JPH02166334A - Temperature control device - Google Patents

Temperature control device

Info

Publication number
JPH02166334A
JPH02166334A JP63321220A JP32122088A JPH02166334A JP H02166334 A JPH02166334 A JP H02166334A JP 63321220 A JP63321220 A JP 63321220A JP 32122088 A JP32122088 A JP 32122088A JP H02166334 A JPH02166334 A JP H02166334A
Authority
JP
Japan
Prior art keywords
temperature
room
radiation
thermistor
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63321220A
Other languages
Japanese (ja)
Inventor
Keiji Ogawa
啓司 小川
Toshinori Noda
俊典 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP63321220A priority Critical patent/JPH02166334A/en
Publication of JPH02166334A publication Critical patent/JPH02166334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To enable a precision detection of a temperature distributed state in a room to be attained without being influenced by a disturbance of circuit elements and a temperature disturbance in a circuit by a method wherein a room temperature and a radiation temperature are detected by a sucked air temperature sensor device with a radiation shielding changing- over device and a temperature distribution voltage indicating a temperature distribution state in a room is outputted from a differential amplifier device. CONSTITUTION:A temperature control device is comprised of a sucked air temperature thermistor 12 for converting a room temperature into a variation of a resistance value, a sucked air temperature detector device 32 for detecting a variation of resistance value of the sucked air temperature thermistor as a variation of the room temperature, a radiation shielding changing-over device 44 for shielding a radiation heat in a room radiation heat, and a differential amplifier device 40 for outputting a temperature distribution voltage indicating a temperature distribution state in reference to the radiation temperature difference and the room temperature. A liquid crystal pane; changing-over device 41 may output a DC voltage to a liquid crystal panel 42. A thermistor 12 may detect only the room temperature under a radiation heat shielding state, terminate an output of the DC voltage and enables a detection of the radiation temperature. The room temperature and the radiation temperature are detected only with the sucked air temperature detector device 32 so as to output a temperature distribution voltage indicating the room temperature distribution state from the differential amplifier 40.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空気調和機、特に室内の温度制御装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air conditioner, particularly to an indoor temperature control device.

