JPH02168149A - Measuring apparatus for x-ray standing wave using photoelectron - Google Patents

Measuring apparatus for x-ray standing wave using photoelectron

Info

Publication number
JPH02168149A
JPH02168149A JP63323046A JP32304688A JPH02168149A JP H02168149 A JPH02168149 A JP H02168149A JP 63323046 A JP63323046 A JP 63323046A JP 32304688 A JP32304688 A JP 32304688A JP H02168149 A JPH02168149 A JP H02168149A
Authority
JP
Japan
Prior art keywords
ray
sample
standing wave
high vacuum
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323046A
Other languages
Japanese (ja)
Inventor
Tomoaki Kawamura
朋晃 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63323046A priority Critical patent/JPH02168149A/en
Publication of JPH02168149A publication Critical patent/JPH02168149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable measurement of an X-ray standing wave even in an ultra- high vacuum by using a rotary shaft having a microscopic rotary mechanism equipped with a differential exhaust mechanism and by rotating a sample precisely in the ultra-high vacuum. CONSTITUTION:An X-ray emitted from an X-ray source 16 is transmitted through an incident window 13 and led into a vacuum tank 10. The X-ray entering the vacuum tank 10 causes Bragg reflection due to a sample 12, and the intensity of photoelectrons radiated from the sample 12 on the occasion is measured by a detector 15. In order to confirm the occurrence of the Bragg reflection in the sample 12, the X-ray radiated from the sample 12 through an emission window 14 is measured by a scintillation counter 17. Since the sample 12 needs to be rotated with precision of 0.1 second or less in an X-ray standing wave method, a rotary shaft equipped with a differential exhaust mechanism is rotated in the vicinity of the Bragg reflection by a goniometer 11 for rotation having a microscopic rotation mechanism, and thereby measurement of an X-ray standing wave is executed. In this way, the X-ray standing wave can be measured even in an ultra-high vacuum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線および電子を利用し、固体材料の表面・界
面の構造を解析するX線回折装置に属し、特に光電子利
用X線定在波測定装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention belongs to an X-ray diffraction device that uses X-rays and electrons to analyze the structure of the surface and interface of a solid material, and in particular, it belongs to It relates to a wave measuring device.

〔従来の技術〕[Conventional technology]

はぼ光速度まで加速された荷電粒子を蓄積した円形加速
器からはシンクロトロン放射光(以下放射光と称する)
とよばれるXaから赤外線に至る広いス4クトルを持つ
強力な光が放射される。この放射光は連続な波長を持つ
白色光であることおよび従来の光源に比べ一桁以上強力
であり、この放射光をX線回折による固体材料の構造解
析に利用しようとする動きが高まっている。このような
分析法の一つにX線定在波法とよばれるXalのブラッ
グ(Bragg)反射における干渉効果を利用した方法
がめる。この方法は牛導体材料等の表面・界面の注目原
子の位置や不純物の原子オーダーの構造解析を可能とす
るものであシ、Sl等の比較的良質な結晶基板でのブラ
ッグ(Bragg)反射を利用するものである。このと
きXll111定在波法は試料のブラッグ(Bragg
)反射領域におけるx腺の干渉効果を利用するため、X
線定在波の効果を測定するためには通常ブラッグ(nr
agg)反射の幅である数秒以下の角度領域での螢光X
線強度の変化を捉える必要がある。第5図は従来のX線
定在波測定装置の一例を示す。1はX線源、2はXJの
平行化用スリット、3は非対称モノクロメータ−4は平
行化されたXallのうち必要な部分だけt取シ出丁丸
めのスリット、5は試料、6は螢光X線検出用牛導体検
出器(以下検出器6と称す)、7はブラッグ(srag
g)反射測定用検出器(以下検出器7と称す)、8は入
射X線強度測定用検出器(以下検出器8と称丁)、9は
回転精度が0.1秒以下の高精度ゴニオメータ−(以下
高精度ゴニオ9と称す)である。通常のX線定在波法で
はX線源1より発散するXMAを最初にスリット2で必
要な部分だけ取り出し、このJiIル出されたX線を非
対称モノクロメータ−3に入射する。非対称モノクロメ
ータ−3は入射X線が結晶すれすれに入った時にブラッ
グ(nragg)反射を起こすように結晶をカットした
もので、通常試料のブラッグCBrmgg)反射面と同
じ面が用いられる。この非対称モノクロメータ−3の役
割はO,1秒以下の角度拡が#)ヲ持つ非常に高精度に
平行化されたX線を作り出丁ものでその原理は例えばア
キモト等(Akimoto、 @ t、 al :Ja
panaa*Journal  j+f  AppHs
d  Ph1sica、  Vol、24.No、  
12+pp、 L917−920)らにより述べられて
いる。非対称モノクロメータ−3により平行化されたX
線は試料5の表面上で21mX2iut程度になるよう
にスリット4でカットされる。ここで試料5の表面での
Xiの照射面積を小さくするのは試料゛自体のそり、歪
みの場所による影響を低aRするためでるる□試料5に
よりブラッグ(nragg)反射を起こしたX捌は検出
器7により検知される。ここで試料5への入射Xa強度
は検出器8にょ〕モニターされる。
Synchrotron synchrotron radiation (hereinafter referred to as synchrotron radiation) is emitted from a circular accelerator that accumulates charged particles accelerated to the speed of light.
A powerful light with a wide spectrum ranging from Xa to infrared radiation is emitted. This synchrotron radiation is white light with continuous wavelengths and is more than an order of magnitude more powerful than conventional light sources, and there is a growing movement to use this synchrotron radiation for structural analysis of solid materials using X-ray diffraction. . One such analysis method includes a method called the X-ray standing wave method that utilizes the interference effect in Bragg reflection of Xal. This method makes it possible to analyze the positions of atoms of interest on the surface/interface of conductive materials and the atomic-order structure of impurities. It is something to be used. At this time, the Xll111 standing wave method uses the Bragg
) to take advantage of the interference effect of the x gland in the reflection region,
To measure the effect of line standing waves, we usually use the Bragg (nr
agg) Fluorescence X in an angular range of several seconds or less, which is the width of reflection
It is necessary to capture changes in line strength. FIG. 5 shows an example of a conventional X-ray standing wave measuring device. 1 is an X-ray source, 2 is a slit for parallelizing the XJ, 3 is an asymmetrical monochromator, 4 is a slit that takes out only the necessary part of the parallelized Xall, 5 is a sample, and 6 is a firefly. A bull conductor detector for optical X-ray detection (hereinafter referred to as detector 6), 7 is a Bragg (srag)
g) Detector for reflection measurement (hereinafter referred to as detector 7), 8 is a detector for measuring incident X-ray intensity (hereinafter referred to as detector 8), 9 is a high-precision goniometer with a rotation accuracy of 0.1 seconds or less - (hereinafter referred to as high-precision goniometer 9). In the normal X-ray standing wave method, a necessary portion of XMA emitted from an X-ray source 1 is first taken out by a slit 2, and the X-rays emitted from the X-ray are incident on an asymmetric monochromator 3. The asymmetrical monochromator 3 has a crystal cut so that Bragg (nragg) reflection occurs when incident X-rays pass close to the crystal, and the same surface as the Bragg (CBrmgg) reflection surface of the normal sample is used. The role of this asymmetric monochromator 3 is to produce highly accurate parallelized X-rays with an angular spread of less than 1 second.The principle of this is described by Akimoto et al. , al :Ja
panaa*Journal j+f AppHs
d Ph1sica, Vol, 24. No,
12+pp, L917-920) et al. X parallelized by asymmetric monochromator 3
The line is cut with a slit 4 on the surface of the sample 5 to a size of about 21 m x 2 iut. Here, the reason for reducing the irradiation area of Xi on the surface of sample 5 is to reduce the influence of warpage and strain on the sample itself. It is detected by the detector 7. Here, the intensity of Xa incident on the sample 5 is monitored by a detector 8.

