solve these conventional problems, and its purpose is to prevent infrared light reflected by an aluminum light-reflecting film from entering an adjacent photodetector. In this way, crosstalk can be reduced, and incident infrared light can be used effectively to improve photosensitivity. The object of this invention is to provide this type of solid-state image sensor, a back-illuminated infrared solid-state image sensor.

(課題を解決するための手段) 前記目的を達成するために、この発明に係る固体撮像素
子は、電荷転送素子の一部を形成する垂直走査線をして
、光反射膜からの反射光を再反射させて、対応する各光
電変換素子に再入射し得る断面形状に形成させたもので
ある。
(Means for Solving the Problems) In order to achieve the above object, a solid-state imaging device according to the present invention uses a vertical scanning line that forms a part of a charge transfer device to reflect light from a light reflecting film. It is formed into a cross-sectional shape that allows it to be reflected again and re-injected into each corresponding photoelectric conversion element.

すなわち、この発明は、光入射により信号電荷を発生し
て蓄積する相互に隣接さねた複数の光電変換素子、およ
び各光電変換素子に対向して形成された光反射膜と、こ
れらの光電変換素子群に蓄積された信号電荷を順次に読
み出す電荷転送素子とを、少なくとも同一半導体基板上
に集積化した裏面入射型の固体撮像素子において、前記
各光電変換素子間を区分するようにして設けられ、電荷
転送素子の一部となる垂直走査線を、前記光反射膜から
の反射光を再反射させて、対応する各光電変換素子に再
入射し得る断面形状に形成させたことを特徴とする固体
撮像素子である。
That is, the present invention provides a plurality of mutually adjacent photoelectric conversion elements that generate and accumulate signal charges upon incidence of light, a light reflection film formed opposite to each photoelectric conversion element, and a light reflection film formed opposite to each photoelectric conversion element, and In a back-illuminated solid-state image sensor in which at least a charge transfer element that sequentially reads signal charges accumulated in a group of elements is integrated on the same semiconductor substrate, each of the photoelectric conversion elements is provided so as to be partitioned. , the vertical scanning line forming a part of the charge transfer element is formed in a cross-sectional shape that allows the reflected light from the light reflection film to be re-reflected and re-injected into each corresponding photoelectric conversion element. It is a solid-state image sensor.

〔作   用〕 従って、この発明においては、固体撮像素子に入射され
る赤外光を光電変換素子により検出して信号電荷を発生
するが、一方、この光電変換素子に吸収されずに透過し
た赤外光が、光反射膜によって正反射以外の異方向に反
射されると、その反射光は、垂直走査線に与えられてい
る断面形状により再反射されて、対応する光電変換素子
に再入射されることになり、これによって、従来例構成
でのように、隣接する光電変換素子に入射されてクロス
トークの原因になったり、再入射されずに外部へ逃逸し
たりするような惧れを改善できるもので、結果的に入射
光の存効利用を図り得るのである。
[Function] Therefore, in this invention, the infrared light incident on the solid-state image sensor is detected by the photoelectric conversion element to generate a signal charge, but on the other hand, the infrared light that is transmitted without being absorbed by the photoelectric conversion element is When external light is reflected in a different direction other than specular reflection by the light reflecting film, the reflected light is re-reflected by the cross-sectional shape given to the vertical scanning line and re-enters the corresponding photoelectric conversion element. This improves the fear that, as in conventional configurations, the light may be incident on adjacent photoelectric conversion elements, causing crosstalk, or may escape to the outside without being re-injected. As a result, the effective use of incident light can be achieved.

〔実 施 例〕〔Example〕

以下、この発明に係る固体撮像素子の各別の実施例につ
き、第1図ないし第3図を参照して詳細に説明する。
Hereinafter, different embodiments of the solid-state imaging device according to the present invention will be described in detail with reference to FIGS. 1 to 3.

第1図、第2図および第3図はこの発明の第1、第2お
よび第3実施例を適用した裏面入射型の赤外線固体撮像
素子における光電変換素子回りの概要構成を模式的に示
したそれぞれに断面図であり、これらの第1図ないし第
3図に示す各実施例構成において、前記第4図および第
5図に示す従来例構成と同一符号は同一または相当部分
を表わしている。
FIGS. 1, 2, and 3 schematically show the general configuration around a photoelectric conversion element in a back-illuminated infrared solid-state image sensor to which the first, second, and third embodiments of the present invention are applied. Each of these is a sectional view, and in each of the embodiment configurations shown in FIGS. 1 to 3, the same reference numerals as in the conventional configuration shown in FIGS. 4 and 5 represent the same or corresponding parts.