従来の技術 従来の技術について第3図、第4図、第5図を用いて説
明する。第3図において、1は天井埋め込み型の空気調
和機の室内機であり、室内機1の下面は天井2と同一面
上に開口している。室3は天井2.側壁4.5、及び床
6より構成されている。また7は室内機1の吸い込み口
である。第4図において、7は断熱材でできた送風機ケ
ーシングである。8は輻射温度検出部であり、下向きに
開口したアルミニウム製の凹面鏡9とその焦点付近に設
けた輻射温度サーミスタ10より構成されている。11
は吸い込み空気温度検出部で吸い込み空気温度サーミス
タ12で構成されている。第5図は温度制御装置で輻射
温度検出装置13と、吸い込み空気温度検出装置14よ
り構成されている。前記輻射温度検出装置13は前記輻
射温度サーミスタ10と抵抗15と増幅器16の非反転
入力部が接続されており前記輻射温度サーミスタ10の
片方はアース接地されている。また、抵抗17と抵抗1
8と前記増幅器16の反転入力部が接続されている。抵
抗17の片方はアース接地されている、抵抗15と抵抗
18と増幅器16の出力は増幅器19の非反転入力部に
接続されいる。増幅器19の反転入力部は抵抗20と抵
抗21に接続されている抵抗20の片方はアース接地さ
れている。そして、抵抗21の片方は増幅器19の出力
と接続されており、その出力は差動増幅装置22に入力
されている0次に吸い込み空気温度検出装置14は前記
吸い込み空気温度サーミスタ12と抵抗23と増幅器2
4の反転入力部が抵抗25を介して接続されている。前
記吸い込み空気温度サーミスタ12の片方はアース接地
され前記抵抗23の片方は電源に接続されている、また
抵抗26と抵抗27と前記増幅器24の非反転入力部が
接続されている。抵抗17の片方はアース接地され抵抗
27の片方は電源に接続されている。増幅器24の反転
入力部と出力部は抵抗28を介して接続されておりその
出力部は前記差動増幅装置22に入力されている。前記
差動増幅装置22は前記増幅器19と前記増幅器24の
出力電圧差で前記室3の温度分布状態を検出できる温度
分布電圧を29を出力する。
Prior Art The conventional technology will be explained with reference to FIGS. 3, 4, and 5. In FIG. 3, reference numeral 1 denotes an indoor unit of a ceiling-embedded air conditioner, and the lower surface of the indoor unit 1 is opened on the same plane as the ceiling 2. Room 3 has ceiling 2. It consists of side walls 4.5 and a floor 6. Further, 7 is a suction port of the indoor unit 1. In FIG. 4, 7 is a blower casing made of a heat insulating material. Reference numeral 8 denotes a radiant temperature detection section, which is composed of a concave mirror 9 made of aluminum and opened downward, and a radiant temperature thermistor 10 provided near its focal point. 11
is a suction air temperature detection section, which is composed of a suction air temperature thermistor 12. FIG. 5 shows a temperature control device comprising a radiation temperature detection device 13 and a suction air temperature detection device 14. The radiant temperature detecting device 13 is connected to the radiant temperature thermistor 10, a resistor 15, and a non-inverting input section of an amplifier 16, and one side of the radiant temperature thermistor 10 is grounded. Also, resistor 17 and resistor 1
8 and the inverting input of the amplifier 16 are connected. One end of resistor 17 is grounded, and the outputs of resistor 15, resistor 18, and amplifier 16 are connected to the non-inverting input of amplifier 19. The inverting input section of the amplifier 19 is connected to a resistor 20 and a resistor 21, and one of the resistors 20 is grounded. One end of the resistor 21 is connected to the output of the amplifier 19, and its output is input to the differential amplifier 22. amplifier 2
The inverting input section of No. 4 is connected via a resistor 25. One side of the suction air temperature thermistor 12 is grounded, one side of the resistor 23 is connected to the power supply, and the non-inverting input of the amplifier 24 is connected to the resistor 26 and the resistor 27. One end of the resistor 17 is grounded, and one end of the resistor 27 is connected to the power supply. The inverting input section and the output section of the amplifier 24 are connected via a resistor 28, and the output section thereof is input to the differential amplifier 22. The differential amplifier 22 outputs a temperature distribution voltage 29 that can detect the temperature distribution state of the chamber 3 based on the output voltage difference between the amplifier 19 and the amplifier 24.

以上のように構成された温度制御装置について、以下に
その動作について説明する。
The operation of the temperature control device configured as described above will be explained below.

前記室8の温度分布電圧29を検出すべき前記輻射検出
部8より前記凹面鏡9を利用して輻射温度を前記輻射サ
ーミスタ10にて検出する。輻射温度の変化は前記輻射
温度サーミスタ10の抵抗値の変化に変換され、前記輻
射温度サーミスタ10の抵抗値が変化すると前記抵抗1
5との分圧により、前記増幅器16の非反転入力部の電
位が前記輻射温度サーミスタ11の抵抗値が大きくなる
と電位も上昇し、小さくなると電位が下降する。
The radiation temperature is detected by the radiation thermistor 10 using the concave mirror 9 from the radiation detection section 8 which is to detect the temperature distribution voltage 29 of the chamber 8 . A change in the radiant temperature is converted into a change in the resistance value of the radiant temperature thermistor 10, and when the resistance value of the radiant temperature thermistor 10 changes, the resistance value of the radiant temperature thermistor 10 changes.
5, the potential at the non-inverting input portion of the amplifier 16 increases as the resistance value of the radiant temperature thermistor 11 increases, and decreases as the resistance value decreases.

