JPH02167868A - Cellular ceramics, dried body for producing the same and production thereof - Google Patents

Cellular ceramics, dried body for producing the same and production thereof

Info

Publication number
JPH02167868A
JPH02167868A JP24310589A JP24310589A JPH02167868A JP H02167868 A JPH02167868 A JP H02167868A JP 24310589 A JP24310589 A JP 24310589A JP 24310589 A JP24310589 A JP 24310589A JP H02167868 A JPH02167868 A JP H02167868A
Authority
JP
Japan
Prior art keywords
slurry
raw material
macropores
air bubbles
fluid gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24310589A
Other languages
Japanese (ja)
Other versions
JP3058174B2 (en
Inventor
Michiko Kawakami
川上 道子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP1243105A priority Critical patent/JP3058174B2/en
Publication of JPH02167868A publication Critical patent/JPH02167868A/en
Application granted granted Critical
Publication of JP3058174B2 publication Critical patent/JP3058174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain ceramics, having macropores of a uniform specific diameter and three-dimensional communicating pores and excellent in strength and cutting properties by thickening or gelatinizing a slurry or fluid gel containing ceramic raw material powder, a high polymer substance and bubbles and holding the pores therein. CONSTITUTION:The above-mentioned cellular ceramics have macropores of 20-2000mu pore diameter and three-dimensional communicating pores consisting of interstices between particles. The afore-mentioned ceramics are produced by mixing ceramic raw material powder with a dispersion or fluid gel of a high polymer substance, stirring the resultant mixture, including air therein, providing a slurry containing spherical bubbles, casting the slurry, thickening or gelatinizing the slurry, holding the bubbles, drying the obtained slurry to afford a high-strength dried body having spherical macropores without causing cracking, etc., due to nearly isotropic shrinkage, as necessary, forming and processing the dried body and then calcining the resultant compact.

Description

【発明の詳細な説明】 「利用分野」 本発明は、多孔質セラミックス及び該多孔質セラミック
スの製造用乾燥体並びにそれらの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Application" The present invention relates to porous ceramics, dried bodies for producing the porous ceramics, and methods for producing them.

「従来技術及びその問題点」 湿式法で多孔質セラミックスを製造する方法としては、
従来、発泡法及び熱分解性ビーズを添加する方法が知ら
れている。これらのうち、発泡法は、セラミックス原料
粉体のスラリーに過酸化水素水等の発泡剤を加えて乾燥
・発泡させて多孔質化する方法であるが、気孔径及び気
孔率の制御が困難であるという問題点があった。他方、
熱分解性ビーズを添加する方法は、スラリーと有機高分
子物質のビーズを混練し、底形した後、加熱により高分
子物質を焼失させ、多孔質化させる方法である。しかし
ながら、乾燥の際、ビーズは収縮しないため、歪みが発
生する他、多量にビーズを使用するため、脱脂が困難で
あるという問題点があった。
"Prior art and its problems" As a method for producing porous ceramics by a wet method,
Conventionally, foaming methods and methods of adding pyrolyzable beads are known. Among these, the foaming method is a method in which a foaming agent such as hydrogen peroxide solution is added to a slurry of ceramic raw material powder, and the slurry is dried and foamed to make it porous, but it is difficult to control the pore size and porosity. There was a problem. On the other hand,
The method of adding pyrolyzable beads is to knead the slurry and beads of organic polymeric material, form a bottom shape, and then burn out the polymeric material by heating to make it porous. However, since the beads do not shrink during drying, distortion occurs, and since a large amount of beads are used, there are problems in that degreasing is difficult.

「発明の目的」 本発明は、均一なマクロポアと3次元に連通したマイク
ロポアを持ち、優れた強度及び切削性を有する多孔質セ
ラミックス及びこのような多孔質セラミックスを乾燥工
程において割れ等を生じることなく製造しうる方法を提
供することを目的とする。
``Object of the Invention'' The present invention provides a porous ceramic having uniform macropores and three-dimensionally communicating micropores, and having excellent strength and machinability, and a porous ceramic that does not cause cracking or the like in the drying process. The purpose is to provide a method that can be manufactured without any problems.

「発明の構成」 本発明に係る多孔質セラミックスは、孔径20〜200
0μmのマクロポアと粒子間隙から成る3次元連通孔と
を有するものである。
"Structure of the Invention" The porous ceramic according to the present invention has a pore diameter of 20 to 200.
It has macropores of 0 μm and three-dimensional communicating pores consisting of particle gaps.

本発明による多孔質セラ旦ツクスの製造用乾燥体は、セ
ラミックス原料粉体と高分子物質と気泡とを含むスラリ
ー又は流動性ゲルを注型し、増粘又はゲル化して気泡を
保持させ、乾燥させて得られたことを特徴とする。
The dried body for producing porous ceramics according to the present invention is obtained by casting a slurry or fluid gel containing ceramic raw material powder, a polymeric substance, and air bubbles, thickening or gelling it to retain air bubbles, and drying it. It is characterized by being obtained by

また、本発明による乾燥体の製造方法は、セラミックス
原料粉体と高分子物質と気泡とを含むスラリー又は流動
性ゲルを注型し、増粘又はゲル化して気泡を保持させ、
乾燥させることを特徴とする。
In addition, the method for producing a dry body according to the present invention includes casting a slurry or fluid gel containing ceramic raw material powder, a polymeric substance, and air bubbles, thickening or gelling it to retain air bubbles,
Characterized by drying.