すなわち、これらの第1図、第2図および第3図に示す
各実施例での光電変換素子回りの配置構成においても、
符号lは光電変換素子としての白金珪化物を用いて相互
に隣接するように配置された複数のショットキバリアダ
イオード光検出器であり、また、4Iは第1実施例での
アルミを用いた垂直走査線、42は同様に第2実施例で
のアルミを用いた垂直走査線、43は同様に第3実施例
でのアルミを用いた垂直走査線である。さらに、5はシ
リコン半導体基板であり、6は素子間分離のための、こ
Xでは光電変換素子となる隣接された各光検出器1.1
の相互間を分離するための酸化珪素膜、7は絶縁用の酸
化珪素膜をそれぞれに示し、8はこれらの各光検出器l
上に対向して設けられるアルミを用いた光反射膜である
That is, in the arrangement configuration around the photoelectric conversion element in each of the embodiments shown in FIGS. 1, 2, and 3,
Symbol l is a plurality of Schottky barrier diode photodetectors arranged adjacent to each other using platinum silicide as photoelectric conversion elements, and 4I is a vertical scanning detector using aluminum in the first embodiment. The line 42 is a vertical scanning line made of aluminum in the second embodiment, and the line 43 is a vertical scanning line made of aluminum in the third embodiment. Furthermore, 5 is a silicon semiconductor substrate, 6 is for isolation between elements, and in this X, each adjacent photodetector 1.1 becomes a photoelectric conversion element.
7 is a silicon oxide film for isolating each photodetector, 7 is a silicon oxide film for insulation, and 8 is a silicon oxide film for separating each photodetector.
This is a light-reflecting film made of aluminum that is placed oppositely on the top.

こ)で、これらの各実施例構成の場合、第1実施例での
アルミを用いた垂直走査線41については、隣接する光
検出器1.1の相互間を分離する酸化珪素膜6上にあっ
て、本来の垂直CCDの走査の役割りを果すと共に、こ
れらの隣接する光検出器1.1間を区分し、かつ透過光
を反射する光反射膜8からの反射光を再反射して対応す
る各光検出器1,1に再入射させるべく、それぞれの側
に平面的な反射面41a、41aを有して直立型式の仕
切り壁状をなす断面形状に形成されており、また、第2
実施例でのアルミを用いた垂直走査線42についても同
様に、それぞれの側に外側へ弯曲した曲面的な反射面4
2a、42aを有し、かつ内部に絶縁膜9を介して逆U
字弧面型式の仕切り壁状をなす断面形状に形成されてお
り、さらに、第3実施例でのアルミを用いた垂直走査線
43についても同様に、それぞれの側に内側へ弯曲した
曲面的な反射面43a。
In the case of each of these embodiments, the vertical scanning line 41 made of aluminum in the first embodiment is formed on the silicon oxide film 6 separating adjacent photodetectors 1.1. In addition to fulfilling the original role of vertical CCD scanning, it also divides the adjacent photodetectors 1.1 and re-reflects the reflected light from the light reflecting film 8 that reflects the transmitted light. In order to allow the light to enter the corresponding photodetectors 1, 1 again, it has a planar reflecting surface 41a, 41a on each side, and is formed in a cross-sectional shape in the shape of an upright partition wall. 2
Similarly, the vertical scanning line 42 made of aluminum in the embodiment has a curved reflective surface 4 curved outward on each side.
2a and 42a, and an inverted U
The vertical scanning line 43 made of aluminum in the third embodiment also has a curved shape curved inward on each side. Reflective surface 43a.

43aを有し、かつこれらの反射面43a、43aを外
側から光透過率の高い絶縁膜10により塞ぐようにした
γ字弧面型式の仕切り壁状をなす断面形状に形成されて
いる。
43a, and has a cross-sectional shape in the form of a γ-arc surface type partition wall in which these reflective surfaces 43a, 43a are closed from the outside by an insulating film 10 with high light transmittance.

そして、これらの各実施例構成においても、こ)ではそ
の平面配置を省略したが、前記した従来例構成の場合と
同様に、赤外光検出によって光電変換素子で生じた信号
電荷を、電荷転送素子に送るためのトランスファーゲー
ト2と、この信号電荷を垂直方向に転送する垂直CCD
のチャネル3とがそれぞれに設けられている。
In each of these embodiment configurations, the planar arrangement is omitted in this example, but as in the case of the conventional configuration described above, the signal charge generated in the photoelectric conversion element by infrared light detection is transferred by charge transfer. Transfer gate 2 to send to the element and vertical CCD to transfer this signal charge in the vertical direction
A channel 3 is provided for each.