そのため前記増幅器16の出力部は前記抵抗18と、前
記抵抗17との分圧により発生している電位を中心に変
化を行ないサーミスタの非線形特性を線形特性に加工し
リニアに電圧が変化する。また前記増幅器19は前記増
幅器16で出力された電圧を前記抵抗20と前記抵抗2
1の抵抗値比の増幅度により増幅された出力電圧■1が
前記差動増幅装置22に入力される。
Therefore, the output section of the amplifier 16 changes centering on the potential generated by the voltage division between the resistor 18 and the resistor 17, processing the nonlinear characteristics of the thermistor into linear characteristics, and changing the voltage linearly. Further, the amplifier 19 transfers the voltage output from the amplifier 16 to the resistor 20 and the resistor 2.
The output voltage (1) amplified by the amplification degree of the resistance value ratio of 1 is input to the differential amplifier 22.

次に、前記吸い込み空気温度検出装置14について説明
する。前記室8の温度分布電圧29を検出すべき前記吸
い込み空気温度検出部11より室温を前記吸い込み空気
温度サーミスタ12にて検出する。室温の変化は前記吸
い込み空気温度サーミスタ12の抵抗値の変化に変換さ
れる。前記吸い込み空気温度サーミスタ12の抵抗値が
変化すると前記抵抗23との分圧により、前記増幅器2
4の反転入力部の電位が前記吸い込み空気温度サーミス
タ12の抵抗値が大きくなると電位も上昇し、小さくな
ると電位が下降する。そのため前記増幅器24の出力部
は前記抵抗18と、前記抵抗17どの分圧により発生し
ている電位を中心に前記抵抗25と前記抵抗28の抵抗
値比の増幅度により増幅された出力電圧■2が前記差動
増幅装置22に入力される。
Next, the suction air temperature detection device 14 will be explained. The room temperature is detected by the suction air temperature thermistor 12 from the suction air temperature detection section 11 which is to detect the temperature distribution voltage 29 of the chamber 8 . A change in room temperature is converted into a change in the resistance value of the suction air temperature thermistor 12. When the resistance value of the suction air temperature thermistor 12 changes, due to the partial pressure with the resistor 23, the amplifier 2
When the resistance value of the suction air temperature thermistor 12 increases, the potential at the inverting input section 4 increases, and when it decreases, the potential decreases. Therefore, the output section of the amplifier 24 is an output voltage (2) which is amplified by the amplification degree of the resistance value ratio of the resistor 25 and the resistor 28, centering on the potential generated by the voltage division of the resistor 18 and the resistor 17. is input to the differential amplifier 22.

前記輻射温度検出装置13と前記吸い込み空気温度検出
装置14の各出力電圧Vl、V2を入力された前記差動
増幅装置22はVl−V2の演算を行ない温度分布電圧
29を出力する。
The differential amplifier 22 receives the output voltages Vl and V2 of the radiant temperature detecting device 13 and the suction air temperature detecting device 14, calculates Vl-V2, and outputs a temperature distribution voltage 29.

発明が解決しようとする課題 しかしこのような構成では、輻射温度検出装置と吸い込
み空気温度検出装置との検出回路構成が異なるため輻射
温度サーミスタと吸い込み空気湿度サーミスタ、および
各構成部品のバラツキ、また使用する室の温度による回
路の温度バラツキ等の要因により温度分布電圧の検出精
度を確保することができなかった。
Problems to be Solved by the Invention However, in such a configuration, the detection circuit configurations of the radiant temperature detection device and the suction air temperature detection device are different, resulting in variations in the radiant temperature thermistor, the suction air humidity thermistor, and each component, as well as problems in use. It was not possible to ensure the detection accuracy of the temperature distribution voltage due to factors such as variations in the temperature of the circuit depending on the temperature of the room being used.

本発明は上記欠点に鑑み、室温と輻射温度を吸い込み空
気温度検出装置だけで検出し、輻射温度と室温の差で示
される室の温度分布状態を回路部品のバラツキ、及び回
路の温度バラツキに影響されることなく、精度よく検出
する温度制御装置を提供するものである。
In view of the above drawbacks, the present invention detects room temperature and radiant temperature only with an air temperature detection device, and determines the temperature distribution state of the room indicated by the difference between the radiant temperature and room temperature, which affects the variation in circuit components and the temperature variation in the circuit. The present invention provides a temperature control device that accurately detects temperature without being affected.