本発明によれば、上記の乾燥体を、必要に応じて成形加
工した後、焼成することによって本発明の多孔質セラミ
ックスを製造することができる。
According to the present invention, the porous ceramic of the present invention can be manufactured by molding the dried body as required and then firing it.

本発明の方法において、噴霧熱乾燥により得られた平均
粒径約10〜100μmの球状二次粒子をさらにジェッ
トミル等、適当な手段により表面を削る程度、すなわち
、粒径0.1〜2μm程度の不定形微粉体が1〜10重
景%、好ましくは3〜7重景%発生する程度に粉砕して
用いるか又は微粉体状態の原料粉体を添加して用いるこ
とが好ましい、この場合には、微粉体が造粒二次粒子同
士の結合剤として作用するため、より強度の高いセラミ
ックスが得られる。微粉体を添加する場合には、その添
加量は、−aに1〜10重景%で充分であり、好ましく
は3〜7重量%とする。
In the method of the present invention, the surface of the spherical secondary particles having an average particle size of about 10 to 100 μm obtained by spray heat drying is further polished by a suitable means such as a jet mill, that is, the particle size is about 0.1 to 2 μm. It is preferable to use the powder by pulverizing it to such an extent that 1 to 10%, preferably 3 to 7%, of amorphous fine powder is generated, or by adding raw material powder in a fine powder state. In this case, Since the fine powder acts as a binder between the granulated secondary particles, ceramics with higher strength can be obtained. When fine powder is added, it is sufficient to add 1 to 10% by weight of -a, preferably 3 to 7% by weight.

本発明の方法においては、このようにして調製したセラ
ミックス原料の粒状粉を高分子物質の分散液又は流動性
ゲルと混合する。
In the method of the present invention, the granular powder of the ceramic raw material thus prepared is mixed with a dispersion liquid or fluid gel of a polymeric substance.

本明細書において、高分子物質の「分散液」とは、高分
子物質の真の溶液、コロイド溶液及び懸濁液を包括して
意味するものとする。
As used herein, the term "dispersion" of a polymeric substance is meant to include true solutions, colloidal solutions, and suspensions of the polymeric substance.

メチルセルロースのようなある種の高分子物質の分散液
を加熱すると、温度上昇に伴って増粘し、ある温度で可
逆的にゲル化する。また、ポリビニルアルコールのよう
に、硼酸あるいは硼砂を添加するなど、何らかの添加物
を加えたときに、可逆的にゲル化するものもある。いず
れにしても、本発明の方法においては、ゲル化する前の
分散液又は完全にゲル化して固化する前の流動性を保有
する流動性ゲルの状態でセラミックス原料の゛粒状粉と
の混合を行う。
When a dispersion of a certain type of polymeric substance, such as methylcellulose, is heated, its viscosity increases as the temperature rises, and it reversibly gels at a certain temperature. Furthermore, some materials, such as polyvinyl alcohol, reversibly gel when some additive is added, such as boric acid or borax. In any case, in the method of the present invention, the ceramic raw material is mixed with the granular powder in the state of a dispersion before gelling or a fluid gel having fluidity before completely gelling and solidifying. conduct.

このような高分子物質の分散液又は流動性ゲルにセラミ
ックス原料の粒状粉を混合し、攪拌して空気を抱き込ま
せると、球形の気泡を含んだスラリーとなる。これを型
に流し込み、ゲル化して気泡を保持させ、乾燥させると
、はぼ等方的に収縮するため、割れ等を生ずることなく
、球形のマクロポアを有する強度の高い乾燥体となる。
When granular powder of a ceramic raw material is mixed with such a dispersion or fluid gel of a polymeric substance and stirred to incorporate air, a slurry containing spherical air bubbles is obtained. When this is poured into a mold, gelled to retain air bubbles, and dried, it contracts almost isotropically, resulting in a highly strong dried product with spherical macropores without cracking.

また、ゲルを生じない高分子物質の場合は、その分散液
とセラミックス原料の粒状粉とを混合し、撹拌によって
その分散液内に気泡を抱き込ませ、これを型に流し込み
、増粘した後、乾燥すると、上記と同様の乾燥体を得る
ことができる。
In addition, in the case of polymeric substances that do not form gels, the dispersion liquid is mixed with granular powder of the ceramic raw material, air bubbles are incorporated into the dispersion liquid by stirring, the mixture is poured into a mold, and the mixture is thickened. When dried, a dried product similar to the above can be obtained.