Xd定住波による注目原子からの情報の測定を行うため
には、まず検出器7によりブラッグ(Bragg)反射
を検出し次後、高精度ゴニオ9t−ブラッグ(Brag
g)反射の領域で回転させ、このときの注目原子の螢光
X縁強度を検出器6により測定することにより行う。そ
してこのとき得られた螢光X線強度の分布を解析するこ
とにょシ注目原子の構造解析が可能となる。
In order to measure information from the atom of interest using the
g) This is carried out by rotating the atom in the reflection region and measuring the intensity of the fluorescent X-edge of the atom of interest using the detector 6 at this time. By analyzing the distribution of fluorescent X-ray intensity obtained at this time, it becomes possible to analyze the structure of the target atom.

しかし、従来のX線定在波測定装置は装置全体を大気中
に設置し、測定は大気で行うこと1c前提としている。
However, the conventional X-ray standing wave measuring device is based on the premise that the entire device is installed in the atmosphere and the measurement is performed in the atmosphere.

これは、現在のところ超高真空中で本測定に必要な00
1秒以下の角度積置を持つ回転軸を設置することが困難
であることに起因するものでるる。このため、通常Xa
定住技法で分析可能な元素は螢光X線の強度が大気中で
測定可能な比較的重い元素に限られている。また、対象
材料としても大気中でその状態が変化しない物質中の不
純物の構造解析や比較的厚く積んだ#膜材料と基板との
界面の状態のみが測定できる。このため、例えばSl基
板上に成長させたGaPJgと基板界面の構造を知シた
い場合、Qaの螢光X線は従来のX線定在波測定装置で
測定可能であるが、Pは軽元素でるるため螢光X線強度
の発生効率は悪く、かっPの螢光X線は大気による吸収
が大きいという問題が生じる。
This is currently the 0000 required for this measurement in ultra-high vacuum.
This is due to the difficulty in installing a rotating shaft with an angular displacement of 1 second or less. For this reason, usually Xa
Elements that can be analyzed using the dosing technique are limited to relatively heavy elements whose fluorescent X-ray intensity can be measured in the atmosphere. In addition, it is possible to analyze only the structure of impurities in substances whose state does not change in the atmosphere and to measure the state of the interface between a relatively thick #film material and a substrate. For this reason, for example, if you want to know the structure of the interface between GaPJg grown on an Sl substrate and the substrate, the fluorescent X-rays of Qa can be measured with a conventional X-ray standing wave measuring device, but P is a light element. Therefore, the generation efficiency of fluorescent X-ray intensity is poor, and the problem arises that the fluorescent X-rays of KaP are largely absorbed by the atmosphere.

また手導体プロセスではQaやAsのような比較的重い
元素より、fR累、Sl、窒素等の比較的軽い元素の構
造解析の要求が多いが、従来のX線定在波法では大気中
で測定することを前提としているためこのような元素に
ついては測定を行うことは困難である。
In addition, in the hand conductor process, there are many requests for structural analysis of relatively light elements such as fR, Sl, and nitrogen, rather than relatively heavy elements such as Qa and As, but in the conventional X-ray standing wave method, It is difficult to measure such elements because it is assumed that they will be measured.

