JPH0216855Y2 - - Google Patents

Info

Publication number
JPH0216855Y2
JPH0216855Y2 JP12229086U JP12229086U JPH0216855Y2 JP H0216855 Y2 JPH0216855 Y2 JP H0216855Y2 JP 12229086 U JP12229086 U JP 12229086U JP 12229086 U JP12229086 U JP 12229086U JP H0216855 Y2 JPH0216855 Y2 JP H0216855Y2
Authority
JP
Japan
Prior art keywords
heating
furnace
air supply
temperature
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12229086U
Other languages
Japanese (ja)
Other versions
JPS6329666U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12229086U priority Critical patent/JPH0216855Y2/ja
Publication of JPS6329666U publication Critical patent/JPS6329666U/ja
Application granted granted Critical
Publication of JPH0216855Y2 publication Critical patent/JPH0216855Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は電子部品類のベースとなるセラミツク
基板、ガラスエポキシ基板、フエノール基板、ポ
リアミド基板等の導体あるいは角形チツプ部品、
チツプコイル、フラツトIC等の電極に予備はん
だを介して部品をマウントしてから搬送路により
炉内を通過させることによつて予備はんだを溶か
してはんだ付けする電子部品類製造用はんだ付け
炉に関するものである。
[Detailed description of the invention] (Field of industrial application) The present invention is applicable to conductors such as ceramic substrates, glass epoxy substrates, phenol substrates, polyamide substrates, etc., which are the base of electronic components, or rectangular chip parts.
This relates to a soldering furnace for manufacturing electronic components, in which components are mounted on the electrodes of chip coils, flat ICs, etc. via preliminary solder, and then passed through the furnace via a conveyance path to melt and solder the preliminary solder. be.

(従来の技術) 電子部品類製造ラインにおいて、ベースの電極
等に他の部品をはんだ付けするには、ベース上に
予備はんだを介して部品をマウントした被加熱物
を炉体の入口から出口に向う搬送路に載せ、該炉
体内を通過する間に予備はんだを溶かしてはんだ
付けすることが行われているが、このはんだ付け
用炉としては、入口から出口に向う搬送路を備え
た炉体内の天井面と炉底面に棒状または細長板状
の赤外線輻射ヒータの多数本を所要の間隔をおい
て炉幅方向に配列した通常の加熱炉が使用されて
いる。
(Prior art) In an electronic parts manufacturing line, in order to solder other parts to the electrodes of the base, the heated object, on which the parts are mounted on the base via preliminary solder, is passed from the inlet to the outlet of the furnace body. Soldering is carried out by placing the solder on the conveyance path facing the other side and melting the preliminary solder while passing through the furnace body.This soldering furnace has a furnace body equipped with a conveyance path from the inlet to the exit. A conventional heating furnace is used in which a large number of rod-shaped or elongated plate-shaped infrared radiant heaters are arranged in the furnace width direction at required intervals on the ceiling and bottom of the furnace.

(考案が解決しようとする問題点) ところが、このような加熱炉は長さ方向の温度
区分制御ができず、このため均一加熱ができない
ばかりでなく両端方部温度が低下し、従つて、赤
外線輻射ヒータの有効長は被加熱物幅より大きく
とらねばならないために炉体が大きくなつて不経
済であり、また、ベースである大形の基板が連続
して炉体内を通過すると最初の基板に多量の熱吸
収が行われるので2枚目以後の基板との間に温度
差が発生し、基板内の温度不均一と共に基板間の
温度差も大きくなり加熱特性が不安定となる。そ
こで、本出願人は、炉体内の上方部と下方部に赤
外線加熱面と空気供給装置とよりなる加熱部を設
けて各加熱部を炉側壁に沿つた両側の側方加熱部
と中間加熱部より形成されたものとするととも
に、これをさらに入口側の予備加熱ゾーンと空気
供給装置付の第2の予備加熱ゾーンと出口側の空
気供給装置付の高温加熱ゾーンとに区画すること
により前記のような問題点を解決したはんだ付け
炉を先に考案し、実願昭61−32272号(実開昭62
−146569号)として出願したが、この先願のもの
でも第2の予備加熱ゾーンが入口側の予備加熱ゾ
ーンや出口側の高温加熱ゾーンの熱影響を受け易
いので温度制御が複雑となるという問題点が残さ
れていた。
(Problem that the invention aims to solve) However, such a heating furnace cannot control the temperature division in the length direction, and as a result, it is not only impossible to achieve uniform heating, but also the temperature at both ends decreases. The effective length of a radiant heater must be larger than the width of the object to be heated, which makes the furnace larger and is uneconomical.Also, when large substrates that serve as bases pass through the furnace body successively, the first substrate Since a large amount of heat is absorbed, a temperature difference occurs between the second and subsequent substrates, and as well as temperature non-uniformity within the substrate, the temperature difference between the substrates becomes large, and the heating characteristics become unstable. Therefore, the present applicant provided a heating section consisting of an infrared heating surface and an air supply device in the upper and lower parts of the furnace body, and separated each heating section into a side heating section on both sides along the furnace side wall and an intermediate heating section. By further dividing this into a preheating zone on the inlet side, a second preheating zone with an air supply device, and a high temperature heating zone with an air supply device on the outlet side, He first devised a soldering furnace that solved these problems, and published Utility Application No. 32272 (1983).
-146569), but even in this earlier application, the second preheating zone is easily affected by the heat of the inlet side preheating zone and the outlet side high temperature heating zone, making temperature control complicated. was left behind.