さらに、本発明の方法においては、高分子物質の分散液
又は流動性ゲルを予め攪拌して、空気を抱き込ませた後
に、セラミックス原料の粒状粉と混合してもよく、また
、粉状の高分子物質とセラミックス原料の粒状粉とを混
合した後に分散媒を加えてスラリーとし、攪拌して空気
を抱き込ませてもよい。
Furthermore, in the method of the present invention, the dispersion or fluid gel of the polymer substance may be stirred in advance to incorporate air, and then mixed with the granular powder of the ceramic raw material. After mixing the polymeric substance and the granular powder of the ceramic raw material, a dispersion medium may be added to form a slurry, and the slurry may be stirred to incorporate air.

本発明の方法に使用する高分子物質は、−iには、セラ
ミックス原料の粒状粉の分散媒として、水が使用される
ので、水溶性であることが好ましいが、他の分散媒を用
いる場合には、その分散媒に溶解するものであってもよ
い。使用しうる高分子物質としては、例えばメチルセル
ロース、カルボキシメチルセルロース等のセルロース誘
導体、カードラン等の多IJ! I、ポリビニルアルコ
ール、ポリアクリル酸、ポリアクリルアミド、ポリビニ
ルピロリドン等の合成重合体などが挙げられる。
The polymeric substance used in the method of the present invention is preferably water-soluble because water is used as a dispersion medium for the granular powder of the ceramic raw material, but when other dispersion medium is used. may be dissolved in the dispersion medium. Examples of polymeric substances that can be used include cellulose derivatives such as methylcellulose and carboxymethylcellulose, and multi-IJ! I, synthetic polymers such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, and polyvinylpyrrolidone.

高分子物質の配合量は、使用する高分子物質の種類によ
って変動するが、通常、スラリー又は流動性ゲル中に0
.1〜10重星%含むように配合するのが好ましい。さ
らに具体的には、メチルセルロースの場合には、0.2
〜2重旦%、好ましくは0.5〜1重量%とし、ポリビ
ニルアルコールの場合には、5〜10m1%が好ましい
。高分子物質が多すぎると、焼成の前に脱脂工程が必要
となるし、焼結性も低下する。また、少なすぎると、ス
ラリー中の気泡が保持されない。
The amount of the polymeric substance blended varies depending on the type of polymeric substance used, but usually 0% is added to the slurry or fluid gel.
.. It is preferable to mix it so that it contains 1 to 10% of double stars. More specifically, in the case of methylcellulose, 0.2
~2% by weight, preferably 0.5-1% by weight, and in the case of polyvinyl alcohol, preferably 5-10ml%. If there is too much polymeric material, a degreasing step will be required before firing and sinterability will also deteriorate. Moreover, if it is too small, air bubbles in the slurry will not be retained.

本発明の方法によって作成された多孔質の乾燥体は、セ
ラミックスの粒子同士を高分子物質が糊付けした状態で
あるため、切削加工に耐える強度を有する。したがって
、本発明の方法おいては、仮焼成を行うことなく、乾燥
体のまま切削加工することができる。
The porous dried body produced by the method of the present invention is in a state in which ceramic particles are glued together with a polymer substance, and therefore has strength to withstand cutting. Therefore, in the method of the present invention, the dry product can be cut without performing temporary firing.

本発明の方法を実施するに場合に、殊に、内壁に可撓性
耐水性膜を張った型を用いて注型を行うと、乾燥時のセ
ラミックスの収縮に伴って膜が型から剥離するので、型
と接する面でのセラミックスの崩れや内部での割れを起
こさず、優れた乾燥体が得られる。
When carrying out the method of the present invention, especially when casting is performed using a mold whose inner wall is covered with a flexible water-resistant film, the film peels off from the mold as the ceramic shrinks during drying. Therefore, an excellent dried product can be obtained without causing the ceramic to crumble on the surface in contact with the mold or crack inside.

また、流動性ゲル又はスラリー中に包含される気泡の大
きさ及び量は、撹拌によってコントロールすることがで
き、容易に3 nun以下の気孔径のものに揃えること
もできる。
Further, the size and amount of air bubbles contained in the fluid gel or slurry can be controlled by stirring, and can be easily adjusted to a pore size of 3 nun or less.

乾燥体を加工した成形棒は、そのまま焼成することがで
きる。焼結体は、上記の気泡による球形のマクロポアの
他に、原料粒子の粒子間隙による3次元に連通したマイ
クロポアを含むものとなる。
The shaped rod obtained by processing the dried body can be fired as it is. In addition to the spherical macropores formed by the above-mentioned air bubbles, the sintered body contains three-dimensionally communicating micropores formed by the gaps between the raw material particles.

また、気泡(封入空気)によるマクロポアは40%未満
の気孔率では独立気孔であり、連通性を有しないが、マ
イクロポアは連通孔であるから、粘性の低い液体はゆっ
くりと通過することができる。
In addition, macropores made of air bubbles (enclosed air) are independent pores with a porosity of less than 40% and do not have continuity, but micropores are continuous pores, so low viscosity liquids can pass through them slowly. .

気孔率が40%以上であると、マクロポアは連通孔とな
る。
When the porosity is 40% or more, the macropores become communicating pores.