例えばSl基板上に酸素を吹きつけSt酸化換金作製す
るプロセスを考えてみると、このような状態の試料をX
線定在波法で分析するためにはSlの吸収による螢光X
線および酸素の螢光X線を測定する必要がめる。しかし
、一般に軽元素では螢光X線の発生効率は小さいうえに
、発生した螢光X線もすぐに空気に吸収さnるため、従
来のX線足在波法でこれを測定することは困難である。
For example, if we consider the process of producing St oxidized gold by blowing oxygen onto an Sl substrate, we can take a sample in such a state by
In order to analyze using the line standing wave method, fluorescence X due to absorption of Sl is required.
It is necessary to measure fluorescent X-rays and oxygen. However, in general, light elements have a low generation efficiency of fluorescent X-rays, and the generated fluorescent X-rays are quickly absorbed by the air, so it is difficult to measure them using the conventional X-ray wave method. Have difficulty.

また、実際の半導体プロセスで生じる別の例として基板
上に1単原子層だけ成長させた原子の構造を知りたい場
合があるが、この巻合は試料を大気中に取シ出すと試料
の状態が変化してしまうため、たとえその螢光X線があ
まシ大気で吸収されない場合でも通常のX巌定在波法で
はこのような試料を分析することは困難である。
Another example that occurs in an actual semiconductor process is when you want to know the structure of atoms grown in just one monoatomic layer on a substrate. Because of this change, it is difficult to analyze such a sample using the normal X-wave standing wave method even if the fluorescent X-rays are not absorbed by the atmosphere.

これに対処するなめ、軟X線領域では超高真空中で試料
の角度掃引を行わず、入射X線のエネルギーを変化させ
X線の定在波を測定する方法も試みらfしている。しか
し、この方法は比較的ブラッグ(Bragg)反射の領
域の広い軟X線領域では可能であるが、試料の反射自体
が例えば5i(Ill) [ffiのような格子定数の
広い試料に限定されてしまうため、半導体プロセスで良
く使用されるSl (100)面七持つ試料に適用する
ことは困遣でろる。以上のような問題により決在のとこ
ろ、軽元素を含む試料や真空中でのみ状態が保之れるよ
うな試料に対し角度掃引によるX巌定在波法を適用する
ことに対してI−i困雌な問題が生じる。
To deal with this, in the soft X-ray region, attempts have been made to measure standing waves of X-rays by changing the energy of incident X-rays without performing an angular sweep of the sample in an ultra-high vacuum. However, although this method is possible in the soft X-ray region where the Bragg reflection region is relatively wide, it is limited to samples with a wide lattice constant such as 5i (Ill) [ffi] where the reflection itself of the sample is Therefore, it would be difficult to apply it to samples with seven Sl (100) planes, which are often used in semiconductor processes. Due to the above-mentioned problems, it is difficult to apply the X-wave standing wave method using angle sweep to samples containing light elements or samples whose state can only be maintained in vacuum. An embarrassing problem arises.

また螢光Xiを利用したX線定住波法には以下のような
欠点もある。すなわち、螢光XNAはその平均自由行程
が数百^から数μmと比較的長いため、試料全体の平均
情報のみしか得ることができない。
Furthermore, the X-ray fixed wave method using fluorescent Xi has the following drawbacks. That is, since the mean free path of fluorescent XNA is relatively long, ranging from several hundred^ to several μm, only average information about the entire sample can be obtained.

例えば、 Si基板の上にGhAmを蒸着しfc場合を
考えるとStとGaAmの格子定数は約4%異なってい
るため、 GaAsを25層以上蒸着するとGaAa 
O構造は平均化されてしまい、界面の情報を得ることが
できない。また、たとえGaAsが数層しがなくても、
Xa測測定おいて得られる情報は界面情報そのものでは
なく、界面+その上に蒸着し次GaAm全体を平均した
tinでしかな込。さらに1例えばGaAs基板表面を
Arスノ母フッタリングで表面処理した場合を考えてみ
る。この場合、例えば表面から内部にかけてどの程度欠
陥が生じているかt知シたい場合、従来の螢iX&il
を検出する方法では平均化された情報しか得ることがで
きず、このような深さ方向の情報を得ることはできない
For example, considering the fc case where GhAm is deposited on a Si substrate, the lattice constants of St and GaAm are about 4% different, so if 25 or more layers of GaAs are deposited, GaAa
The O structure is averaged, and information about the interface cannot be obtained. Also, even if there are only several layers of GaAs,
The information obtained in the Xa measurement is not the interface information itself, but only the average tin of the interface + the GaAm deposited on it. Furthermore, let us consider a case where, for example, the surface of a GaAs substrate is surface-treated with Ar-based footer ring. In this case, for example, if you want to know how many defects are occurring from the surface to the inside, the conventional method
The method of detecting can only obtain averaged information, and cannot obtain such information in the depth direction.

〔発明が解決しようとする線層〕[Line layer that the invention attempts to solve]

本発明の目的は、従来のX線定住波測定装置では試料の
深さ方向の構造解析困−であるという問題点f、解決し
て、固体材料の表面・界面や不純物中の物質の深さ方向
の構造解析を可能とする光電子利用X線定在波測定装置
を提供することにある。
The purpose of the present invention is to solve the problem that it is difficult to analyze the structure of a sample in the depth direction with conventional X-ray settled wave measurement equipment, and to solve the problem that it is difficult to analyze the structure of a sample in the depth direction using conventional X-ray settled wave measurement equipment. An object of the present invention is to provide a photoelectron-based X-ray standing wave measuring device that enables directional structural analysis.