課題を解決するための手段 この目的を達成するために本発明の温度制御装置は、室
温を抵抗値の変化に変換する吸い込み空気温度サーミス
タと、前記吸い込み空気温度サーミスタの抵抗値の変化
を室温の変化として検出する吸い込み空気温度検出装置
と、室の輻射熱な遮へいする輻射遮へい切り替え装置と
、輻射温度差と室温より室の温度分布状態を示す温度分
布電圧を出力する差動増幅装置から構成されている。
Means for Solving the Problems To achieve this object, the temperature control device of the present invention includes a suction air temperature thermistor that converts room temperature into a change in resistance value, and a change in resistance value of the suction air temperature thermistor that converts room temperature into a change in resistance value. It consists of a suction air temperature detection device that detects changes, a radiation shielding switching device that shields the radiant heat of the room, and a differential amplifier that outputs a temperature distribution voltage that indicates the temperature distribution state of the room based on the radiant temperature difference and room temperature. There is.

作用 本発明は、上記した構成によって、輻射遮へい切り替え
装置により、吸い込み空気温度検出装置にて室の室温と
輻射温度を検出し、差動増幅装置より室の温度分布状態
を示す温度分布電圧を出力することにより、輻射遮へい
切り替え装置と吸い込み空気温度検出装置の簡素な回路
構成にて、輻射温度と室温の差で示される室の温度分布
状態を回路部品のバラツキ、及び回路の温度バラツキに
影響されることなく、精度よく検出することができる。
Effect of the present invention With the above-described configuration, the radiation shielding switching device detects the room temperature and the radiant temperature of the room with the suction air temperature detection device, and the differential amplifier outputs a temperature distribution voltage indicating the temperature distribution state of the room. By using a simple circuit configuration of a radiation shielding switching device and a suction air temperature detection device, the temperature distribution state of the room, which is indicated by the difference between the radiation temperature and the room temperature, can be made independent of the variations in the circuit components and the temperature variations in the circuit. It can be detected with high accuracy without any interference.

実施例 以上本発明の一実施例の温度制御装置について、図面を
参照しながら説明する。第1図は本発明の一実施例にお
けるセンサー設置図である。第2図は本発明の一実施例
における温度制御装置の回路構成図である。第2図にお
いて、7は断熱材でできた送風機ケーシングである。3
0は吸い込み空気温度検出部であり、下向きに開口した
アルミニウム製の凹面鏡9とその焦点付近に設けた吸い
込み空気湿度サーミスタ12より構成されている。
Embodiment A temperature control device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the installation of a sensor in an embodiment of the present invention. FIG. 2 is a circuit diagram of a temperature control device according to an embodiment of the present invention. In FIG. 2, 7 is a blower casing made of a heat insulating material. 3
Reference numeral 0 denotes a suction air temperature detection section, which is composed of a downwardly opened concave mirror 9 made of aluminum and a suction air humidity thermistor 12 provided near its focal point.

また42は液晶パネルで輻射熱を遮へいするか否かを制
御する。第2図において、第4図の従来構成と同一回路
構成であるものについては同一番号を示し詳細な説明は
省略する。第2図は本発明の温度制御装置で吸い込み空
気温度検出装置32と輻射遮へい切り替え装置44より
構成されている。
Further, 42 controls whether or not to shield radiant heat using the liquid crystal panel. In FIG. 2, circuit configurations that are the same as the conventional configuration shown in FIG. 4 are designated by the same reference numerals and detailed explanations will be omitted. FIG. 2 shows a temperature control device according to the present invention, which is composed of a suction air temperature detection device 32 and a radiation shielding switching device 44.