(問題点を解決するための手段) 本考案は前記のような問題点を解決した電子部
品類製造用はんだ付け炉を目的として完成された
もので、ベース上に予備はんだを介して部品をマ
ウントした被加熱物を入口から出口に向け移送す
る搬送路を設けた炉体内の上方部と下方部に、赤
外線輻射ヒータの多数個を縦横に配列した赤外線
加熱面をそれぞれ設けた電子部品類製造用はんだ
付け炉において、各加熱面は炉側壁に沿つた両側
の側方加熱部と該側方加熱部間にあつてこれらと
等温に保持される中間加熱部により形成されると
ともに、上端を天井面より若干下方に位置させて
炉側壁間に張設された入口側隔壁と出口側隔壁と
をもつて入口側の予備加熱ゾーンと第2の予備加
熱ゾーンと出口側の高温加熱ゾーンとに区画され
ており、さらに、前記第2の予備加熱ゾーンの上
方の赤外線加熱面に空気噴射口が多数個配設され
た加熱助長用の空気供給装置を付設するとともに
高温加熱ゾーンの上方の赤外線加熱部には空気噴
射口が多数個配設された前記空気供給装置よりも
空気供給の少ない加熱助長用の空気供給装置を付
設し、また、前記入口側隔壁と出口側隔壁の各上
端と天井面との間に形成せれる上方空間は炉体の
天井部に設けた排気口をもつて外部に連通させた
ことを特徴とするものである。
(Means for Solving the Problems) The present invention was completed with the aim of creating a soldering furnace for manufacturing electronic components that solved the above-mentioned problems, and the components are mounted on the base via preliminary solder. For the manufacture of electronic components, infrared heating surfaces with a large number of infrared radiant heaters arranged vertically and horizontally are installed in the upper and lower parts of the furnace body, which has a conveyance path for transporting heated objects from the inlet to the outlet. In a soldering furnace, each heating surface is formed by a side heating section on both sides along the furnace side wall, an intermediate heating section located between the side heating sections and held at the same temperature as these, and the upper end is connected to the ceiling surface. The furnace is partitioned into a preheating zone on the inlet side, a second preheating zone, and a high temperature heating zone on the outlet side, with an inlet side partition wall and an outlet side partition wall located slightly lower and stretched between the furnace side walls. Furthermore, an air supply device for promoting heating, which has a number of air injection ports arranged on the infrared heating surface above the second preheating zone, is attached to the infrared heating section above the high temperature heating zone. is equipped with an air supply device for promoting heating that supplies less air than the air supply device having a large number of air injection ports, and also connects the upper ends of the inlet side partition wall and the outlet side partition wall with the ceiling surface. The upper space formed in between is characterized by communicating with the outside through an exhaust port provided in the ceiling of the furnace body.

(作用) このような電子部品類製造用はんだ付け炉は、
各赤外線輻射ヒータに通電して上下の赤外線加熱
面により炉内を加熱するとともに第2の予備加熱
ゾーンと出口側の高温加熱ゾーンの上方にのみ付
設された加熱助長用の空気供給装置を駆動させて
各空気噴射口から加熱助長用の空気を噴出するよ
うにしておき、ベース上に予備はんだを介して部
品をマウントした被加熱物群を図示しないコンベ
アにより搬送路の入口側より送り込み、出口側か
ら出る間に側方加熱部と中間加熱部との間に温度
差が生ずることのない入口側の予備加熱ゾーンに
おいて一次的予備加熱が、また、これに続く第2
の予備加熱ゾーンで二次予備的加熱がされたうえ
これより高温の高温加熱ゾーンで予備はんだを溶
かし、はんだ付けが完了されて出口より次工程に
送られることとなる。
(Function) This kind of soldering furnace for manufacturing electronic parts is
Each infrared radiant heater is energized to heat the inside of the furnace using the upper and lower infrared heating surfaces, and at the same time drive the air supply device for heating aid that is attached only above the second preheating zone and the high temperature heating zone on the exit side. The heating aiding air is ejected from each air injection port, and a group of objects to be heated, in which parts are mounted on the base via pre-soldering, is sent from the entrance side of the conveyance path by a conveyor (not shown), and then from the exit side. A primary preheating is carried out in a preheating zone on the inlet side, in which no temperature difference occurs between the side heating section and the intermediate heating section during exit from the
After secondary preliminary heating is performed in the preheating zone, the preliminary solder is melted in a higher temperature heating zone, and the soldering is completed before being sent to the next process from the exit.