従って、これらの第1.第2および第3の各実施例構成
における動作についても、前記した従来例構成の場合と
全く同様であって、シリコン半導体基板5の裏面から入
射される赤外光は、ショットキバリアダイオード光検出
器1に到達して光電変換され、このようにして発生され
る光信号電荷は、ショットキ接合に蓄積された上で、ト
ランスファーゲート2を開くことによって垂直CCDの
チャネル3に移され、この垂直CCDにより垂直方向に
転送されると共に、水平CCDにより水平方向に転送さ
れた後、電荷検出部から映像信号として外部に読み出さ
れるのであり、このようにして、赤外光検出部に入射さ
れる赤外光量に対応した映像信号が得られるのである。
Therefore, these first. The operations in the second and third embodiment configurations are completely the same as in the conventional configuration described above, and the infrared light incident from the back surface of the silicon semiconductor substrate 5 is transmitted to the Schottky barrier diode photodetector. The optical signal charge that reaches 1 and is photoelectrically converted is accumulated in the Schottky junction and then transferred to the channel 3 of the vertical CCD by opening the transfer gate 2. It is transferred vertically and horizontally by a horizontal CCD, and then read out from the charge detection section as a video signal. In this way, the amount of infrared light incident on the infrared light detection section is A video signal corresponding to this can be obtained.

しかして、前記赤外光の光検出に際して、第1図に示し
た第1実施例構成の場合には、固体撮像素子に入射され
た後、ショットキバリアダイオード光検出器lで吸収さ
れずに透過した赤外光は、アルミを用いた光反射膜8に
よって、正反射以外の異方向に反射されると、その反射
光は、矢印a。
Therefore, when detecting the infrared light, in the case of the configuration of the first embodiment shown in FIG. When the infrared light is reflected in a direction other than regular reflection by the light reflection film 8 made of aluminum, the reflected light is reflected as shown by arrow a.

で示すように、垂直走査線41の反射面41aで再反射
されて、これを対応する光検出器lに再入射させること
が可能になるもので、前記した従来例構成でのように、
反射光が隣接する光検出器Iに再入射されてクロストー
クの原因になったり、あるいは再入射されずに外部へ逃
逸したりするような惧れを完全に解消できて、入射赤外
光の有効利用を効果的に図り得るのであり、この作用、
効果はまた、第2図および第3図に示した第2および第
3実施例構成の場合においても、矢印a2およびa3に
見られるように、その垂直走査線42および43の反射
面42aおよび43aによって、こ\でも全く同様に果
し得るもので、かつまた、特に第3実施例構成の場合に
は、分離酸化珪素膜6を通した矢印a4に示す入射赤外
光についても、これを直接、垂直走査線43の反射面4
3aで反射させて、対応する光検出器lに入射させ得る
のである。
As shown in the figure, it is re-reflected by the reflecting surface 41a of the vertical scanning line 41 and can be made to enter the corresponding photodetector l again, as in the conventional configuration described above.
This completely eliminates the possibility that the reflected light will re-enter the adjacent photodetector I and cause crosstalk, or that it will escape to the outside without being re-entered. Effective utilization can be achieved effectively, and this effect,
The effect is also that in the case of the second and third embodiment configurations shown in FIGS. 2 and 3, the reflective surfaces 42a and 43a of the vertical scanning lines 42 and 43 are Therefore, this can be achieved in exactly the same way, and in particular, in the case of the configuration of the third embodiment, the incident infrared light shown by the arrow a4 through the isolated silicon oxide film 6 can also be directly transmitted. , the reflective surface 4 of the vertical scanning line 43
3a, and the light can be incident on the corresponding photodetector l.