前記吸い込み空気温度検出装置32において、前記吸い
込み空気温度サーミスタ12と抵抗33と増幅器34の
非反転入力部が接続されており前記吸い込み空気温度サ
ーミスタ12の片方はアース接地されている、また抵抗
35と抵抗36と前記増幅器34の反転入力部が接続さ
れている。抵抗35の片方はアース接地されている。抵
抗33と抵抗36と増幅器34の出力は増幅器37の非
反転入力部に接続されいる。増幅器37の反転入力部は
抵抗38と抵抗39に接続されている。抵抗38の片方
はアース接地されている。また抵抗39の片方は増幅器
37の出力と接続されており、その出力は差動増幅器4
0に入力されている。また、前記輻射遮へい切り替え装
置44について、41は液晶パネル切り替え装置である
。43は室温と輻射温度の切り替え信号発生装置で一定
周期の”H”L”の信号を発生し、前記差動増幅装置4
0と前記液晶パネル切り替え装置41に接続されている
。前記差動増幅器40は前記切り替え信号発生装置の信
号に同期して”H″ならば前記増幅器37の入力を室温
電圧値■3として検出する。また”L“ならば輻射温度
値v4として検出する。前記液晶パネル切り替え装置4
1は、前記切り替え信号発生装置43からの室温と輻射
温度の切り替え信号31により”Hlならば前記液晶パ
ネル42に直流電圧を出力し輻射熱を遮へい状態し、”
L”ならば前記液晶パネル42に直流電圧を出力を停止
し輻射熱を透過状態にする。
In the suction air temperature detection device 32, the suction air temperature thermistor 12, the resistor 33, and the non-inverting input part of the amplifier 34 are connected, one side of the suction air temperature thermistor 12 is grounded, and the resistor 35 and the non-inverting input part of the amplifier 34 are connected. A resistor 36 and the inverting input of the amplifier 34 are connected. One end of the resistor 35 is grounded. The outputs of resistor 33, resistor 36 and amplifier 34 are connected to a non-inverting input of amplifier 37. The inverting input of amplifier 37 is connected to resistor 38 and resistor 39. One end of the resistor 38 is grounded. Further, one side of the resistor 39 is connected to the output of the amplifier 37, and the output is connected to the differential amplifier 4.
It is entered as 0. Further, regarding the radiation shielding switching device 44, 41 is a liquid crystal panel switching device. Reference numeral 43 denotes a signal generator for switching between room temperature and radiant temperature, which generates "H" and "L" signals with a constant period, and is connected to the differential amplifier 4.
0 and the liquid crystal panel switching device 41. The differential amplifier 40 detects the input of the amplifier 37 as a room temperature voltage value (3) if it is "H" in synchronization with the signal from the switching signal generator. Moreover, if it is "L", it is detected as a radiant temperature value v4. The liquid crystal panel switching device 4
1, the room temperature and radiant temperature switching signal 31 from the switching signal generator 43 causes "If it is Hl, a DC voltage is output to the liquid crystal panel 42 to shield the radiant heat."
If it is L'', the output of DC voltage to the liquid crystal panel 42 is stopped and radiant heat is transmitted.

以上のように構成された温度検出装置について、以下第
1図及び第2図を用いてその動作を説明する。前記差動
増幅装置4oは、前記室3の温度分布電圧29を検出す
べき前記切り替え信号発生装置43の切り替え信号31
に同期し動作している、まず前記切り替え信号81が′
H”の場合について動作を説明する。前記切り替え信号
81″H”が前記液晶パネル切り替え装置41に入力さ
れると前記液晶パネル切り替え装置41は前記液晶パネ
ル42に対して直流電圧を出力する。前記吸い込み空気
温度サーミスタ12は液晶パネル42により輻射熱遮へ
い状態で室温のみを検出可能とし、前記吸い込み空気温
度検出部11より前記室温を前記吸い込み空気温度サー
ミスタ12−て検出する。
The operation of the temperature detection device configured as described above will be described below with reference to FIGS. 1 and 2. The differential amplifier 4o outputs a switching signal 31 of the switching signal generator 43 that is to detect the temperature distribution voltage 29 of the chamber 3.
First, the switching signal 81 is activated in synchronization with '
The operation will be explained in the case of "H". When the switching signal 81"H" is input to the liquid crystal panel switching device 41, the liquid crystal panel switching device 41 outputs a DC voltage to the liquid crystal panel 42. The suction air temperature thermistor 12 is capable of detecting only the room temperature while shielded from radiant heat by the liquid crystal panel 42, and the room temperature is detected by the suction air temperature detection section 11.