(実施例) 次に、本考案を図示の実施例について詳細に説
明すれば、1は断熱材等で構成されるトンネル炉
状の炉体であつて、該炉体1にはベース上に予備
はんだを介して部品をマウントした被加熱物をし
やへい板付の入口3からしやへい板付の出口4に
移送するネツトコンベア等の循環式の搬送路2が
設けられている。5,5は炉体1内の上方部と下
方部に設けられた上下の赤外線加熱面であつて、
該赤外線加熱面5はセラミツク盤材に電熱抵抗体
を埋設した赤外線輻射ヒータ6の多数個を縦横に
均斉に配列したものとしている。そして、炉体1
内の各赤外線加熱面5は被加熱物の加熱に必要な
温度プロフアイルに対応すべく上端を天井面より
若干下方に位置させて炉側壁間に張設された熱干
渉防止用の入口側隔壁9と出口側隔壁10をもつ
て炉長方向に加熱長を区分して入口側の予備加熱
ゾーン11と第2の予備加熱ゾーン12と出口側
の高温加熱ゾーン13を形成している。15,1
6は前記した入口側隔壁9と出口側隔壁10の各
上方において炉体1の天井部に設けた排気口であ
つて、該排気口15,16は図示しない排気ブロ
アやジエツトインジエクタなどの強制排気機構に
続かせて入口側隔壁9と出口側隔壁10の上方空
間を外部に連通させ、はんだベーパーを排気でき
るようにしてある。なお、各赤外線加熱面5にお
ける赤外線輻射ヒータ6の配列は特に限定される
ものではないが、図示の実施例では入口側の予備
加熱ゾーン11は3列×5個として常温から150
℃程度まで加熱されるようにするとともに第2の
予備加熱ゾーン12は4列×5個として150℃程
度の温度に保持されるようにし、次いで、出口側
の高温加熱ゾーン13は2列×5個としてここで
最高210〜240℃程度まで加熱されるようになつて
いる。そして、前記第2の予備加熱ゾーン12の
上方の赤外線加熱面5には空気噴射口7aが多数
個配設された加熱助長用の空気供給装置8aを付
設するとともに高温加熱ゾーン13の上方の赤外
線加熱面5にも空気噴射口7bが多数個配設され
た前記空気供給装置8aよりも空気供給量が1/2
〜1/3程度の加熱助長用の空気供給装置8bを付
設してある。なお、空気供給装置8aの空気噴射
圧は噴射元で20〜30m/s程度としておくことが
マウント部品の位置ずれが生じないので好まし
い。さらに、前記各赤外線加熱面5は炉体1の長
手方向に延びるように炉側壁に沿つた両側の側方
加熱部5a,5aと、該側方加熱部5a,5a間
にあつてこれらと等温に保持される中間加熱部5
bとよりなるものとして各加熱部をそれぞれ温度
制御して炉内の炉側壁付近の温度が中間の温度に
比べ低下しないようになつている。この側方加熱
部5aの温度を中間加熱5bの温度と等温に保持
する手段は問わないが、図示の実施例のように各
側方加熱部5aを前記入口側隔壁9および出口側
隔壁10に直交して相互に平行に設けた熱干渉防
止用の隔壁14,14により区画して各加熱部毎
に温度制御できるようにするか、温度低下しがち
な側方加熱部5aにある赤外線輻射ヒータ6を中
間加熱部5bにある赤外線輻射ヒータ6よりもワ
ツト密度を高くする等して温度制御を行えばよ
い。なお、隔壁14,14を入口側隔壁9および
出口側隔壁10に直交させて各赤外線加熱面5を
9区分した本実施例では、中間加熱部5bを構成
する3つの区画にある複数の赤外線輻射ヒータ6
のうち少なくとも1個と、側方加熱部5a,5a
の各3つの区画にある複数の赤外線輻射ヒータ6
のうち少なくとも各1個を、輻射面側に公知のク
ロメル−アルメル線等の熱起電材料で絶縁被覆し
た温度検出用熱電対が装着されているものとして
これを温度設定を行う調節計等に接続させたもの
として温度制御が行われるようになつている。な
お、上下の各加熱部は均一加熱の面から上下に対
向して設けられていることが好ましいし、各赤外
線輻射ヒータ6の輻射面形状は平面状に限定され
るものではなく彎曲形状のものであつてもよい。
さらに、前記空気噴射口7a,7bは搬送路2に
向け設けられたものに限定されるものではなく、
搬送路2と逆方向に噴射するカウンターブローあ
るいは搬送路2と同方向に噴射する向きにしても
よく、噴射角度は被加熱物のベース形状および炉
形態に合わせた角度であれば特に限定されない。
また、前記空気供給装置8a,8bの枝管は炉体
1の両側壁を貫通したバルブ付導管を介して高圧
ブロアーと接続されており、出口にはシロツコフ
アン等による冷却装置17が取付けられている。
なお、空気噴射口7a,7bからの噴射スピード
はマウント部品の位置ズレを惹起させないようリ
フロー部品の性状にあわせて調整するために加熱
域毎にバルブを設けたものとしてもよい。さら
に、炉内の各赤外線輻射ヒータ6は輻射面殻部に
多数の空気噴射口を備えた中空主体の取付基部に
オリフイス状の空気供給口を設けたものとしても
よい。
(Embodiment) Next, the present invention will be described in detail with reference to the illustrated embodiment. Reference numeral 1 is a tunnel furnace-like furnace body made of a heat insulating material, etc. A circulating conveyance path 2 such as a net conveyor is provided for transporting an object to be heated, on which parts are mounted via solder, from an inlet 3 with a shield plate to an outlet 4 with a shield plate. 5, 5 are upper and lower infrared heating surfaces provided in the upper and lower parts of the furnace body 1,
The infrared heating surface 5 has a large number of infrared radiant heaters 6, each having an electrothermal resistor embedded in a ceramic board, arranged uniformly in the vertical and horizontal directions. And furnace body 1
Each infrared heating surface 5 is an inlet side bulkhead for preventing thermal interference, which is stretched between the furnace side walls with the upper end positioned slightly below the ceiling surface in order to correspond to the temperature profile necessary for heating the object to be heated. The heating length is divided in the furnace length direction by the partition wall 9 and the exit side partition wall 10 to form a preheating zone 11 on the inlet side, a second preheating zone 12, and a high temperature heating zone 13 on the exit side. 15,1
Reference numeral 6 denotes an exhaust port provided in the ceiling of the furnace body 1 above the inlet side partition wall 9 and the outlet side partition wall 10, and the exhaust ports 15 and 16 are equipped with an exhaust blower, a jet injector, etc. (not shown). Following the forced exhaust mechanism, the space above the inlet-side partition wall 9 and the outlet-side partition wall 10 is communicated with the outside so that solder vapor can be exhausted. Note that the arrangement of the infrared radiant heaters 6 on each infrared heating surface 5 is not particularly limited, but in the illustrated embodiment, the preheating zone 11 on the inlet side is arranged in 3 rows x 5 pieces, and the infrared radiant heaters 6 are arranged at 150°C from room temperature.