〔緑題を解決するための手段と作用〕[Means and actions to solve the green problem]

本発明は差動排気を使用することにより、X朦定在波法
に必須の0.1秒以下の角度精度を持つ回転軸を直接高
真空中または超高真空中へ導入するとともに注目原子よ
り発生する電子を測定することを主な特徴とする真空用
の光電子利用X線定在波測定装置である。
By using differential pumping, the present invention directly introduces a rotating shaft with an angular accuracy of 0.1 seconds or less, which is essential for the X-wave standing wave method, into a high vacuum or ultra-high vacuum, and also This is a photoelectron-based X-ray standing wave measurement device for vacuum use whose main feature is to measure generated electrons.

従来の技術とは、超高真空中の回転運動を与える回転軸
の精度が格段に向上する之め、高真空中ま曇 たは超真空中でもX線定住波の測定が可能である点が異
なっている。従来の技術の場合は、超高真空中での角度
精度は精々0.1°程夏である友め、高精度な角度精度
が要求されるX線定住波法を超高真空中での測定に適用
することが田畑でめったが、本発明を用いることにより
これか′5I能となる、。
This method differs from conventional technology in that it is possible to measure X-ray settled waves even in high vacuum, cloudy conditions, or ultra-vacuum because the accuracy of the rotating shaft that provides rotational motion in ultra-high vacuum is significantly improved. ing. In the case of conventional technology, the angular accuracy in ultra-high vacuum is at most 0.1°, but the X-ray fixed wave method, which requires high angular accuracy, is used for measurement in ultra-high vacuum. Although it has rarely been applied in Tabata, by using the present invention, this becomes possible.

〔実施例1〕 本発明の実施例を第1図、第2図を用いて説明する。第
1図は本発明の全体の概要で、(alは平面図、(b)
は側面図である。10は真空槽、11は回転用デュオメ
ーター 12は試料、13はX線導入口の入射用Be窓
付き7ランジ(以下入射窓13と称す)、14はX線出
射口の出射用Be窓付きブラッグ(以下出射窓14と称
す)、15は電子検出器の光電子検出用電子エネルギー
検出器(以下検出器15と称す)、J6はX線源、17
は大気中でX線の検出が可能な検出器であるブラッグ(
Bragg )反射X線測定用シンチレーションカウン
ター(以下シンチレーションカウンター17と称す)で
ある。X線源16より放射されるX線は入射窓13を透
過し、真空槽10に導かれる。真空槽lOに入射したX
線は試料12によりブラッグ(Bragg )反射を起
こすが、このとき試料より放出される光電子の強度を検
出器15により測定する。また、試料12でブラッグ(
Bragg )反射が起こったことを確認するために、
試料12から出射窓14を経由して放射されるX線をシ
/チレーシ、ンカウンター17で測定する。X線定在波
法においては試料12を0.1秒以下の精度で回転する
ことが必要となるため、駆動軸をブラッグ(Bragg
 )反射の近傍で回転させX線定在波の測定を行う。
[Example 1] An example of the present invention will be described using FIGS. 1 and 2. Figure 1 shows the overall outline of the present invention, (al is a plan view, (b)
is a side view. 10 is a vacuum chamber, 11 is a rotating duometer, 12 is a sample, 13 is a 7-lunge with a Be window for entrance at the X-ray inlet (hereinafter referred to as the entrance window 13), and 14 is a Be window for exit at the X-ray exit port. Bragg (hereinafter referred to as exit window 14), 15 is an electron energy detector for photoelectron detection of the electron detector (hereinafter referred to as detector 15), J6 is an X-ray source, 17
is a Bragg detector that can detect X-rays in the atmosphere.
Bragg) is a scintillation counter for measuring reflected X-rays (hereinafter referred to as scintillation counter 17). X-rays emitted from the X-ray source 16 pass through the entrance window 13 and are guided into the vacuum chamber 10 . X incident on vacuum chamber lO
The beam causes Bragg reflection by the sample 12, and at this time the intensity of the photoelectrons emitted from the sample is measured by the detector 15. In addition, in sample 12, Bragg (
Bragg) To confirm that a reflex has occurred,
X-rays emitted from the sample 12 via the exit window 14 are measured by a radiation counter 17. In the X-ray standing wave method, it is necessary to rotate the sample 12 with an accuracy of 0.1 seconds or less, so the drive shaft is equipped with a Bragg
) Measure the X-ray standing wave by rotating it near the reflection.

次に超高真空中で高精度な回転を可能とする駆動軸につ
いて説明する。第2図は駆動軸の断面の概念図である。
Next, we will explain the drive shaft that enables highly accurate rotation in an ultra-high vacuum. FIG. 2 is a conceptual diagram of a cross section of the drive shaft.