また室温の変化は前記吸い込み温度サーミスタ12の抵
抗値の変化に変換される。前記吸い込み空気温度サーミ
スタ12の抵抗値が変化すると前記抵抗33との分圧に
より、前記増幅器31の非反転入力部の電位が前記吸い
込み空気温度サーミスタ12の抵抗値が大きくなると電
位も上昇し、小さくなると電位が下降する。そのため前
記増幅器34の出力部は前記抵抗35と、前記抵抗86
との分圧により発生している電位を中心に変化を行ない
サーミスタの非線形特性を線形特性に加工しリニアに電
圧が変化する。また前記増幅器37は前記増幅器34で
出力された電圧を前記抵抗38と前記抵抗89の抵抗値
比の増幅度により増幅された出力電圧■3が室温値とし
て前記差動増幅装置40に入力される0次に前記切り替
え信号発生装置13の切り替え信号が′L”のときの動
作を説明する。前記切り替え信号31”L”が前記液晶
パネル切り替え装置41に入力されると前記液晶パネル
切り替え装置41は前記液晶パネル42に対する直流電
圧の出力を停止すると、輻射熱を透過する状態となり前
記吸い込み空気温度サーミスタ12にて輻射温度を検出
可能とする。そこで前記室温検出動作にて行なった同様
の動作を繰り返すと、出力電圧■4が輻射温度値として
前記差動増幅装置40に入力される0次に各出力電圧■
3、v4を入力された前記差動増幅装置40はV8−v
4の演算を行ない室の温度分布状態を示す温度分布電圧
29を出力する。
Further, a change in room temperature is converted into a change in the resistance value of the suction temperature thermistor 12. When the resistance value of the suction air temperature thermistor 12 changes, the potential at the non-inverting input part of the amplifier 31 increases and becomes smaller as the resistance value of the suction air temperature thermistor 12 increases due to the partial pressure with the resistor 33. Then, the potential decreases. Therefore, the output section of the amplifier 34 is connected to the resistor 35 and the resistor 86.
The non-linear characteristics of the thermistor are changed into linear characteristics by changing the potential generated by the partial voltage between the thermistor and the voltage changing linearly. Further, the amplifier 37 amplifies the voltage output from the amplifier 34 by the amplification degree of the resistance value ratio of the resistor 38 and the resistor 89, and inputs the output voltage (3) to the differential amplifier 40 as a room temperature value. Next, the operation when the switching signal of the switching signal generating device 13 is 'L' will be explained. When the switching signal 31 'L' is input to the liquid crystal panel switching device 41, the liquid crystal panel switching device 41 When the output of the DC voltage to the liquid crystal panel 42 is stopped, the radiant heat is allowed to pass through, and the radiant temperature can be detected by the suction air temperature thermistor 12.Therefore, by repeating the same operation as the room temperature detection operation, , the output voltage ■4 is input to the differential amplifier 40 as a radiation temperature value.
3. The differential amplifier 40 inputted with v4 outputs V8-v.
4 is performed and a temperature distribution voltage 29 indicating the temperature distribution state of the room is output.

以上のように本実施例によれば、輻射遮へい切り替え装
置44により輻射温度と室温を前記吸い込み空気温度検
出装置32のみで検出するため輻射温度と室温の差で示
される室の温度分布状態を示す温度分布電圧を各回路部
品のバラツキ、及び回路の温度バラツキに影響されるこ
となく、精度よく検出することができ安価な回路構成に
て検出精度の向上を実現できる。
As described above, according to this embodiment, the radiation temperature and the room temperature are detected by the radiation shielding switching device 44 only by the suction air temperature detection device 32, so that the temperature distribution state of the room is indicated by the difference between the radiation temperature and the room temperature. The temperature distribution voltage can be detected with high accuracy without being affected by variations in each circuit component and temperature variations in the circuit, and detection accuracy can be improved with an inexpensive circuit configuration.