℃, and the second preheating zone 12 is arranged in 4 rows x 5 so as to be maintained at a temperature of about 150°C. Next, the high temperature heating zone 13 on the exit side is arranged in 2 rows x 5. Individual pieces are heated up to a maximum of 210 to 240 degrees Celsius here. The infrared heating surface 5 above the second preheating zone 12 is provided with an air supply device 8a for promoting heating, which is provided with a large number of air injection ports 7a. The air supply amount is 1/2 that of the air supply device 8a in which a large number of air injection ports 7b are also provided on the heating surface 5.
An air supply device 8b for promoting heating of about 1/3 is attached. Note that it is preferable that the air injection pressure of the air supply device 8a is set to about 20 to 30 m/s at the injection source because this will prevent the mount component from shifting. Furthermore, each of the infrared heating surfaces 5 is located between the side heating parts 5a, 5a on both sides along the furnace side wall so as to extend in the longitudinal direction of the furnace body 1, and is isothermal with these side heating parts 5a, 5a. intermediate heating section 5 held in
The temperature of each heating section is controlled individually so that the temperature near the furnace side wall inside the furnace does not drop compared to the temperature in the middle. Any means can be used to maintain the temperature of the side heating portions 5a to be equal to the temperature of the intermediate heating 5b, but as in the illustrated embodiment, each side heating portion 5a is connected to the inlet side partition wall 9 and the outlet side partition wall 10. Either partition walls 14 and 14 for preventing thermal interference provided orthogonally parallel to each other are used to partition each heating section so that the temperature can be controlled for each heating section, or an infrared radiant heater is installed in the side heating section 5a where the temperature tends to drop. The temperature may be controlled by, for example, making the watt density of the infrared radiation heater 6 higher than that of the infrared radiation heater 6 in the intermediate heating section 5b. In this embodiment, each infrared heating surface 5 is divided into nine sections by making the partition walls 14, 14 orthogonal to the inlet side partition wall 9 and the exit side partition wall 10, and a plurality of infrared rays in the three sections constituting the intermediate heating section 5b are Heater 6
at least one of them, and side heating parts 5a, 5a.
A plurality of infrared radiant heaters 6 in each of three compartments of
At least one of each of them is equipped with a temperature detection thermocouple on the radiation surface side of which is insulated with a thermoelectric material such as a known chromel-alumel wire, and is used as a controller etc. for temperature setting. Temperature control is now possible as a result of the connection. In addition, it is preferable that the upper and lower heating parts are provided facing each other in the upper and lower directions in order to achieve uniform heating, and the shape of the radiation surface of each infrared radiant heater 6 is not limited to a flat shape but may be curved. It may be.
Furthermore, the air injection ports 7a and 7b are not limited to those provided toward the conveyance path 2,
A counter blow may be used to spray in the direction opposite to the conveyance path 2, or the spray may be directed in the same direction as the conveyance path 2, and the injection angle is not particularly limited as long as it matches the base shape of the object to be heated and the furnace configuration.
The branch pipes of the air supply devices 8a and 8b are connected to a high-pressure blower through valved conduits passing through both side walls of the furnace body 1, and a cooling device 17 such as a Sirotskov fan is attached to the outlet. .
Incidentally, a valve may be provided for each heating region in order to adjust the speed of injection from the air injection ports 7a and 7b according to the properties of the reflow component so as not to cause displacement of the mounted component. Further, each infrared radiant heater 6 in the furnace may have an orifice-shaped air supply port provided in a hollow mounting base having a large number of air injection ports in the radiation surface shell.