18は真空槽、19はベローズ、20は真空槽の外壁、
21,22.23はそれぞれ0す/グまたはテフロンリ
ングからなるシール材(以下シール材21.シール材2
2.シール材23と称す)、24.zeは差動排気用ダ
クト、25.27は差動排気用排気系(以下排気系25
゜排気系27と称す)、28は駆動軸の回転軸受(以下
回転軸受28と称す)、29は回転軸の回転用駆動軸(
以下駆動軸29と称す)、30は粗動回転ステージ、3
1はサインパー等を利用した微小回転機構の高精度微動
回転ステージ(以下微動回転ステージ3)と称す)、3
2は試料を取り付けることが可能な試料支持台、33は
試料である。本装置においては駆動軸29が大気側と真
空側に直接接続されている。これを実現するために、本
発明では以下のように二重の差動排気を用匹ている。す
なわち、シール材21およびシール材22番 によυ真空槽18内を超春真空に保持するとともに、シ
ール材21および220間の真空をlO〜10−’ T
orrに保持する。またシール材22およびシール材2
3によpシール材22および23の間の真空度を10 
〜10  ’rorrに保つとともにシール材23の外
@全大気にすることが可能となる。
18 is a vacuum chamber, 19 is a bellows, 20 is an outer wall of the vacuum chamber,
21, 22, and 23 are sealing materials made of 0 S/G or Teflon rings (hereinafter referred to as sealing material 21. sealing material 2).
2. (referred to as sealing material 23), 24. ze is a duct for differential exhaust, and 25.27 is an exhaust system for differential exhaust (hereinafter referred to as exhaust system 25).
28 is a rotation bearing for the drive shaft (hereinafter referred to as rotation bearing 28); 29 is a drive shaft for rotation of the rotation shaft (referred to as the exhaust system 27);
(hereinafter referred to as drive shaft 29), 30 is a coarse movement rotation stage, 3
1 is a high-precision fine-movement rotation stage (hereinafter referred to as fine-movement rotation stage 3) with a micro-rotation mechanism using a sign par or the like;
2 is a sample support stand on which a sample can be attached, and 33 is a sample. In this device, the drive shaft 29 is directly connected to the atmosphere side and the vacuum side. To achieve this, the present invention uses double differential pumping as follows. That is, the inside of the vacuum chamber 18 is maintained at an ultra-spring vacuum by the sealing material 21 and the sealing material No. 22, and the vacuum between the sealing materials 21 and 220 is maintained at lO~10-'T.
Hold in orr. Also, the sealing material 22 and the sealing material 2
3, the degree of vacuum between the sealing materials 22 and 23 is set to 10
It is possible to maintain the temperature at ~10'rorr and to make it outside the sealing material 23 @the entire atmosphere.

試料33の回転は粗動回転ステージ30および微動回転
ステージ31により行う。
The sample 33 is rotated by a coarse rotation stage 30 and a fine rotation stage 31.

第3図は本発明による電子測定利用X線定在波の一例を
示す。試料としてGaAm(ill)基板表面をアルゴ
ンスパッタリングにより表面処理したものを用いた。A
rスt!ツタの条件は印加′竜圧1kV。
FIG. 3 shows an example of an X-ray standing wave using electronic measurement according to the present invention. A GaAm (ill) substrate surface treated by argon sputtering was used as a sample. A
rst! The conditions for the ivy are an applied dragon pressure of 1 kV.

イオン電流1mAであシ約5分スパッタを行った。Sputtering was performed for about 5 minutes at an ion current of 1 mA.

測定は本装置を1O−8Torrにした状態で行り次。The measurements were carried out with the device set to 10-8 Torr.

第3図の(&)はQa (D KLLオージェ電子に注
目して測定を行っfc場合である。また、(b)はGa
のLMMオージェ電子による測定結果を示す。明らかに
同じ試料にもかかわらず得られた光電子強度の変化が異
なっていることが分かる。このうちKLLオージェ電子
の測定結果はGaAm結晶の計算値とよく一致している
のに対し、LMMの計算結果は異なっていることがわか
る。これは光電子の試料からの脱出深さに関係している
。すなわち入射X線により励起された電子のエネルギー
が大きいときはその平均自由行程も長くなるため、より
試料の深い部分からの平均情報を与えるのに対し、励起
された電子のエネルギーが小さい場合はより表面に近い
部分のみの情報を与えることに起因するものである。
(&) in Fig. 3 is the case where the measurement is performed focusing on Qa (D KLL Auger electrons. Also, (b) is the case where Ga
The results of measurements by LMM Auger electrons are shown. It can be seen that the changes in photoelectron intensity obtained are clearly different even though the samples are the same. It can be seen that the KLL Auger electron measurement results are in good agreement with the GaAm crystal calculation results, whereas the LMM calculation results are different. This is related to the escape depth of photoelectrons from the sample. In other words, when the energy of the electron excited by the incident X-ray is large, its mean free path also becomes long, giving average information from a deeper part of the sample, whereas when the energy of the excited electron is small, the mean free path becomes longer. This is due to the fact that information is only provided near the surface.

今回の測定では、GaのKLLオージェ電子のエネルギ
ーは約10 keVでありその平均自由工程は数百又と
なり、はぼバルク結晶全体の情報を与える。
In this measurement, the energy of KLL Auger electrons in Ga is about 10 keV, and its mean free path is several hundreds of steps, giving information about the entire bulk crystal.

一方Gaの諏オージェ電子のエネルギーは約1 keV
であり、その平均自由工程は約20X程度と見積もられ
る。このことから第3図の(a) 、 (b)はそれぞ
れ表面から数百叉および約20Xの深さまでの情報を与
えることKなる。
On the other hand, the energy of Su Auger electrons in Ga is about 1 keV
The mean free path is estimated to be about 20X. From this, it follows that (a) and (b) in FIG. 3 provide information from the surface to a depth of several hundred depths and approximately 20X, respectively.