発明の効果 以上のように本発明の温度制御装置は、室温を抵抗値の
変化に変換する吸い込み空気温度サーミスタと、前記吸
い込み空気温度サーミスタの抵抗値の変化を室温の変化
として検出する吸い込み空気温度検出装置と、室の輻射
熱を遮へいする輻射遮へい切り替え装置と、輻射温度差
と室温より室の温度分布状態を示す温度分布電圧を出力
する差動増幅装置からなり、前記輻射遮へい切り替え装
置により、前記吸い込み空気温度検出装置のみにて室の
室温と輻射温度を検出し、前記差動増幅装置より室の温
度分布状態を示す温度分布電圧を出力することにより、
輻射遮へい切り替え装置との吸い込み空気温度検出装置
の簡素な回路構成にて、輻射温度と室温の差で示される
室の温度分布状態を回路部品のバラツキ、及び回路の温
度バラツキに影響されることなく、精度よく検出するこ
とができ、安価な回路構成にて検出精度の向上を実現で
きる、その実用的効果はきわめて大なるものがある。
Effects of the Invention As described above, the temperature control device of the present invention includes a suction air temperature thermistor that converts room temperature into a change in resistance value, and a suction air temperature control device that detects a change in resistance value of the suction air temperature thermistor as a change in room temperature. It consists of a detection device, a radiation shield switching device that shields the radiant heat of the room, and a differential amplifier that outputs a temperature distribution voltage indicating the temperature distribution state of the room based on the radiant temperature difference and the room temperature. By detecting the room temperature and radiant temperature of the room only with the intake air temperature detection device, and outputting a temperature distribution voltage indicating the temperature distribution state of the room from the differential amplifier,
With the simple circuit configuration of the intake air temperature detection device and the radiation shielding switching device, the temperature distribution state of the room, which is indicated by the difference between the radiation temperature and the room temperature, can be determined without being affected by variations in circuit components or temperature variations in the circuit. , it is possible to detect with high accuracy, and the detection accuracy can be improved with an inexpensive circuit configuration, and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における温度制御装置のセン
サー設置図、第2図は本発明の一実施例における温度制
御装置の回路構成図、第3図は室の室内機設置図、第4
図はセンサー設置図、第5図は従来例におけるの温度制
御装置の回路構成図である。 12  ・吸い込み空気温度センサー 29・・・温度
分布電圧、31・・・切り替え信号、32・・・吸い込
み空気温度検出装置、4o・・差動増幅装置、41・ 
・液晶パネル切り替え装置、42・ ・液晶パネル、4
8・ ・切り替え信号発生装置、44・ ・輻射遮へい
切り替え装置。 代理人の氏名 弁理士 栗野重孝 はか1名第 図 第 図 12−  唄い込a+9気温度でりす 々一液晶パネル 第 図
Fig. 1 is a sensor installation diagram of a temperature control device according to an embodiment of the present invention, Fig. 2 is a circuit configuration diagram of a temperature control device according to an embodiment of the present invention, Fig. 3 is an indoor unit installation diagram of a room, 4
The figure is a sensor installation diagram, and FIG. 5 is a circuit configuration diagram of a conventional temperature control device. 12 - Suction air temperature sensor 29... Temperature distribution voltage, 31... Switching signal, 32... Suction air temperature detection device, 4o... Differential amplifier device, 41.
・Liquid crystal panel switching device, 42・ ・Liquid crystal panel, 4
8. ・Switching signal generator, 44. ・Radiation shielding switching device. Name of agent: Patent attorney Shigetaka Kurino (1 person) Figure 12- Input a + 9 Temperature 1 LCD panel Figure