このように構成されたものは、搬送路2に載せ
られた被加熱物が入口3を通じて炉体1内に送ら
れると、炉体1内の上方部と下方部にはセラミツ
ク盤材に電熱抵抗体を埋設した多数個の赤外線輻
射ヒータ6よりなる赤外線加熱面5が入口側隔壁
9と出口側隔壁10とによつて入口側の予備加熱
ゾーン11と第2の予備加熱ゾーン12と高温加
熱ゾーン13とに区分されるとともに炉側壁に沿
つた隔壁14,14により側方加熱部5a,5a
と中間加熱部5bとに再区分されて各加熱区分間
に熱干渉のない均一な温度加熱面を形成している
ので、搬送路2により移送されてくる被加熱物は
ベースが大形であつても中央部分と両端部に差が
なく均一加熱されることとなり、大形のベースは
ヒータの輻射熱により均一に加熱される。しか
も、第2の予備加熱ゾーン12と出口側の高温加
熱ゾーン13の各上方には高圧ブロアーから発生
する圧縮空気流が炉体1内に配管されている枝管
を通過することにより加熱されたうえ各枝管に多
数配設されている加熱助長用の空気噴射口7a,
7bから熱風として被加熱物の表面に吹付けられ
るため、均一な温度加熱面を形成している各赤外
線輻射ヒータ6の輻射熱との併用加熱によりさら
に表面を均一に加熱できる。そして、被加熱物が
大形の場合には搬送初めの被加熱物に大量に熱吸
収が行われ、2枚目以後が炉体1内に移送されて
くると搬送スピードが速いため炉内を一定温度に
保つよう温度調節計が作動してヒータを昇温させ
ても昇温ロスがあるため先後の被加熱物間の温度
差が大きくなりがちであるが、本考案の炉体1内
には前記した空気噴射口7a,7bからの熱風が
常にベースに当たつているので、被加熱物内はも
とより被加熱物間の温度差も小さくなり、連続搬
送されてくる被加熱物を均一に加熱することがで
きる。しかも、第2の予備加熱ゾーン12にある
空気供給装置8aは出口側の高温加熱ゾーン13
にある空気供給装置8bよりも空気供給量が大き
くしてあるので、熱カーテンとなつて第2の予備
加熱ゾーン12に入口側の予備加熱ゾーン11や
出口側の高温加熱ゾーン13から熱が流入するこ
とはなく、各ゾーンの温度制御は極めて容易化さ
れるそして、入口側隔壁9および出口側隔壁10
はその上端を天井面の若干下方に位置させて張設
され、しかも、その両者間の間隙の直上には、強
制排気用の排気口15,16が設けられているの
で、はんだベーパーがこの排気口15,16より
スムーズに排出させる。さらに、入口側の予備加
熱ゾーン11、第2の予備加熱ゾーン12と出口
側の高温加熱ゾーン13の天井壁付近の各雰囲気
はこの排気口15,16からの強制排気により滞
留することがないので、入口側隔壁9と出口側隔
壁10の熱干渉防止効果と相まつて第2の予備加
熱ゾーン12は入口側の予備加熱ゾーン11およ
び出口側の高温加熱ゾーンより低温であつても精
度の高いヒータ温度コントロールが可能となる。
今、具体的効果例を述べると、380×507×1.6t
(単位mm)のガラスエポキシ板をヒータ温度が44
℃の入口側の予備加熱ゾーン11で25秒間に常温か
ら150℃まで昇温させたうえヒータ温度が170℃の
第2の予備加熱ゾーン12でさらに35秒間同温に
保持してヒータ温度が460℃の高温加熱ゾーン1
3に送り、ここで30秒間で210〜240℃まで急速昇
温させたうえ冷却させるという、実願昭61−
32272号(実開昭62−146569号)明細書に記載し
た具体的効果例よりコンベアスピードが速い温度
プロフアイルで連続加熱した場合でも、従来の棒
状ヒータ加熱の場合には、ピーク温度域において
温度ばらつきが約±10℃であつたものが、本考案
では温度バラツキが±2℃となり、しかも、第2
の予備加熱ゾーンはフラツトな温度プロフアイル
となつて均一加熱できることが確認された。な
お、入口側の予備加熱ゾーン11に前記空気供給
装置8aよりも空気供給量の少ない加熱助長用の
空気供給装置をさらに付設しても差支えないが、
実施例のように入口側の予備加熱ゾーン11に加
熱助長用の空気供給装置を設けない場合は、各被
加熱物間の温度ばらつきをなくすために入口側の
予備加熱ゾーン11においては第2の予備加熱ゾ
ーン12よりもワツト密度の高い赤外線輻射ヒー
タ6を使用することが好ましい。。また、空気供
給装置は炉内の輻射熱を利用したものであるため
別の熱源を必要とせず、省エネルギー炉となるう
えに空気噴射装置が大設備とならず、経済的に設
置できる。
With this structure, when the object to be heated placed on the conveyance path 2 is sent into the furnace body 1 through the inlet 3, electric heating resistors are placed on the ceramic plate in the upper and lower parts of the furnace body 1. An infrared heating surface 5 consisting of a large number of infrared radiant heaters 6 embedded in the body is divided into an inlet side preheating zone 11, a second preheating zone 12, and a high temperature heating zone by an inlet side partition wall 9 and an outlet side partition wall 10. 13 and side heating parts 5a, 5a by partition walls 14, 14 along the furnace side wall.
and an intermediate heating section 5b, forming a uniform temperature heating surface without thermal interference between each heating section, so that the object to be heated transferred through the conveyance path 2 can be heated even if it has a large base. Even if the base is heated evenly, there is no difference between the center and both ends, and the large base is evenly heated by the radiant heat of the heater. Moreover, above the second preheating zone 12 and the high-temperature heating zone 13 on the outlet side, a compressed air flow generated from a high-pressure blower is heated by passing through branch pipes installed in the furnace body 1. Moreover, a large number of air injection ports 7a for promoting heating are provided in each branch pipe.