また第3図(&)の実線はGaが結晶内で結晶格子配列
上に位置している場合の計算値であシ、実験値と比較的
良い一致を示している。一方策3図(b)はGaがGa
As結晶内でほぼランダムに分布している場合の計算値
であり、(b)の実験値とほぼ一致している。このこと
から、今回の測定に用いた試料においては表面から約1
5Xの領域においては表面をArスパックしたことによ
り結晶格子がほぼ破壊されているのに対し1表面より1
00OX以下の領域まではその欠陥の影響が及んでいな
いことが分かる。
Moreover, the solid line in FIG. 3 (&) is a calculated value when Ga is located on a crystal lattice arrangement within the crystal, and shows relatively good agreement with the experimental value. On the other hand, in Figure 3 (b), Ga is Ga
This is a calculated value when the As crystal is distributed almost randomly, and it almost agrees with the experimental value in (b). From this, in the sample used for this measurement, approximately 1
In the 5X region, the crystal lattice is almost destroyed by Ar spucking on the surface, whereas
It can be seen that the influence of the defect does not extend to the region below 00OX.

このように本装置を用いることにより、高真空または超
高真空中でX線定在波法を用い、試料の深さ方向におけ
る注目原子の構造解析が可能となる。
By using this apparatus in this way, it becomes possible to analyze the structure of the target atom in the depth direction of the sample using the X-ray standing wave method in a high vacuum or an ultra-high vacuum.

〔実施例2〕 次に本装置の排気系について説明する。第4図は本排気
系のブロックである。34は試料を設置するための真空
槽、35はターゲ分子ポンプ等のような大気から排気可
能な荒引き排気系(以下荒引き系35と称す)、36は
真空槽34を高真空に引くための高真空無振動排気系(
以下高真空無振動排気系36と称す)、37は試料を回
転させるための回転軸(以下回転軸37と称す)、38
゜39.40は回転軸37において真空槽34を大気か
ら遮断するだめのシール材(以下シール材313.39
.40と称す)、41はシール材38゜39により閉鎖
された空間を排気し、真空槽の真空を保持するためのイ
オンポンプを用いた高真空無振動排気系(以下無振動排
気系4)と称す)、42はシール材39.40により閉
鎖された空間を排気し、真空槽34およびシール材38
. 、? 9に囲まれた空間の真空を保持するための無
振動排気系(以下無振動排気系42と称す)、43は荒
引き系35と真空槽34の間を遮断するための真空パル
プ(以下真空パルプ43と称す)、44はシール材38
およびシール材39に囲まれた部分と荒引き系35との
間を遮断する真空ノ々ルブ44(以下真空パルプ44と
称す)、45はシール材39およびシール材40に囲ま
れた部分と荒引き系35との間を遮断する真空バルブ4
5(以下真空パルプ45と称す)である。本装置を大気
中から排気、立ち上げする場合は以下の手順で行う。
[Example 2] Next, the exhaust system of this device will be explained. Figure 4 shows the block of the main exhaust system. 34 is a vacuum chamber for setting a sample, 35 is a rough evacuation system (hereinafter referred to as rough evacuation system 35) that can exhaust air from the atmosphere, such as a target molecular pump, and 36 is for drawing the vacuum chamber 34 to a high vacuum. High vacuum vibration-free exhaust system (
37 is a rotating shaft for rotating the sample (hereinafter referred to as rotating shaft 37); 38 is a rotating shaft for rotating the sample;
39.40 is a sealing material (hereinafter referred to as sealing material 313.39) that isolates the vacuum chamber 34 from the atmosphere at the rotating shaft 37.
.. 40), 41 is a high vacuum vibrationless exhaust system (hereinafter referred to as vibrationless exhaust system 4) using an ion pump to evacuate the space closed by the sealing material 38 and 39 and maintain the vacuum in the vacuum chamber. ), 42 evacuates the space closed by the sealing material 39, 40, and evacuates the space closed by the vacuum chamber 34 and the sealing material 38.
.. ,? 9 is a non-vibration exhaust system (hereinafter referred to as vibration-free exhaust system 42) for maintaining the vacuum in the space surrounded by 43, a vacuum pulp (hereinafter referred to as vacuum (referred to as pulp 43), 44 is a sealing material 38
and a vacuum knob 44 (hereinafter referred to as vacuum pulp 44) that isolates the area surrounded by the sealing material 39 and the roughing system 35; Vacuum valve 4 that shuts off between the pull system 35
5 (hereinafter referred to as vacuum pulp 45). When evacuating and starting up this equipment from the atmosphere, follow the steps below.

■ 真空バルブ43,44.45を開く。■ Open vacuum valves 43, 44, and 45.

■ 荒引き系35で真空槽34、高真空無振動排気系3
6、回転軸37の差動排気系である無振動排気系41.
42およびシール材3B、39゜40により仕切られた
空間を排気する。
■ Roughing system 35, vacuum chamber 34, high vacuum vibrationless exhaust system 3
6. A non-vibration exhaust system 41 which is a differential exhaust system for the rotating shaft 37.
42 and the sealing material 3B, the space partitioned by 39° 40 is evacuated.

■ 高真空無振動排気系36、無振動排気系41.42
が動作可能となる真空度である1O−6Torr以下と
なったところで、高真空無振動排気系36および無振動
排気系41.42を差動させる。
■ High vacuum vibration-free exhaust system 36, vibration-free exhaust system 41.42
When the degree of vacuum becomes 10-6 Torr or less, which is the level of vacuum that allows operation, the high vacuum vibrationless exhaust system 36 and the vibrationless exhaust system 41, 42 are operated differentially.

■ 引続き真空バルブ43,44.45を閉鎖し、真空
槽34を高真空無振動排気系36で排気するとともに、
回転軸37のシール材313,39゜40の間の空間を
無振動排気系41.42のみで排気する。
■ Continuing to close the vacuum valves 43, 44, and 45, and evacuate the vacuum chamber 34 with the high vacuum vibrationless exhaust system 36,
The space between the sealing materials 313 and 39° 40 of the rotating shaft 37 is evacuated only by vibrationless exhaust systems 41 and 42.