Claims (1)

【特許請求の範囲】[Claims] 室温を抵抗値の変化に変換する吸い込み空気温度サーミ
スタと、前記吸い込み空気温度サーミスタの抵抗値の変
化を室温の変化として検出する吸い込み空気温度検出装
置と、室の輻射熱を遮へいする輻射遮へい切り替え装置
と、室温と輻射温度差より室の温度分布状態を示す温度
分布電圧を出力する差動増幅装置とからなり、前記輻射
遮へい切り替え装置により、前記吸い込み空気温度検出
装置にて室の室温及び輻射温度を検出し、前記差動増幅
装置より室の温度分布状態を示す温度分布電圧を出力す
ることを特徴とする温度制御装置。
A suction air temperature thermistor that converts room temperature into a change in resistance value, a suction air temperature detection device that detects a change in the resistance value of the suction air temperature thermistor as a change in room temperature, and a radiation shielding switching device that shields the radiant heat of the room. , a differential amplifier that outputs a temperature distribution voltage indicating the temperature distribution state of the room based on the difference between the room temperature and the radiation temperature, and the radiation shielding switching device allows the intake air temperature detection device to detect the room temperature and the radiation temperature of the room. A temperature control device that detects the temperature distribution and outputs a temperature distribution voltage indicating a temperature distribution state of the room from the differential amplifier.
JP63321220A 1988-12-20 1988-12-20 Temperature control device Pending JPH02166334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321220A JPH02166334A (en) 1988-12-20 1988-12-20 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321220A JPH02166334A (en) 1988-12-20 1988-12-20 Temperature control device

Publications (1)

Publication Number Publication Date
JPH02166334A true JPH02166334A (en) 1990-06-27

Family

ID=18130148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321220A Pending JPH02166334A (en) 1988-12-20 1988-12-20 Temperature control device

Country Status (1)

Country Link
JP (1) JPH02166334A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157331A (en) * 1991-12-05 1993-06-22 Tokyo Gas Co Ltd Radiant air-conditioner control sensor
CN113465755A (en) * 2020-03-31 2021-10-01 北京振兴计量测试研究所 Indirect test method for steady-state radiation temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157331A (en) * 1991-12-05 1993-06-22 Tokyo Gas Co Ltd Radiant air-conditioner control sensor
CN113465755A (en) * 2020-03-31 2021-10-01 北京振兴计量测试研究所 Indirect test method for steady-state radiation temperature

Similar Documents

Publication Publication Date Title
US20130008224A1 (en) Method for calibration of a co2 concentration sensor and a measuring device
JPH09257587A (en) Non-contact type temperature meter
JPH02166334A (en) Temperature control device
JPH08330621A (en) Optical sensor
JP3138327B2 (en) Continuous working gas analyzer
JPH0545177B2 (en)
GB2022255A (en) Acoustic measuring instruments e.g. flowmeters
JPH02122143A (en) Temperature control device
JPH0552872A (en) Effective value level detector
JPS62195580A (en) Measuring instrument for generation quantity of radiation
JP3363272B2 (en) Infrared detection circuit
JPS60262044A (en) Flame type atomic absorption spectrometer
JPS6242364Y2 (en)
JPS62725A (en) Air-fuel ratio detecting device
KR20010036294A (en) Apparatus for determining a temperature using a Bolometer type Ifrared Rays sensor
KR20010036293A (en) Apparatus for determining a temperature using a Bolometer type Ifrared Rays sensor and method for compensating a sensetivity of the same
JPS6275204A (en) Photoelectric width measuring instrument
JPS5922497Y2 (en) light detection circuit
JPS6138420A (en) Preamplifier of vortex flowmeter
JPS589047A (en) Method and apparatus for measuring turbidity
JPS62202933A (en) Combustion detecting circuit
JPH0421094B2 (en)
JPS57139240A (en) Temperature control for air conditioner
JPH0915053A (en) Infrared temperature measuring apparatus
JPH01162117A (en) Heating cooker