本発明の方法は、リン酸カルシウム系、アルミナ系、シ
リカ系、ジルコニア系など、各種のセラ旦ツクスに適用
することができ、人工生体材料、液体クロマトグラフィ
ー用充填剤、触媒1旦体、各種の電気・電子材料、原子
炉材料、セラミック発熱体など様々な製品の製造に適用
することができる。
The method of the present invention can be applied to various types of ceramics such as calcium phosphate, alumina, silica, and zirconia, as well as artificial biomaterials, liquid chromatography packing materials, single catalysts, and various electrical - Can be applied to the manufacture of various products such as electronic materials, nuclear reactor materials, and ceramic heating elements.

「発明の実施例」 次に、実施例により本発明、をさらに詳しく説明するが
、本発明はこれらの実施例に限定されるものではない。
"Examples of the Invention" Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 500 mlのビーカーに水150gを入れ、メチルセ
ルロース(以下MCと記す、和光純薬工業■製、分子量
:2%水溶液として20’Cで測定した粘度4000c
ps)2.7 gを添加し、ハントミキサーで3分間撹
拌してメチルセルロースの水溶液を調製した。このビー
カーを60″Cの恒温槽に入れて撹拌しながら、40°
Cまで昇温し、さらに30秒間撹拌し、気泡を含む流動
性ゲルとした。
Example 1 Put 150 g of water into a 500 ml beaker and add methyl cellulose (hereinafter referred to as MC, manufactured by Wako Pure Chemical Industries, Ltd., molecular weight: 2% aqueous solution with a viscosity of 4000 c measured at 20'C).
ps) 2.7 g was added and stirred for 3 minutes with a Hunt mixer to prepare an aqueous solution of methylcellulose. Place this beaker in a constant temperature bath at 60"C and heat it at 40°C while stirring.
The mixture was heated to C and further stirred for 30 seconds to form a fluid gel containing air bubbles.

他方、公知の湿式合成法により製造したハイドロキシア
パタイトスラリーを噴霧乾燥することにより、平均粒径
12μmに造粒し、さらにジェットミルで粉砕して、平
均粒径10μmの球状粉と平均粒径1μmの微粉とから
なるハイドロキシアパタイト粉体を調製した。
On the other hand, a hydroxyapatite slurry produced by a known wet synthesis method was granulated to an average particle size of 12 μm by spray drying, and further pulverized with a jet mill to obtain spherical powder with an average particle size of 10 μm and a spherical powder with an average particle size of 1 μm. Hydroxyapatite powder consisting of fine powder was prepared.

上記ビーカーを恒温槽の外に取り出し、調製した粒状ハ
イドロキシアバタイl−50gを少量ずつ徐々に混合し
、粘度を測定した後、200 mlのガラスビーカーに
流し入れた。このビーカーを90°Cの乾燥機に24時
間入れてゲル化及び乾燥させ、ハンドソーで41.9X
30X10.4mmの直方体に切り出し、これを下記の
焼成パターンで焼成した。
The beaker was taken out of the thermostatic bath, 50 g of the prepared granular hydroxyabatai was gradually mixed little by little, the viscosity was measured, and the mixture was poured into a 200 ml glass beaker. Place this beaker in a dryer at 90°C for 24 hours to gel and dry it, then use a hand saw to
It was cut into a rectangular parallelepiped of 30 x 10.4 mm, and fired in the following firing pattern.

室温から50’C/時の昇温速度で600 ’Cまで昇
温し、次に100″C/時の昇温速度で1200°Cま
で昇温し、この温度で4時間焼成した後、50°C/時
の降温速度で600℃まで冷まし、この温度に4時間保
持した後、100℃/時の降温速度で室温まで冷ました
。得られた焼結体の寸法は28.5 X 20.5 X
 7.1 mtaであった。
The temperature was raised from room temperature to 600'C at a heating rate of 50'C/hour, then the temperature was raised to 1200°C at a heating rate of 100'C/hour, and after baking at this temperature for 4 hours, It was cooled to 600°C at a cooling rate of °C/hour, held at this temperature for 4 hours, and then cooled to room temperature at a cooling rate of 100°C/hour.The dimensions of the obtained sintered body were 28.5 x 20. 5 X
It was 7.1 mta.

この実験で、別途、メチルセルロース水溶液を45°C
まで昇温したもの及び50°Cまで昇温したものを用い
て、他は全く同様にして乾燥及び焼成を行い、それぞれ
焼結体を製造した。メチルセルロース水溶液を45°C
まで昇温して用いた場合に得られた乾燥直方体の寸法は
、44.7 X 29.3 X10.7mm、焼結体の
寸法は30.5 X 20.5 X 7.2飾であった
。メチルセルロース水溶液を50°Cまで昇温して用い
た場合に得られた乾燥直方体の寸法は、44.7 X 
30.3 X 10.4備、焼結体の寸法は30. I
 X 20.9 X 7.2 wmであった。
In this experiment, the methylcellulose aqueous solution was heated to 45°C.
Drying and firing were carried out in exactly the same manner except for those heated to 50°C and those heated to 50°C to produce sintered bodies. Methylcellulose aqueous solution at 45°C
The dimensions of the dry rectangular parallelepiped obtained when the temperature was raised to . The dimensions of the dry rectangular parallelepiped obtained when a methylcellulose aqueous solution was heated to 50°C were 44.7
30.3 x 10.4, the dimensions of the sintered body are 30. I
It was 20.9 x 7.2 wm.