なお、前記各実施例構成において、垂直走査線を形成す
る材料としては、金属とか金属珪化物などのように、比
較的低抵抗でかつ光反射率の高い物質を用いるようにす
ればよく、また、第2および第3実施例での垂直走査線
内部および外部の絶縁膜としては、光の透過率が高い物
質を用いるようにすればよいもので、これらの場合にも
、同様な作用、効果が得られる。
In each of the embodiments described above, the material for forming the vertical scanning line may be a material with relatively low resistance and high light reflectance, such as metal or metal silicide. In the second and third embodiments, a material with high light transmittance may be used as the insulating film inside and outside the vertical scanning line, and similar functions and effects can be obtained in these cases as well. is obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明によれば、光入射により
信号電荷を発生して蓄積する相互に隣接された複数の光
電変換素子、および各光電変換素子に対向して形成され
た光反射膜と、これらの光電変換素子群に蓄積された信
号電荷を順次に読み出す電荷転送素子とを、少なくとも
同一半導体基板上に集積化した裏面入射型の固体撮像素
子において、各光電変換素子間を区分するようにして設
けられ、かつ電荷転送素子の一部となる垂直走査線を、
光反射膜からの反射光を再反射させて、対応する各光電
変換素子に再入射し得る断面形状に形成させたので、光
電変換素子に吸収されずに透通し、かつ光反射膜で正反
射以外の異方向に反射された反射光を、この垂直走査線
に形成させた断面形状により再反射させて、これを対応
する光電変換素子に再入射させることができ、これによ
って、従来例構成でのように、反射光が隣接する光電変
換素子に入射されてクロストークの原因になったり、あ
るいは、再入射されずに外部へ逃逸したりするような慣
れを良好かつ効果的に改善し得て、入射光の有効利用、
ひいては素子自体の光感度を格段に向上でき、しかも構
造的にも比較的簡単で容易に実施し得るなどの優れた特
長を有するものである。
As detailed above, according to the present invention, there are a plurality of mutually adjacent photoelectric conversion elements that generate and accumulate signal charges upon incidence of light, and a light reflection film formed opposite to each photoelectric conversion element. and a charge transfer element that sequentially reads out the signal charges accumulated in these photoelectric conversion element groups, in a back-illuminated solid-state image sensor in which at least the same semiconductor substrate is integrated, and each photoelectric conversion element is separated. The vertical scanning line, which is provided in this way and becomes part of the charge transfer element, is
The cross-sectional shape is formed so that the reflected light from the light reflection film can be re-reflected and re-injected into each corresponding photoelectric conversion element, so that it passes through without being absorbed by the photoelectric conversion element, and is regularly reflected by the light reflection film. It is possible to re-reflect the reflected light that has been reflected in a different direction than the above by the cross-sectional shape formed on this vertical scanning line and make it re-enter the corresponding photoelectric conversion element. This method can effectively and effectively improve problems in which reflected light enters adjacent photoelectric conversion elements, causing crosstalk, or escapes to the outside without being re-injected. , effective use of incident light,
Furthermore, the device has excellent features such as being able to significantly improve the photosensitivity of the device itself, and being relatively simple in structure and easy to implement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はこの発明の第1、第2お
よび第3実施例を適用した裏面入射型の赤外線固体撮像
素子における光電変換素子回りの概要構成を模式的に示
したそれぞれに断面図であり、また、第4図は従来例に
よる同上裏面入射型の赤外線固体撮像素子における光電
変換素子回りの配置構成の概要を示す平面図、第5図は
同上第4図V−VIIA部における構成を模式的に示し
た断面図である。 !・・・・光検出器(光電変換素子)、2・・・・トラ
ンスファーゲート、3・・・・垂直CCDのチャネル、
41,42.43−−−−垂直走査線、41a、42a
、43a =垂直走査線の反射面、5・・・・シリコン
半導体基板、6.7・・・・酸化珪素膜、8・・・・光
反射膜、9.10・・・・絶縁膜。 代理人  大  岩  増  雄
FIGS. 1, 2, and 3 schematically show the general configuration around a photoelectric conversion element in a back-illuminated infrared solid-state image sensor to which the first, second, and third embodiments of the present invention are applied. Each is a sectional view, and FIG. 4 is a plan view showing an outline of the arrangement around the photoelectric conversion element in the conventional back-illuminated infrared solid-state imaging device, and FIG. FIG. 3 is a cross-sectional view schematically showing the configuration of the VIIA section. ! ... Photodetector (photoelectric conversion element), 2 ... Transfer gate, 3 ... Vertical CCD channel,
41, 42. 43---Vertical scanning line, 41a, 42a
, 43a = reflective surface of vertical scanning line, 5... silicon semiconductor substrate, 6.7... silicon oxide film, 8... light reflective film, 9.10... insulating film. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] 光入射により信号電荷を発生して蓄積する相互に隣接さ
れた複数の光電変換素子、および各光電変換素子に対向
して形成された光反射膜と、これらの光電変換素子群に
蓄積された信号電荷を順次に読み出す電荷転送素子とを
、少なくとも同一半導体基板上に集積化した裏面入射型
の固体撮像素子において、前記各充電変換素子間を区分
するようにして設けられ、電荷転送素子の一部となる垂
直走査線を、前記光反射膜からの反射光を再反射させて
、対応する各光電変換素子に再入射し得る断面形状に形
成させたことを特徴とする固体撮像素子。
A plurality of mutually adjacent photoelectric conversion elements that generate and accumulate signal charges upon incident light, a light reflecting film formed opposite to each photoelectric conversion element, and signals accumulated in these photoelectric conversion element groups. In a back-illuminated solid-state image sensor in which a charge transfer element that sequentially reads out charges is integrated on at least the same semiconductor substrate, a part of the charge transfer element is provided to separate the charge conversion elements. A solid-state imaging device characterized in that a vertical scanning line is formed in a cross-sectional shape that allows reflected light from the light reflecting film to be re-reflected and re-injected into each corresponding photoelectric conversion element.
JP63288262A 1988-09-14 1988-11-14 Solid-state image sensing element Pending JPH02168669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288262A JPH02168669A (en) 1988-09-14 1988-11-14 Solid-state image sensing element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-230809 1988-09-14
JP23080988 1988-09-14
JP63288262A JPH02168669A (en) 1988-09-14 1988-11-14 Solid-state image sensing element