Since hot air is blown onto the surface of the object to be heated from 7b, the surface can be further uniformly heated by heating in combination with the radiant heat of each infrared radiant heater 6 forming a uniform temperature heating surface. If the object to be heated is large, a large amount of heat will be absorbed by the object to be heated at the beginning of the conveyance, and when the second and subsequent objects are transferred into the furnace body 1, the conveyance speed will be fast, so the inside of the furnace will be absorbed. Even if the temperature controller operates to raise the temperature of the heater to maintain a constant temperature, there is a temperature increase loss, so the temperature difference between the heated objects tends to become large. Since the hot air from the air injection ports 7a and 7b mentioned above always hits the base, the temperature difference not only inside the heated object but also between the heated objects becomes small, and the heated object that is continuously conveyed is uniformly heated. Can be heated. Moreover, the air supply device 8a in the second preheating zone 12 is connected to the high temperature heating zone 13 on the exit side.
Since the air supply amount is larger than that of the air supply device 8b located in Temperature control in each zone is made extremely easy.
are stretched with their upper ends positioned slightly below the ceiling surface, and exhaust ports 15 and 16 for forced exhaust are provided directly above the gap between the two, so that solder vapor is absorbed by this exhaust. To discharge smoothly from ports 15 and 16. Furthermore, the atmosphere near the ceiling walls of the preheating zone 11 on the inlet side, the second preheating zone 12 and the high temperature heating zone 13 on the outlet side does not stagnate due to the forced exhaust from the exhaust ports 15 and 16. , together with the thermal interference prevention effect of the inlet side partition wall 9 and the outlet side partition wall 10, the second preheating zone 12 is a highly accurate heater even at a lower temperature than the inlet side preheating zone 11 and the outlet side high temperature heating zone. Temperature control becomes possible.
Now, to give a concrete example of the effect, 380×507×1.6t
(Unit: mm) Glass epoxy plate with heater temperature of 44
The temperature is raised from room temperature to 150℃ in 25 seconds in the preheating zone 11 on the inlet side of ℃, and then held at the same temperature for another 35 seconds in the second preheating zone 12, where the heater temperature is 170℃, until the heater temperature reaches 460℃. °C high temperature heating zone 1
3, where the temperature is rapidly raised to 210-240℃ in 30 seconds and then cooled.
32272 (Utility Model Application Publication No. 62-146569), even if continuous heating is performed using a temperature profile with a faster conveyor speed than the specific effect example described in the specification, in the case of conventional rod-shaped heater heating, the temperature decreases in the peak temperature range. The temperature variation was approximately ±10°C, but with this invention, the temperature variation is ±2°C, and moreover, the temperature variation in the second
It was confirmed that the preheating zone had a flat temperature profile and could be heated uniformly. It should be noted that an air supply device for promoting heating with a smaller air supply amount than the air supply device 8a may be additionally attached to the preheating zone 11 on the inlet side.
In the case where the preheating zone 11 on the inlet side is not provided with an air supply device for promoting heating as in the embodiment, a second It is preferable to use an infrared radiant heater 6 having a higher watt density than the preheating zone 12. . Furthermore, since the air supply device utilizes radiant heat within the furnace, it does not require a separate heat source, resulting in an energy-saving furnace, and the air injection device does not require large equipment, making it economical to install.