得られた焼結体の気孔率及び3点曲げ強度を測定し、結
果を下記の第1表に示す。
The porosity and three-point bending strength of the obtained sintered body were measured, and the results are shown in Table 1 below.

第1表 実施例2 1000Idのビーカーに水450gと実施例1に使用
したのと同じMC8,1gを入れ、ハンドミキサーで攪
拌してMCを充分に溶解させると共に起泡させた。メレ
ンゲ状になったところで、実施例1で調製したハイドロ
キシアパタイト粉体を50g加えてよく混合し、均一な
スラリーとして、200m1のビーカー4個に流し入れ
、90°Cの乾燥機に3時間穴れてスラリーをゲル化さ
せた。さらに、乾燥機に48時時間穴て乾燥した。乾燥
後、実施例1と同様の操作を加えて、44.6 X 2
9.8X10.3anの乾燥直方体から30. I X
 20. I X7、2 amの焼結体が得られた。こ
の焼結体の気孔率と3点曲げ強度を測定した。
Table 1 Example 2 450 g of water and 8.1 g of the same MC used in Example 1 were placed in a 1000 Id beaker and stirred with a hand mixer to sufficiently dissolve the MC and foam it. When it became meringue-like, 50g of the hydroxyapatite powder prepared in Example 1 was added and mixed well.The slurry was poured into four 200ml beakers and placed in a dryer at 90°C for 3 hours. The slurry was gelled. Furthermore, it was dried in a dryer for 48 hours. After drying, the same operation as in Example 1 was added to obtain 44.6 x 2
30. IX
20. A sintered body of I x7.2 am was obtained. The porosity and three-point bending strength of this sintered body were measured.

平均気孔率は57.2%、平均曲げ強度は44.2kg
 / cIaであった。
Average porosity is 57.2%, average bending strength is 44.2kg
/ cIa.

実施例3 カルボキシメチルセルロース(Serva Peinb
io−chemica GmbH& Co、製、以下C
MCと記す)2gとイツトリア3モル%固溶部分安定化
ジルコニアの球状粉末100gをよく混ぜ合わせ、水1
00gを加えてハンドくキサ−で良く攪拌して気泡を含
んだジルコニアセラ5ツクスのスラリーを作り、300
成のビーカーに流し込み、90°Cの乾燥機に24時時
間穴て増粘・乾燥した。乾燥体をハンドソーを用いて4
4.6 X 30.6 X 8.7 mmの直方体に切
り出し、昇温速度300″C/分で1550°Cまで温
度を上げ、2時間保持した後、200℃/分の速度で室
温まで下げる方法で焼威し、気孔率と3点曲げ強度を測
定した。
Example 3 Carboxymethyl cellulose (Serva Peinb)
Manufactured by io-chemica GmbH & Co, hereinafter C
(denoted as MC) and 100 g of spherical powder of partially stabilized zirconia with 3 mol% ittria were mixed well, and 1 g of water was added.
Add 00g and stir well with a hand mixer to make a slurry of zirconia ceramics containing air bubbles.
The mixture was poured into a plastic beaker and placed in a dryer at 90°C for 24 hours to thicken and dry. 4. Dried body using hand saw
Cut into a rectangular parallelepiped of 4.6 x 30.6 x 8.7 mm, raise the temperature to 1550°C at a heating rate of 300''C/min, hold for 2 hours, and then lower to room temperature at a rate of 200°C/min. The porosity and 3-point bending strength were measured by firing method.

得られたセラミックスは連通性のある多孔体であり、そ
の平均気孔率は43.8.%、平均曲げ強度は688 
kg/cjであった。焼結体の寸法は30.6X21X
6.1mであった。
The obtained ceramic is a porous body with a continuous structure, and its average porosity is 43.8. %, average bending strength is 688
kg/cj. The dimensions of the sintered body are 30.6X21X
It was 6.1m.

実施例4 ポリビニルアルコール(和光純薬工業■製、重合度20
00、以下、PVAと記す)の7%水溶液150gと硼
酸の5%水溶液100gを別々の容器に入れて80℃の
水浴で加熱し、両者が70℃以上の温度に達したら、攪
拌しながら混合し、攪拌しながら冷ました。溶液が気泡
を含んだ流動性ゲルとなり、やや白濁した時点で攪拌を
やめて実施例1で調製したハイドロキシアパタイト粉体
120gと混合した後、300 mlのビーカーに入れ
、50°Cの乾燥機に24時時間穴て乾燥してゲル化し
た後、90℃の乾燥機にさらに24時時間穴て乾燥し、
46. I X 31.5 X 11.7 mの乾燥直
方体を作製し、加工・脱脂・焼成を実施例1と同様に行
い、平均気孔率54.1%、平均曲げ強度41kg/a
の球形気孔を有する多孔体を得た。この焼結体の寸法は
32.2 X 22.7 X 7.8 m1Ilであっ
た。
Example 4 Polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., polymerization degree 20)
00, hereinafter referred to as PVA) and 100 g of a 5% aqueous solution of boric acid are placed in separate containers and heated in an 80°C water bath. When both reach a temperature of 70°C or higher, mix while stirring. and cooled while stirring. When the solution became a fluid gel containing air bubbles and became slightly cloudy, stirring was stopped and the mixture was mixed with 120 g of the hydroxyapatite powder prepared in Example 1. The mixture was placed in a 300 ml beaker and placed in a dryer at 50°C for 24 hours. After drying for several hours to form a gel, dry it in a dryer at 90°C for another 24 hours.
46. A dry rectangular parallelepiped measuring I x 31.5 x 11.7 m was prepared and processed, degreased, and fired in the same manner as in Example 1, and the average porosity was 54.1% and the average bending strength was 41 kg/a.
A porous body with spherical pores was obtained. The dimensions of this sintered body were 32.2 x 22.7 x 7.8 ml.