Publications (1)

Publication Number Publication Date
JPH02168669A true JPH02168669A (en) 1990-06-28

Family

ID=26529548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288262A Pending JPH02168669A (en) 1988-09-14 1988-11-14 Solid-state image sensing element

Country Status (1)

Country Link
JP (1) JPH02168669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110275A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Back-illuminated solid-state image pickup device
JP2014060424A (en) * 2013-11-07 2014-04-03 Hamamatsu Photonics Kk Back-illuminated solid-state image sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110275A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Back-illuminated solid-state image pickup device
JP2010232495A (en) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk Back-illuminated solid-state image sensor
KR20110137376A (en) * 2009-03-27 2011-12-22 하마마츠 포토닉스 가부시키가이샤 Back-illuminated solid-state image pickup device
EP2413361A1 (en) * 2009-03-27 2012-02-01 Hamamatsu Photonics K.K. Back-illuminated solid-state image pickup device
CN102365743A (en) * 2009-03-27 2012-02-29 浜松光子学株式会社 Back-illuminated solid-state image pickup device
EP2413361A4 (en) * 2009-03-27 2013-04-17 Hamamatsu Photonics Kk Back-illuminated solid-state image pickup device
US8624301B2 (en) 2009-03-27 2014-01-07 Hamamatsu Photonics K.K. Back-illuminated solid-state image pickup device
TWI470782B (en) * 2009-03-27 2015-01-21 Hamamatsu Photonics Kk Back-emitting type solid-state imaging element
JP2014060424A (en) * 2013-11-07 2014-04-03 Hamamatsu Photonics Kk Back-illuminated solid-state image sensor

Similar Documents

Publication Publication Date Title
CN102396066B (en) Solid-state image sensing apparatus
JP2995960B2 (en) Infrared CCD
JP5429208B2 (en) Solid-state image sensor, camera module, and electronic device module
JPH02168669A (en) Solid-state image sensing element
JPH02264473A (en) Solid-state image sensing element
JPH04152674A (en) Solid-state image pickup device
JPS61154283A (en) Solid image pick-up element
JP2011040774A (en) Solid-state imaging element, camera module, and electronic apparatus module
JP3103977B2 (en) Linear image sensor IC
JPH05206432A (en) Infrared solid state imaging element
JP2964488B2 (en) Solid-state imaging device
JP2922688B2 (en) Infrared solid-state image sensor
JPS5846065B2 (en) Solid-state photoelectric conversion device
KR100259062B1 (en) Ccd image device and method for manufacturing the same
JP2776538B2 (en) Solid-state imaging device
JP2659617B2 (en) Infrared solid-state imaging device
JPH06260628A (en) Solid-stat image pickup element
JPH02304976A (en) Solid image-puckup element
JPH03165568A (en) Package for solid-state image sensing element
JPH03148172A (en) Solid-state camera device
JPH0287573A (en) Solid-state image sensing device
JPH04280675A (en) Solid-state image pickup device
JPH0567015U (en) Infrared detector
JPH0410469A (en) Solid-state image sensiing device
JP3052367B2 (en) Solid-state imaging device