(考案の効果) 本考案は前記説明によつて明らかなように、炉
体内の上下の赤外線加熱面を炉側壁に沿つた両側
の側方加熱部と中間加熱部よりなり、且つ、入口
側の予備加熱ゾーンと第2の予備加熱ゾーンと出
口側の高温加熱ゾーンに区画されたものとして炉
側壁に近い部分と中間部分との温度差をなくすと
ともに予備加熱から本加熱を経て冷却に至るまで
の温度分布をはんだ付けに最適な条件に保持でき
るように区分され、しかも、第2の予備加熱ゾー
ンと高温加熱ゾーンの加熱源が多数の赤外線輻射
ヒータよりなる赤外線加熱面と、該赤外線輻射ヒ
ータによつて加熱された空気を噴射する加熱助長
用の空気噴射装置との併用であるうえ第2の予備
加熱ゾーンの空気供給装置を出口側の高温加熱ゾ
ーンのそれより空気供給量の大きいものとし、し
かも、上端を炉体の天井面より若干下方に位置さ
せて炉側壁間に張設された入口側隔壁と出口側隔
壁の直上に形成される上方空間を炉体に設けた排
気口を通じて外部に連通させて排気できるように
してあるから、前記した加熱区分と相まつて第2
の予備加熱ゾーンを含め全体を適確な温度制御下
に効率的な加熱ができる利点があり、従来の電子
部品類製造用はんだ付け炉の問題点を解決したも
のとして実用的価値極めて大なものである。
(Effects of the invention) As is clear from the above description, the present invention consists of the upper and lower infrared heating surfaces in the furnace body consisting of side heating parts and intermediate heating parts on both sides along the furnace side wall, and an intermediate heating part on the inlet side. It is divided into a preheating zone, a second preheating zone, and a high-temperature heating zone on the outlet side, eliminating the temperature difference between the part near the furnace side wall and the middle part, and the temperature difference from preheating to main heating to cooling. The temperature distribution is divided to maintain the optimum conditions for soldering, and the heating sources of the second preheating zone and the high temperature heating zone are an infrared heating surface consisting of a large number of infrared radiant heaters, and Therefore, it is used in combination with an air injection device for promoting heating that injects heated air, and the air supply device for the second preheating zone has a larger air supply amount than that for the high temperature heating zone on the exit side. Moreover, the upper end is located slightly below the ceiling surface of the furnace body, and the upper space formed directly above the inlet side partition wall and outlet side partition wall stretched between the furnace side walls is exposed to the outside through the exhaust port provided in the furnace body. Since it is designed so that it can be vented through communication, the second heating section and the
It has the advantage of being able to efficiently heat the entire area, including the preheating zone, under accurate temperature control, and is of great practical value as it solves the problems of conventional soldering furnaces for manufacturing electronic components. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例を示す一部切欠側面
図、第2図は同じく一部切欠正面図、第3図は第
1図のA−A矢視図である。 1……炉体、2……搬送路、3……入口、4…
…出口、5……赤外線加熱面、5a……側方加熱
部、5b……中間加熱部、6……赤外線輻射ヒー
タ、7a,7b……空気噴射口、8a,8b……
空気供給装置、9……入口側隔壁、10……出口
側隔壁、11……入口側の予備加熱ゾーン、12
……第2の予備加熱ゾーン、13……出口側の高
温加熱ゾーン、15,16……排気口。
FIG. 1 is a partially cutaway side view showing an embodiment of the present invention, FIG. 2 is a partially cutaway front view, and FIG. 3 is a view taken along the line A--A in FIG. 1. 1... Furnace body, 2... Conveyance path, 3... Inlet, 4...
...Outlet, 5...Infrared heating surface, 5a...Side heating section, 5b...Intermediate heating section, 6...Infrared radiation heater, 7a, 7b...Air injection port, 8a, 8b...
Air supply device, 9...Inlet side partition, 10...Outlet side partition, 11...Inlet side preheating zone, 12
... second preheating zone, 13 ... high temperature heating zone on the exit side, 15, 16 ... exhaust port.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ベース上に予備はんだを介して部品をマウント
した被加熱物を入口から出口に向け移送する搬送
路2を設けた炉体1内の上方部と下方部に、赤外
線輻射ヒータ6の多数個を縦横に配列した赤外線
加熱面5をそれぞれ設けた電子部品類製造用はん
だ付け炉において、各加熱面5は炉側壁に沿つた
両側の側方加熱部5a,5aと該側方加熱部5
a,5a間にあつてこれらと等温に保持される中
間加熱部5bにより形成されるとともに、上端を
天井面より若干下方に位置させて炉側壁間に張設
された入口側隔壁9と出口側隔壁10とをもつて
入口側の予備加熱ゾーン11と第2の予備加熱ゾ
ーン12と出口側の高温加熱ゾーン13とに区画
されており、さらに、前記第2の予備加熱ゾーン
12の上方の赤外線加熱部5に空気噴射口7aが
多数個配設された加熱助長用の空気供給装置8a
を付設するとともに高温加熱ゾーン13の上方の
赤外線加熱面5には空気噴射口7bが多数個配設
された前記空気供給装置8aよりも空気供給量の
少ない加熱助長用の空気供給装置8bを付設し、
また、前記入口側隔壁9と出口側隔壁10の各上
端と天井面との間に形成せれる上方空間は炉体1
の天井部に設けた排気口15,16をもつて外部
に連通させたことを特徴とする電子部品類製造用
はんだ付け炉。
A large number of infrared radiant heaters 6 are installed vertically and horizontally in the upper and lower parts of the furnace body 1, which is provided with a conveyance path 2 for transporting the heated object with parts mounted on the base via preliminary solder from the inlet to the outlet. In a soldering furnace for manufacturing electronic components, each heating surface 5 is provided with infrared heating surfaces 5 arranged in a row.
The partition wall 9 on the inlet side and the outlet side are formed by an intermediate heating part 5b which is located between a and 5a and held isothermally with these, and is stretched between the furnace side walls with the upper end located slightly below the ceiling surface. It is divided into a preheating zone 11 on the entrance side, a second preheating zone 12, and a high temperature heating zone 13 on the exit side by a partition wall 10, and furthermore, the infrared rays above the second preheating zone 12 are divided into An air supply device 8a for promoting heating in which a large number of air injection ports 7a are arranged in the heating section 5.
At the same time, on the infrared heating surface 5 above the high-temperature heating zone 13, an air supply device 8b for promoting heating, which has a smaller air supply amount than the air supply device 8a and which is provided with a large number of air injection ports 7b, is attached. death,
Further, the upper space formed between the upper ends of the inlet side partition wall 9 and the outlet side partition wall 10 and the ceiling surface is the furnace body 1.
A soldering furnace for manufacturing electronic parts, characterized in that the furnace is connected to the outside through exhaust ports 15 and 16 provided in the ceiling of the furnace.
JP12229086U 1986-08-09 1986-08-09 Expired JPH0216855Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12229086U JPH0216855Y2 (en) 1986-08-09 1986-08-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12229086U JPH0216855Y2 (en) 1986-08-09 1986-08-09