実施例5 湿式法によって合成されたハイドロキシアパタイトスラ
リーを噴霧乾燥することにより平均粒径12μmに造粒
した。このようにしζ得た球状のハイドロキシアパタイ
ト粉末の一部をボールミルで粉砕して平均粒径1μmの
微粉を作った。
Example 5 A hydroxyapatite slurry synthesized by a wet method was granulated to an average particle size of 12 μm by spray drying. A part of the spherical hydroxyapatite powder thus obtained was ground in a ball mill to produce a fine powder with an average particle size of 1 μm.

水150gに対してMC2gを加えて攪拌し、溶解させ
ると共に気泡を含んだ水溶液とした。これに上記の平均
粒径12μmの粉末45gと微粉5gを加えてよく混合
した。
2 g of MC was added to 150 g of water and stirred to dissolve and form an aqueous solution containing bubbles. 45 g of the above powder having an average particle size of 12 μm and 5 g of fine powder were added to this and mixed well.

300 mlのビーカーに流し込んでゲル化させ、さら
に80°Cの乾燥機に36時間入れてゲル化・乾燥した
。得られた4 4.8 X 29.9 X 10.3 
mmの乾燥直方体から実施例1と同様に操作して30.
5X 20.4 X 7.3 mの焼結体を得た。
The mixture was poured into a 300 ml beaker to gel, and then placed in a dryer at 80°C for 36 hours to gel and dry. Obtained 4 4.8 x 29.9 x 10.3
A dry rectangular parallelepiped of 30 mm in diameter was prepared in the same manner as in Example 1.
A sintered body measuring 5×20.4×7.3 m was obtained.

この焼結体の平均気孔率は57.2%、平均曲げ強度は
48.2 kg/c4であった。
This sintered body had an average porosity of 57.2% and an average bending strength of 48.2 kg/c4.

実施例6 メチルセルロース1.5gを水100g中に溶解させ、
ハンドミキサーで泡立て、共沈法により作製したイツト
リア3モル%固溶部分安定化ジルコニアを9別し、乾燥
して得た粉体を50g加えてさらに攪拌し、200 m
ftのガラスビーカーに流し入れ、80″Cの乾燥機に
24時間入れてゲル化・乾燥後、実施例3と同、し条件
で加工、焼威し、気孔率58.2%、平均曲げ強度32
1.7 kg/ c+flの多孔質ジルコニアセラミッ
クスを得た。
Example 6 1.5 g of methylcellulose was dissolved in 100 g of water,
Whisk with a hand mixer, separate 3 mol% solid solution partially stabilized zirconia of Ittria prepared by coprecipitation method into 9 parts, add 50 g of the dried powder, stir further, and mix 200 m
ft glass beaker, placed in a dryer at 80''C for 24 hours to gel and dry, processed and burned under the same conditions as Example 3, porosity 58.2%, average bending strength 32
Porous zirconia ceramics weighing 1.7 kg/c+fl was obtained.

「発明の効果」 本発明による多孔質セラミックスは、均一なマクロポア
と3次元連通孔とを持ち、優れた強度及び切削性を有し
、人工生体材料、液体クロマトグラフィー用充填剤、触
媒担体、各種の電気・電子材料、原子炉材料、セラミッ
ク発熱体など様々な製品の材料として有用である。
"Effects of the Invention" The porous ceramics according to the present invention have uniform macropores and three-dimensional communicating pores, and have excellent strength and machinability, and can be used as artificial biomaterials, fillers for liquid chromatography, catalyst supports, etc. It is useful as a material for a variety of products, including electrical and electronic materials, nuclear reactor materials, and ceramic heating elements.

本発明の方法によれば、乾燥の際の収縮がほぼ等方的に
進行するため、乾燥工程で割れ等を生じることなく、容
易に多孔質セラミックスを製造することができる。
According to the method of the present invention, shrinkage during drying proceeds almost isotropically, so porous ceramics can be easily produced without cracking or the like occurring during the drying process.