■ 荒引き排気系35を停止し、荒引き系35から真空
バルブ43,44.45までを大気開放する。
(2) Stop the rough evacuation system 35 and open the air from the rough evacuation system 35 to the vacuum valves 43, 44, and 45 to the atmosphere.

以上のように無振動高真空排気系および大気から排気可
能な振動を生じる排気系をくみあわせることにより、高
真空で振動のない真空槽を実現することが可能である。
As described above, by combining a non-vibration high vacuum evacuation system and an evacuation system that generates vibrations that can be evacuated from the atmosphere, it is possible to realize a high vacuum and vibration-free vacuum chamber.

このように本装置tを用いることにより、高真空または
超高真空中でX線定在波法による試料の測定が可能とな
り、従来の方法では検出が困駕であった電子を利用した
深さ方向の構造解析がX線定在波法により可能となる。
In this way, by using this device, it is possible to measure samples using the X-ray standing wave method in high vacuum or ultra-high vacuum. Structural analysis in this direction is possible using the X-ray standing wave method.

〔発明の効果〕 以上説明したように本発明によれば、高真空または超高
真空中での高精度回転を行うことにより、高真空または
超高真空中でもX線定在波の測定が可能という利点があ
り、超格子薄膜やエピタキシャル成長させた薄膜と基板
との界面の構造の解析に利すること犬である。
[Effects of the Invention] As explained above, according to the present invention, X-ray standing waves can be measured even in high vacuum or ultra-high vacuum by performing high-precision rotation in high vacuum or ultra-high vacuum. It has many advantages and is useful for analyzing the structure of superlattice thin films and the interface between epitaxially grown thin films and substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)は本発明の一実施例を示す概略的正面図、
第1図(blは本発明の一実施例を示す概略的側面図、
第2図は本発明に係る回転用駆動軸の一例を示す概略的
断面図、第3図は本発明に係る電子測定利用X線定在波
の一例を示す特性図、第4図は本発明に係る排気系の一
例を示す構成説明図、第5図は従来のX線定在波測定装
置を示す構成説明図である。 J・・・X線源、2・・・平行化用スリット、3・・・
非対称モノクロメータ−4・・・スリット、5・・・試
料、6・・・螢光X線検出用半導体検出器、7・・・ブ
ラッグ(Bragg )反射測定用検出器、8・・・入
射X線強度測定用検出器、9・・・高精度ゴニオメータ
−10・・・真空槽、Jl・・・回転用ゴニオメータ−
12・・・試料、13・・・入射用Ba窓付きフランジ
、14・・・出射用Be窓付きフランジ、15・・・光
電子検出用電子エネルギー検出器、16・・・X線源、
17・・・ブラッグ(Bragg )反射X線測定用シ
ンチレーションカウンター 18・・・真空槽、19・
・・ヘロ−! 、 20・・・真空槽の外壁、21・・
・シール材、22・・・シール材、23・・・シール材
、24・・・差動排気用ダクト、25・・・差動排気用
排気系、26・・・差動排気用ダクト、22・・・差動
排気用排気系、28・・・駆動軸の回転軸受、29・・
・回転用駆動軸、30・・・粗動回転ステージ、31・
・・高精度微動回転ステージ、32・・・試料支持台、
33・・・試料、34・・・真空槽、35・・・荒引き
排気系、36・・・高真空無振動排気系、37・・・回
転軸、stt・・・シール材、39・・・シール材、4
0・・・シール材、41・・・無振動排気系、42・・
・無振動排気系、43・・・真空パルプ、44・・・真
空パルプ、45・・・真空パルプ。
FIG. 1 (,) is a schematic front view showing an embodiment of the present invention;
FIG. 1 (bl is a schematic side view showing one embodiment of the present invention,
FIG. 2 is a schematic sectional view showing an example of a rotating drive shaft according to the present invention, FIG. 3 is a characteristic diagram showing an example of an X-ray standing wave using electronic measurement according to the present invention, and FIG. 4 is a diagram showing an example of the present invention. FIG. 5 is an explanatory diagram showing an example of the configuration of an exhaust system related to the conventional X-ray standing wave measuring device. J... X-ray source, 2... Parallelizing slit, 3...
Asymmetric monochromator - 4... Slit, 5... Sample, 6... Semiconductor detector for fluorescence X-ray detection, 7... Bragg detector for reflection measurement, 8... Incident X Line intensity measurement detector, 9...high precision goniometer 10...vacuum chamber, Jl...rotating goniometer
12... Sample, 13... Flange with Ba window for incidence, 14... Flange with Be window for exit, 15... Electron energy detector for photoelectron detection, 16... X-ray source,
17... Bragg scintillation counter for measuring reflected X-rays 18... Vacuum chamber, 19.
...Hero! , 20... Outer wall of the vacuum chamber, 21...
- Seal material, 22... Seal material, 23... Seal material, 24... Duct for differential exhaust, 25... Exhaust system for differential exhaust, 26... Duct for differential exhaust, 22 ...Exhaust system for differential exhaust, 28...Rotation bearing of drive shaft, 29...
・Rotation drive shaft, 30...coarse rotation stage, 31・
...High-precision fine rotation stage, 32...sample support stand,
33... Sample, 34... Vacuum chamber, 35... Rough evacuation system, 36... High vacuum non-vibration exhaust system, 37... Rotating shaft, stt... Sealing material, 39...・Seal material, 4
0...Sealing material, 41...Vibration-free exhaust system, 42...
- Vibration-free exhaust system, 43... Vacuum pulp, 44... Vacuum pulp, 45... Vacuum pulp.

Claims (2)

【特許請求の範囲】[Claims] (1)真空槽、および2枚以上のシールおよび排気系か
らなる差動排気機構を備えた回転軸、およびサインバー
等を利用した微小回転機構、および超高真空中において
回転軸に試料を取り付けることが可能な試料支持台、お
よび試料より放出される電子の測定が可能な電子検出器
、および大気から超高真空まで排気可能な排気系、およ
び真空と大気を分離することが可能なX線導入口および
X線出射口、および大気中でX線の検出が可能な検出器
からなる装置において、差動排気機構を備えた回転軸に
微小回転機構を接続することにより、超高真空中で試料
を高精度に回転するとともに試料から放出される電子を
電子検出器により測定することを特徴とする光電子利用
X線定在波測定装置。
(1) A vacuum chamber, a rotating shaft equipped with a differential pumping mechanism consisting of two or more seals and an exhaust system, a minute rotating mechanism using a sine bar, etc., and a sample attached to the rotating shaft in ultra-high vacuum. an electron detector that can measure electrons emitted from the sample, an exhaust system that can exhaust from the atmosphere to ultra-high vacuum, and an X-ray system that can separate vacuum and atmosphere. In a device consisting of an inlet, an X-ray exit port, and a detector capable of detecting X-rays in the atmosphere, by connecting a minute rotation mechanism to a rotating shaft equipped with a differential pumping mechanism, it is possible to detect X-rays in an ultra-high vacuum. A photoelectron-based X-ray standing wave measurement device characterized by rotating a sample with high precision and measuring electrons emitted from the sample using an electron detector.
(2)ターボ分子ポンプ等の大気から排気可能な荒引き
排気系およびイオンポンプ等振動の無い高真空用排気系
から成り、真空槽の大気からの荒引き排気系を用いると
ともに高真空において振動の無い高真空用排気系を用い
ることを特徴とした請求項1記載の光電子利用X線定在
波測定装置。
(2) Consists of a rough evacuation system that can exhaust air from the atmosphere, such as a turbo molecular pump, and a vibration-free high vacuum evacuation system, such as an ion pump. 2. The photoelectron-based X-ray standing wave measuring device according to claim 1, characterized in that a high vacuum evacuation system is used.
JP63323046A 1988-12-21 1988-12-21 Measuring apparatus for x-ray standing wave using photoelectron Pending JPH02168149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323046A JPH02168149A (en) 1988-12-21 1988-12-21 Measuring apparatus for x-ray standing wave using photoelectron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323046A JPH02168149A (en) 1988-12-21 1988-12-21 Measuring apparatus for x-ray standing wave using photoelectron

Publications (1)

Publication Number Publication Date
JPH02168149A true JPH02168149A (en) 1990-06-28

Family

ID=18150503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323046A Pending JPH02168149A (en) 1988-12-21 1988-12-21 Measuring apparatus for x-ray standing wave using photoelectron

Country Status (1)

Country Link
JP (1) JPH02168149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046961A1 (en) * 1999-12-20 2001-06-28 Lucent Technologies, Inc. X-ray system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046961A1 (en) * 1999-12-20 2001-06-28 Lucent Technologies, Inc. X-ray system and method
US6606371B2 (en) 1999-12-20 2003-08-12 Agere Systems Inc. X-ray system
US6625250B2 (en) 1999-12-20 2003-09-23 Agere Systems Inc. Optical structures and methods for x-ray applications

Similar Documents

Publication Publication Date Title
US4169228A (en) X-ray analyzer for testing layered structures
US5594246A (en) Method and apparatus for x-ray analyses
Ichikawa et al. Micro-Probe Reflection High-Energy Electron Diffraction Technique. I. Determination of Crystallographic Orientations of Polycrystal-Silicon Surfaces
JPH02168149A (en) Measuring apparatus for x-ray standing wave using photoelectron
US20040065844A1 (en) Electron diffraction system for use in production environment and for high pressure deposition techniques
JPH0714874Y2 (en) X-ray standing wave measuring device for vacuum
JP3525674B2 (en) Apparatus and method for measuring work function or ionization potential
JPH0712763A (en) Surface analysis method and surface analysis device
JP2728627B2 (en) Wavelength dispersive X-ray spectrometer
JP3198127B2 (en) X-ray spectrometer
US11955308B1 (en) Water cooled, air bearing based rotating anode x-ray illumination source
JP3004388B2 (en) Reflection high-speed electron diffraction / soft X-ray emission spectrometer
JPH0798285A (en) X-ray evaluation apparatus
JP2906606B2 (en) Qualitative analysis of thin film samples
Malhotra et al. An in situ/ex situ X-ray analysis system for thin sputtered films
Fuchs X‐ray spectrometer attachment for Elmiskop I electron microscope
JPH0792112A (en) X-ray evaluation system
CA2133288A1 (en) Ion scattering spectroscopy and apparatus for the same
JP2779525B2 (en) Method for analyzing elemental composition of film surface during vacuum film formation and vacuum film formation method
JPH06160312A (en) X-ray evaluation apparatus
JPH05332958A (en) X-ray diffraction apparatus and position-sensitive gas-filled x-ray counter used for it
JP2507484B2 (en) Polarized total reflection X-ray fluorescence structure analyzer
JPH0361840A (en) Measuring apparatus for x-ray absorption spectrum
JPH0682400A (en) Total reflection x-ray fluorescence analyser
JP2002116159A (en) X-ray structure analyzer for thin-film process