Publications (2)

Publication Number Publication Date
JPS6329666U JPS6329666U (en) 1988-02-26
JPH0216855Y2 true JPH0216855Y2 (en) 1990-05-10

Family

ID=31012340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12229086U Expired JPH0216855Y2 (en) 1986-08-09 1986-08-09

Country Status (1)

Country Link
JP (1) JPH0216855Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687504B2 (en) * 1988-11-17 1997-12-08 松下電器産業株式会社 Reflow equipment
JP2687505B2 (en) * 1988-11-17 1997-12-08 松下電器産業株式会社 Heating method of heating device

Also Published As

Publication number Publication date
JPS6329666U (en) 1988-02-26

Similar Documents

Publication Publication Date Title
US5039841A (en) Reflow furnace
TW556254B (en) Solder reflow oven
JPH07509102A (en) Apparatus and method for soldering components onto plates
JPH0555226B2 (en)
JPH0216855Y2 (en)
JPH0216853Y2 (en)
ES2705603T3 (en) Oven and method for heating covered glass sheets
US7216511B2 (en) Furnace apparatus and method for tempering low emissivity glass
JPH0230137Y2 (en)
JPS6321730B2 (en)
JP4620327B2 (en) Apparatus and combined spray unit for spraying fluid onto at least the surface of a thin element
KR20030057332A (en) Apparatus for uniform heat treatment
JP2000208053A (en) Baking furnace for plasma display panel
JPH10284831A (en) Hot air blowing plate for reflow soldering device
US5101578A (en) System and process for drying a moving sheet
US4597735A (en) High-efficiency porcelain enameling furnace
JP3495205B2 (en) Heating equipment
JP2002206863A (en) Continuously heat treating furnace
JPH0222318B2 (en)
JP2000105082A (en) Atmosphere continuous heating furnace
JPS636609B2 (en)
JPH028688A (en) Heat exchanging system in tunnel type kiln
JP2002243369A (en) Heat treatment method for continuous furnace, and continuous heat treatment apparatus
JP2001174159A (en) Heat treating apparatus
JPH0241770A (en) Reflow device