また、本発明の方法において、流動性ゲル又はスラリー
中に包含される気泡の大きさ及び量は、撹拌によってコ
ントロールすることができ、容易に3mm以下の気孔径
のマクロポアに揃えることができ、例えば1mm以下の
気孔径のマクロポアを有する比較的?!1雑な形状のも
のを作成することができる。
In addition, in the method of the present invention, the size and amount of bubbles contained in the fluid gel or slurry can be controlled by stirring, and can be easily aligned to macropores with a pore diameter of 3 mm or less, for example. Comparatively with macropores with a pore diameter of 1 mm or less? ! 1. You can create objects with rough shapes.

さらに、乾燥体は、セラミックスの粒子同士を高分子物
質が糊付けした状態であるため、切削加工に耐える強度
を有し、仮焼成を行うことなく、乾燥体のまま切削加工
することができる。
Furthermore, since the dried body is in a state in which ceramic particles are glued together with a polymer substance, it has strength to withstand cutting, and can be cut as it is without pre-firing.

本発明において、セラミックス原料粉体の二次粒子とと
もにその微粉体を存在させることによって、強度の一層
高いセラミックスが得られる。
In the present invention, ceramics with even higher strength can be obtained by allowing the fine powder to exist together with the secondary particles of the ceramic raw material powder.

特許出願人  旭光学工業株式会社Patent applicant: Asahi Optical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 1、孔径20〜2000μmのマクロポアと粒子間隙か
ら成る3次元連通孔とを有する多孔質セラミックス。 2、セラミックス原料粉体と高分子物質と気泡とを含む
スラリー又は流動性ゲルを注型し、増粘又はゲル化して
気泡を保持させ、乾燥させて得られたことを特徴とする
多孔質セラミックス製造用乾燥体。 3、高分子物質がメチルセルロース等のセルロース誘導
体、カードラン等の多糖類、ポリビニルアルコール、ポ
リアクリル酸、ポリアクリルアミド、ポリビニルピロリ
ドン等の合成重合体などである請求項2記載の多孔質セ
ラミックス製造用乾燥体。 4、高分子物質がスラリー又は流動性ゲル中に0.1〜
10重量%含むように配合された請求項2又は3記載の
多孔質セラミックス製造用乾燥体。 5、セラミックス原料粉体と高分子物質と気泡とを含む
スラリー又は流動性ゲルを注型し、増粘又はゲル化して
気泡を保持させ、乾燥させることを特徴とする多孔質セ
ラミックス製造用乾燥体の製造方法。 6、請求項2、3又は4記載の多孔質セラミックス製造
用乾燥体を、必要に応じて成形加工した後、焼成するこ
とを特徴とする多孔質セラミックスの製造方法。
[Claims] 1. A porous ceramic having macropores with a pore diameter of 20 to 2000 μm and three-dimensional communicating pores consisting of interparticle gaps. 2. A porous ceramic characterized by being obtained by casting a slurry or fluid gel containing ceramic raw material powder, a polymeric substance, and air bubbles, thickening or gelling it to retain air bubbles, and drying it. Dry body for manufacturing. 3. Drying for producing porous ceramics according to claim 2, wherein the polymeric substance is a cellulose derivative such as methylcellulose, a polysaccharide such as curdlan, a synthetic polymer such as polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, etc. body. 4. The polymer substance is present in the slurry or fluid gel from 0.1 to
The dry body for producing porous ceramics according to claim 2 or 3, which is blended to contain 10% by weight. 5. Dry product for producing porous ceramics, characterized in that a slurry or fluid gel containing ceramic raw material powder, a polymeric substance, and air bubbles is cast, thickened or gelled to retain air bubbles, and dried. manufacturing method. 6. A method for producing porous ceramics, which comprises firing the dried body for producing porous ceramics according to claim 2, 3, or 4, after shaping the dried body as required.
JP1243105A 1988-09-20 1989-09-19 Porous ceramics, dried body for producing the same, and methods for producing them Expired - Fee Related JP3058174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243105A JP3058174B2 (en) 1988-09-20 1989-09-19 Porous ceramics, dried body for producing the same, and methods for producing them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23552088 1988-09-20
JP63-235520 1988-09-20
JP1243105A JP3058174B2 (en) 1988-09-20 1989-09-19 Porous ceramics, dried body for producing the same, and methods for producing them

Publications (2)

Publication Number Publication Date
JPH02167868A true JPH02167868A (en) 1990-06-28
JP3058174B2 JP3058174B2 (en) 2000-07-04

Family

ID=26532178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243105A Expired - Fee Related JP3058174B2 (en) 1988-09-20 1989-09-19 Porous ceramics, dried body for producing the same, and methods for producing them

Country Status (1)

Country Link
JP (1) JP3058174B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430477B1 (en) * 2001-02-05 2004-05-10 박재구 Manufacturing method of porous ceramic pellets by using double emulsion method
KR100430478B1 (en) * 2001-02-05 2004-05-10 박재구 Manufacturing method of porous ceramic filter for dust collection
WO2004103422A1 (en) 2003-05-26 2004-12-02 Pentax Corporation Porous composite containing calcium phosphate and process for producing the same
KR100460452B1 (en) * 2002-08-23 2004-12-08 한국화학연구원 A preparation method of a porous organic/inorganic composite through an instant gel method
JP2005154373A (en) * 2003-11-27 2005-06-16 Pentax Corp Ceramic porous material of calcium phosphate and method for producing the same
US7056968B2 (en) 2002-07-09 2006-06-06 Pentax Corporation Calcium phosphate-synthetic resin composite body containing calcium phosphate block and method for production thereof
US7128967B2 (en) 2002-07-19 2006-10-31 Pentax Corporation Calcium phosphate-synthetic resin-metal composite body and method for production thereof
WO2008123671A3 (en) * 2007-04-04 2008-12-04 Min-Hwa Park Ceramic foam and method for manufacturing it
JP2009101174A (en) * 2001-03-02 2009-05-14 Stryker Corp POROUS GRANULE OF beta-TRICALCIUM PHOSPHATE, AND METHOD FOR PRODUCING THE SAME
JP2012197203A (en) * 2011-03-22 2012-10-18 Meiji Univ Calcium phosphate porous body and method for producing the same
WO2013191221A1 (en) 2012-06-20 2013-12-27 Jnc株式会社 Method for producing porous calcium phosphate body, and porous calcium phosphate body produced thereby

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4070951B2 (en) 2000-12-07 2008-04-02 ペンタックス株式会社 Method for producing porous calcium phosphate ceramic sintered body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430478B1 (en) * 2001-02-05 2004-05-10 박재구 Manufacturing method of porous ceramic filter for dust collection
KR100430477B1 (en) * 2001-02-05 2004-05-10 박재구 Manufacturing method of porous ceramic pellets by using double emulsion method
JP2009101174A (en) * 2001-03-02 2009-05-14 Stryker Corp POROUS GRANULE OF beta-TRICALCIUM PHOSPHATE, AND METHOD FOR PRODUCING THE SAME
US7056968B2 (en) 2002-07-09 2006-06-06 Pentax Corporation Calcium phosphate-synthetic resin composite body containing calcium phosphate block and method for production thereof
US7128967B2 (en) 2002-07-19 2006-10-31 Pentax Corporation Calcium phosphate-synthetic resin-metal composite body and method for production thereof
KR100460452B1 (en) * 2002-08-23 2004-12-08 한국화학연구원 A preparation method of a porous organic/inorganic composite through an instant gel method
WO2004103422A1 (en) 2003-05-26 2004-12-02 Pentax Corporation Porous composite containing calcium phosphate and process for producing the same
US8039090B2 (en) 2003-05-26 2011-10-18 Hoya Corporation Porous composite containing calcium phosphate and process for producing the same
JP2005154373A (en) * 2003-11-27 2005-06-16 Pentax Corp Ceramic porous material of calcium phosphate and method for producing the same
WO2008123671A3 (en) * 2007-04-04 2008-12-04 Min-Hwa Park Ceramic foam and method for manufacturing it
JP2012197203A (en) * 2011-03-22 2012-10-18 Meiji Univ Calcium phosphate porous body and method for producing the same
WO2013191221A1 (en) 2012-06-20 2013-12-27 Jnc株式会社 Method for producing porous calcium phosphate body, and porous calcium phosphate body produced thereby
US9896782B2 (en) 2012-06-20 2018-02-20 Jnc Corporation Method for producing porous calcium phosphate body

Also Published As

Publication number Publication date
JP3058174B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US5171720A (en) Porous ceramic sinter and process for producing same
JP4070951B2 (en) Method for producing porous calcium phosphate ceramic sintered body
EP0968067B1 (en) Process for shaping parts from ceramic and metal powders comprising a gel formation
JP3417943B2 (en) Porous body
JPH02167868A (en) Cellular ceramics, dried body for producing the same and production thereof
CN110294636A (en) A kind of lightweight heat-proof metallurgy of nickel waste residue foamed ceramics and preparation method thereof
US5563106A (en) Porous Articles
JPH03252304A (en) Production of porous ceramic grain
JP4514847B2 (en) Method for producing ceramic porous body
JP3490864B2 (en) Method for producing ceramic spherical granules
JP4443077B2 (en) Method for producing porous calcium phosphate ceramic sintered body and porous calcium phosphate ceramic sintered body
JP3463885B2 (en) Ceramic porous body and method of manufacturing the same
JP2506502B2 (en) Method for manufacturing ceramic porous body
JPS6046978A (en) Manufacture of ceramic porous body
JPH05238846A (en) Mullite based foaming type porous ceramics and its production
JPH10167856A (en) Porous ceramic and its production
JPH061673A (en) Production of porous ceramic
JP3096930B2 (en) Method for producing porous calcium phosphate ceramics
JPH04160078A (en) Production of ceramic porous body
KR20240100306A (en) Slurry for manufacturing a ceramic porous body and a method for manufacturing a ceramic porous body using the same
JP2000211979A (en) Production of silica porous body
SU747840A1 (en) Method of preparing porous quartz ceramics
JPH0710654A (en) Porous ceramic form and its production
JPH02192479A (en) Production of ceramic foamed product having fine pores
JPS5864255A (en) Manufacture of ceramic porous body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees