JPH02166259A - Cold rolled steel sheet excellent in workability and surface characteristic after working - Google Patents

Cold rolled steel sheet excellent in workability and surface characteristic after working

Info

Publication number
JPH02166259A
JPH02166259A JP31963788A JP31963788A JPH02166259A JP H02166259 A JPH02166259 A JP H02166259A JP 31963788 A JP31963788 A JP 31963788A JP 31963788 A JP31963788 A JP 31963788A JP H02166259 A JPH02166259 A JP H02166259A
Authority
JP
Japan
Prior art keywords
steel sheet
workability
less
rolled steel
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31963788A
Other languages
Japanese (ja)
Inventor
Susumu Okada
進 岡田
Susumu Sato
進 佐藤
Toshiyuki Kato
俊之 加藤
Hideo Abe
阿部 英夫
Kozo Sumiyama
角山 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31963788A priority Critical patent/JPH02166259A/en
Publication of JPH02166259A publication Critical patent/JPH02166259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide a cold rolled steel sheet excellent in workability, such as press formability, and free from deterioration in surface characteristics even after subjected to working of this kind by controlling compositional limit values. CONSTITUTION:A cold rolled steel sheet having a composition consisting of, by weight, <=0.01% C, <=0.1% Si, <=1.0% Mn, <=0.5% Al, <=0.01% N, 0.0001-0.01% Be, 0.0005-0.1% Ti, and the balance Fe with inevitable impurities is prepared. If necessary, one or more kinds among 0.0005-0.03% Nb, 0.0005-0.03% V, 0.0005-0.01% Mo, 0.0005-0.50% Cr, 0.0010-0.10% Cu, 0.0010-0.10% Sb, and 0.0001-0.01% B are further added to the above composition.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、とくに曲げ、プレス成形、絞り成形、深絞
りあるいは超深絞り等の加工に適し、しかも加工後の表
面性状に遜色のない冷延鋼板に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is particularly suitable for processing such as bending, press forming, drawing, deep drawing, or ultra-deep drawing, and is suitable for processing such as bending, press forming, drawing, deep drawing, ultra-deep drawing, etc. This relates to rolled steel plates.

(従来の技術) 冷延鋼板は、その優れた加工性ゆえにプレス成形・深絞
りなど広く加工用に用いられてきた。しかし近年ではそ
の有用性ゆえに加工性の他にも様々な特性が要求される
ようになった。ここに例えば冷延鋼板を外板材として用
いる場合には、表面の美麗さが要求されるばかりでなく
、同時に加工に通した表面凹凸も求められ、これはしば
しば鋼板の外観を損ねる結果となった。この点に関する
文献として、たとえば特開昭62−151208号公報
には優れた外観と加工性を備えた表面粗度パターンを採
用する冷延鋼板の製造技術が提案されている。
(Prior Art) Cold-rolled steel sheets have been widely used for processing such as press forming and deep drawing due to their excellent workability. However, in recent years, various properties other than workability have come to be required due to its usefulness. For example, when cold-rolled steel plates are used as exterior panel materials, not only is the surface required to be beautiful, but at the same time, the surface is also required to have surface irregularities resulting from processing, which often results in a deterioration of the steel plate's appearance. . As a document related to this point, for example, JP-A-62-151208 proposes a manufacturing technique for cold-rolled steel sheets that employs a surface roughness pattern with excellent appearance and workability.

(発明が解決しようとする課題) ところで上記公報に開示の技術では、プレス成形品の形
状が複雑な場合においては各部の加工度および加工モー
ドが極端に異なることが多く、その影響により各部の表
面性状が著しく異なるという不利があった。
(Problems to be Solved by the Invention) However, in the technology disclosed in the above publication, when the shape of a press-formed product is complex, the processing degree and processing mode of each part are often extremely different, and this affects the surface of each part. The disadvantage was that the properties were significantly different.

加工による表面不均一化を防止するには、表面性状の改
善だけでは不十分で、鋼板自体の加工性を改善するとと
もに、加工による表面劣化を極力抑制しなければならな
いが、このような技術は今のところ皆無であった。
In order to prevent surface unevenness due to processing, it is not enough to improve the surface properties alone; it is necessary to improve the workability of the steel sheet itself and to suppress surface deterioration due to processing as much as possible. There were none so far.

プレス成形等の加工性に優れ、しかもこのような加工後
においても表面性状の劣化を来すことがない新規な冷延
鋼板を提案することがこの発明の目的である。
It is an object of the present invention to propose a new cold-rolled steel sheet that has excellent workability in press forming and the like and does not cause deterioration in surface quality even after such processing.

(課題を解決するための手段) この発明ば、C:O,Oht%(以下単に%で示す)以
下、Si:0.1%以下、Mn : 1.0%以下、A
l : 0.5%以下、N:0.01%以下、Be :
 0.0001〜0.01%およびTi : 0.00
05〜0.1%を含み残部Feおよび不可避的不純物か
らなる、加工性および加工後の表面性状に優れる冷延鋼
板であり、またこの発明は、C:0.01%以下、Si
:0.1%以下、Mn : 1.0%以下、AI : 
0.5%以下、N : 0.01%以下、Be : 0
.0001〜0.01%およびTi : 0.0005
〜0.1%、を含み、さらにNb : 0.0005〜
0.03%、V : 0.0005〜0.03%、Mo
 : O,0O05〜0.01%、Cr : 0.00
05〜0.50%、Cu:0.0010〜0.10%、
Sb : 0.0010〜0.10%およびB:0.0
001〜0.01%のうちの少なくとも1種を含み残部
Feおよび不可避的不純物からなる、加工性および加工
後の表面性状に優れた冷延鋼板である。
(Means for Solving the Problems) According to the present invention, C: O, Oht% (hereinafter simply expressed as %) or less, Si: 0.1% or less, Mn: 1.0% or less, A
L: 0.5% or less, N: 0.01% or less, Be:
0.0001-0.01% and Ti: 0.00
This invention is a cold-rolled steel sheet with excellent workability and surface quality after processing, which contains 05 to 0.1% of C and the balance is Fe and unavoidable impurities.
: 0.1% or less, Mn: 1.0% or less, AI:
0.5% or less, N: 0.01% or less, Be: 0
.. 0001-0.01% and Ti: 0.0005
~0.1%, further Nb: 0.0005~
0.03%, V: 0.0005-0.03%, Mo
: O,0O05~0.01%, Cr: 0.00
05-0.50%, Cu: 0.0010-0.10%,
Sb: 0.0010-0.10% and B: 0.0
The cold rolled steel sheet contains at least one of the following: 0.001 to 0.01%, with the remainder being Fe and unavoidable impurities, and has excellent workability and surface quality after working.

(作 用) 加工用冷延綱板の理想的な結晶組織は、粒径が微細(強
度、靭性等に優れる)であれ、比較的粗大(延性等に優
れる)であれ、均一であることが重要なポイントであっ
た。
(Function) The ideal crystal structure of a cold-rolled steel sheet for processing should be uniform, whether the grain size is fine (excellent in strength, toughness, etc.) or relatively coarse (excellent in ductility, etc.). This was an important point.

すなわち不均一な結晶組織、とくに混粒組織は従来技術
の下では鋼板表面における均一性が劣る上、肌荒れ等の
表面欠陥を生じたり、加工によって局部破壊しやすく、
さらには集合組織(結晶方位)も劣ると考えられていた
In other words, under the conventional technology, a non-uniform crystal structure, especially a mixed grain structure, has poor uniformity on the surface of a steel sheet, causes surface defects such as surface roughness, and is easily damaged locally during processing.
Furthermore, the texture (crystal orientation) was also thought to be inferior.

しかしながら発明者らの知見によれば、上述したような
欠点は主として混粒化の際に極めて粗大な再結晶粒を生
じてしまうことが原因であって、混粒組織そのものが根
本的な欠点ではなく、また混粒の要因となる成分元素が
直接材質を劣化させているにすぎない場合もあることが
わかった。これらの点について考慮すると、混粒組織自
体はとくに加工後における鋼板の表面性状を良好に保つ
上ではむしろ有利であり、不均一な加工に対して鋼板表
面の均一性を保ち得る可能性があるとの着想のもとに、
まず理想的な混粒組織を得る手段について種−検討した
However, according to the findings of the inventors, the above-mentioned defects are mainly caused by the generation of extremely coarse recrystallized grains during co-grain formation, and the co-grain structure itself is not the fundamental defect. In addition, it was found that in some cases, the component elements that cause mixed grains simply deteriorate the material directly. Considering these points, the mixed grain structure itself is rather advantageous in maintaining good surface properties of the steel sheet after processing, and may be able to maintain uniformity of the surface of the steel sheet against uneven processing. Based on the idea,
First, we investigated methods for obtaining an ideal mixed grain structure.

ここに、混粒組織は主として再結晶時に特定の粒を成長
させるか、あるいは逆に特定の粒以外の成長を抑制する
ことにより得られる。前者は、主として粒界移動抑制要
因の除去、たとえば固溶C1Nなどの低減、微細析出物
の除去あるいは粗大化などによって実現可能であるが、
結果として必然的に極めて粗大な再結晶粒を生じ、加工
性を著しく劣化させる。一方、後者は析出物分布による
実現は困難であり、従って粒界偏析傾向の強い固溶元素
を利用するほうが有望である。しかしながら固溶元素の
分布が均一な場合には結晶組織は均一に微粒化する傾向
があり、不均一に分布させる場合にはその分布自体が種
\の材質劣化を招く傾向がある。とくに粒径の調整に効
果のある元素はBlPの如く加工性に有害なものが殆ど
で、このような元素の利用は不利である。
Here, the mixed grain structure is obtained mainly by growing specific grains during recrystallization, or conversely by suppressing the growth of grains other than specific grains. The former can be achieved mainly by removing factors that inhibit grain boundary movement, such as reducing solid solution C1N, and removing or coarsening fine precipitates.
As a result, extremely coarse recrystallized grains are inevitably produced, which significantly deteriorates workability. On the other hand, the latter is difficult to achieve using precipitate distribution, and therefore it is more promising to use solid solution elements that have a strong tendency to segregate at grain boundaries. However, when the solid solution elements are uniformly distributed, the crystal structure tends to be uniformly atomized, and when they are unevenly distributed, the distribution itself tends to cause deterioration of the material quality of the seeds. In particular, most of the elements that are effective in adjusting the particle size are harmful to processability, such as BlP, and the use of such elements is disadvantageous.

この点、Beの適量の添加はこのような状況の打開、す
なわち鋼板の加工性に悪影響を及ぼずことなく微細でか
つ適度な混粒の結晶組織を得るのに極めて有効である。
In this respect, addition of an appropriate amount of Be is extremely effective in overcoming this situation, that is, in obtaining a fine and appropriate mixed grain crystal structure without adversely affecting the workability of the steel sheet.

第1図に、Be添加鋼板の伸びおよび肌あれ特性の調査
結果を、Beを添加しない通常の冷延綱板の特性ととも
にしめす。なお、ここで用いたBe添加鋼板は、C: 
0.0015〜0.0035%、Si:0.01 %、
MnO,1%、 Al:o、03 〜0.07%、 N
  : 0.002 〜0.005%、Ti:0.02
〜0.05%、Be:O,OO1〜0.005%を、ま
たBeを添加しない鋼板はBeを除く上記同一成分を含
有するものとして、それぞれ熱延後の鋼板巻き取り温度
を550°C〜720°C1連続焼鈍温度を750°C
〜890 ’Cの間で変化させて異なる粒径の組織を得
たものである。第1図より、Be添加鋼板は同じ粒径で
も伸び特性に優れ、加工に際し肌あれが生じるのは望ま
しくないが、肌あれに至るまでの伸びも大であることが
わかる。すなわちBe添加鋼板は、加工後の表面特性に
優れる上、加工性の面でも比較銅板に比べ優れた特性を
示すことがわかる。
FIG. 1 shows the results of an investigation on the elongation and roughening properties of Be-added steel sheets, along with the properties of ordinary cold-rolled steel sheets without Be added. Note that the Be-added steel sheet used here was C:
0.0015-0.0035%, Si: 0.01%,
MnO, 1%, Al:o, 03 ~ 0.07%, N
: 0.002 to 0.005%, Ti: 0.02
~0.05%, Be: O, OO1~0.005%, and the steel sheet without Be added contains the same components as above except for Be, and the steel sheet winding temperature after hot rolling is 550 ° C. ~720°C1 continuous annealing temperature 750°C
-890'C to obtain structures with different grain sizes. From FIG. 1, it can be seen that the Be-added steel sheet has excellent elongation characteristics even with the same grain size, and although it is undesirable for roughness to occur during processing, the elongation until roughness occurs is also large. That is, it can be seen that the Be-added steel sheet not only has excellent surface properties after working, but also exhibits superior properties in terms of workability compared to the comparative copper sheet.

ここにBeは粒界に偏析しやすい元素と考えられるが、
その偏析効果は比較的弱いため、微細でありなから粒径
分布の広い混粒組織になり、これが表面性状、加工性と
もに優れた材質が得られる大きな要因であると考えられ
る。Beはこの他、粒界に偏析して加工材の脆化を抑制
する働きがあり、また鋼板表面に濃化して加工時におけ
る肌あれ等の表面欠陥を抑制し、さらに加工の際の重要
な特性である慴動性および耐型かじり性を向上させると
ともに、鋼板溶接時の熱影響部の強化にも有効であると
考えられる。
Here, Be is considered to be an element that tends to segregate at grain boundaries;
Since its segregation effect is relatively weak, it becomes a fine mixed grain structure with a wide grain size distribution, and this is considered to be a major factor in obtaining a material with excellent surface texture and workability. In addition, Be segregates at grain boundaries to suppress the embrittlement of processed materials, and it also concentrates on the surface of steel sheets to suppress surface defects such as roughness during processing, and is also an important factor during processing. It is thought to be effective in improving the characteristics of sliding properties and galling resistance, as well as strengthening the heat affected zone during welding of steel plates.

なお、鋼板の伸びは粒径が大きいほどよいとささてきた
が、これは実は主として比較的サイズの大きい結晶粒に
支配されるもので、従って平均粒径とともに混粒の度合
にも強く影響される。一方肌あれなどの加工に伴う表面
欠陥は前述のように粗大粒がなければ粒径の均一あるい
は不均一よりむしろ平均の粒径を小さいすることの効果
が大きいものと考えられる。むろん同一平均粒径では混
粒度の大きい方が最大粒の径も大きくなる傾向にあり不
利ではあるが、微細な混粒組織では微小な結晶粒が大き
めの粒の回転による表面微小欠陥の集中を防く効果があ
るために相殺されるものと考えられる。
It has been said that the larger the grain size, the better the elongation of steel sheets, but this is actually mainly controlled by relatively large crystal grains, and is therefore strongly influenced by the average grain size as well as the degree of mixed grains. Ru. On the other hand, surface defects such as roughness due to processing are considered to be caused by reducing the average grain size rather than by making the grain size uniform or non-uniform unless coarse grains are present as described above. Of course, for the same average grain size, the larger the mixed grain size, the larger the maximum grain size, which is disadvantageous, but in a fine mixed grain structure, the fine crystal grains prevent the concentration of surface micro defects due to the rotation of larger grains. This is thought to be offset by the protective effect.

次に、成分組成の限定理由について述べる。Next, the reason for limiting the component composition will be described.

Be : Beはこの発明において最も重要な元素であ
る。Beは元来粒界偏析傾向のある元素であり、その添
加量が0.01%を超えると加工性の著しい劣化を招く
一方、0.0001%未満ではその効果が期待できない
。よってBeの添加量は0.0001〜0.01%の範
囲とした。
Be: Be is the most important element in this invention. Be is an element that inherently has a tendency to segregate at grain boundaries, and if the amount added exceeds 0.01%, it will cause a significant deterioration in workability, while if it is less than 0.0001%, no effect can be expected. Therefore, the amount of Be added was set in the range of 0.0001 to 0.01%.

CTCは良好な伸び、r値を得るためには従来の低炭材
より低い極低炭素系でなければならない。
In order to obtain good elongation and r-value, CTC must be an extremely low carbon material that is lower than conventional low carbon materials.

とくに0.01%を超えると後述するようにTiの添加
量を増しても良好な深絞り性が得られなくなる。
In particular, if it exceeds 0.01%, good deep drawability cannot be obtained even if the amount of Ti added is increased, as will be described later.

よってCの添加量は0.01%以下とした。優れた加工
性を得るためには0.005%以下が好ましい。
Therefore, the amount of C added was set to 0.01% or less. In order to obtain excellent processability, the content is preferably 0.005% or less.

Si: Siはその添加量が0.1%超えると鋼板の伸
びおよび絞り性を劣化させるので0.1%以下とした。
Si: If the amount of Si added exceeds 0.1%, it deteriorates the elongation and drawability of the steel sheet, so it was set to 0.1% or less.

Mn: MnはSiと同様、過剰な添加は鋼板の伸びお
よび絞り性を劣化させるので1.0%以下とした。
Mn: Like Si, excessive addition of Mn deteriorates the elongation and drawability of the steel sheet, so the content was set to 1.0% or less.

Al: Alは脱酸などのために鋼中に多少残留するが
0.5%を超える添加は表面性状に悪影響を及ぼすので
0.5%以下に抑えなげればならない。好ましくは0.
1%以下がよい。
Al: Some amount of Al remains in the steel for deoxidation, etc., but addition of more than 0.5% has a negative effect on the surface quality, so it must be kept below 0.5%. Preferably 0.
1% or less is preferable.

NUNは深絞り性を劣化させるので0.01%以下とす
る。好ましくは0.005%以下がよい。
Since NUN deteriorates deep drawability, it should be kept at 0.01% or less. Preferably it is 0.005% or less.

Ti: TiはTiS 、 TiN 、 TiCなどの
形成による材質改善の効果が大きく、この発明では良好
な加工性を得るためのたすけとして用いる。そのために
は、Tiは少な(とも0.0005%添加する必要があ
る。
Ti: Ti has a great effect on improving material quality by forming TiS, TiN, TiC, etc., and is used in this invention to help obtain good workability. For this purpose, it is necessary to add a small amount of Ti (both 0.0005%).

一方その効果は0.1%程度で飽和しそれ以上の添加は
鋼板の表面性状の劣化につながり、またコスト的にも不
利となる。よってTiの添加量は0.0005〜0.1
%の範囲に限定した。なお、Tiの最適添加量はSXN
、、Cの量にもよるが、はぼ0.01〜0.05%であ
り、とくにBeが窒化物にならないように原子比でTi
/N≧1とするのが望ましい。
On the other hand, the effect is saturated at about 0.1%, and adding more than that leads to deterioration of the surface properties of the steel sheet and is also disadvantageous in terms of cost. Therefore, the amount of Ti added is 0.0005 to 0.1
% range. The optimum amount of Ti added is SXN
Although it depends on the amount of C, it is approximately 0.01 to 0.05%, and in particular, Ti is added in atomic ratio to prevent Be from becoming nitride.
It is desirable that /N≧1.

なお、この発明において鋼中の一般成分としてのS、P
についてはとくに限定する必要はないが、加工用冷延鋼
板としてはコストに見合った範囲で低減することが望ま
しく、上記のS、Pは両成分とも0.02%以下とする
のが好ましい。
In addition, in this invention, S, P as general components in steel
Although there is no need to specifically limit the amount of S and P, it is desirable to reduce the amount within a range commensurate with cost for a cold-rolled steel sheet for processing, and it is preferable that both of the above S and P components be 0.02% or less.

以上述べたところのほか、この発明においてはTiの効
果を補助してより高いr値を得るために炭窒化物形成元
素であるNb、V、Mo、Crの1種または2種以上を
Tiと複合添加することもでき、その場合でもこの発明
の特徴は失われない。ここに、Nb、 Vについては0
.03%、Moについては0.01%またCrは0.5
%を超える添加をしてもその効果は飽和し、コスト的に
も不利になり、一方各元素ともその効果を期待するため
には0.0005%以上の添加が必要である。よって、
Nbについては 0.0005〜0.03%、Vについ
ては0.0005〜0.03%、Moについては0.0
005〜0.01%、Crについては110005〜0
.5%とする。
In addition to the above, in this invention, one or more of carbonitride-forming elements Nb, V, Mo, and Cr are added to Ti in order to enhance the effect of Ti and obtain a higher r value. It is also possible to add them in combination, and even in that case, the features of the present invention are not lost. Here, 0 for Nb and V
.. 03%, 0.01% for Mo and 0.5 for Cr.
Even if the addition exceeds 0.0005%, the effect will be saturated and it will be disadvantageous in terms of cost.On the other hand, in order to expect the effect of each element, it is necessary to add 0.0005% or more. Therefore,
0.0005-0.03% for Nb, 0.0005-0.03% for V, 0.0 for Mo
005~0.01%, 110005~0 for Cr
.. 5%.

また炭化物析出の促進のためSb、 Cuのうちの1種
または2種の添加も有効であるが、これらは何れも0.
001%以上でその効果を表し、0.1%でその効果が
飽和する。よってsbおよびCuについてはそれぞれ0
.001〜0.1%とする。
It is also effective to add one or both of Sb and Cu to promote carbide precipitation, but neither of these is effective.
The effect is expressed at 0.001% or more, and the effect is saturated at 0.1%. Therefore, sb and Cu are each 0
.. 001 to 0.1%.

さらに、脆性の改善および細粒化の補助のためにBを添
加することもこの発明においては有効である。ここにB
の有効添加量はその下限がo、oooi%であり、一方
0.01%を超えると過剰な細粒化を招く。よってBに
ついては0.0001〜0.01%とする。
Furthermore, it is also effective in this invention to add B to improve brittleness and assist in grain refinement. here B
The lower limit of the effective addition amount is o, oooi%, and on the other hand, if it exceeds 0.01%, excessive grain refinement will occur. Therefore, B is set at 0.0001 to 0.01%.

なお、上述したNb、、V 、 MoXCr、 Sb、
 CuおよびBの添加はどのような組み合わせでも全く
支障はない。
In addition, the above-mentioned Nb, V, MoXCr, Sb,
There is no problem in adding Cu and B in any combination.

次に、上記の成分組成になる鋼を素材として鋼板を製造
する際に望ましい条件についてのべる。
Next, we will discuss desirable conditions when manufacturing a steel plate using steel having the above-mentioned composition as a raw material.

まず、製鋼、熱間圧延および冷間圧延については、常法
に従って行えばよく、とくにこの発明ではそれらの条件
の限定は必要としない。冷間圧延後の連続焼鈍の焼鈍温
度は、通常の如く再結晶温度以上であればよいが、より
望ましくは1次再結晶温度+30°C以上とするのがよ
い。これは、1次再結晶が充分に進行し、その一部がや
や粗大な2次再結晶粒となるほうがより理想的な混粒組
織を得やすいからである。また、Beを含有する鋼板の
場合、従来の鋼に比べ2次再結晶粒が粗大になりにくい
ので焼鈍温度の上限はとくに規定しないが、常識的には
A (3変態点以下で行うのが望ましい。
First, steel manufacturing, hot rolling, and cold rolling may be carried out according to conventional methods, and the present invention does not particularly require limitations on these conditions. The annealing temperature for continuous annealing after cold rolling may be at least the recrystallization temperature as usual, but more preferably at least the primary recrystallization temperature +30°C. This is because it is easier to obtain an ideal mixed grain structure when the primary recrystallization progresses sufficiently and some of the grains become slightly coarse secondary recrystallized grains. In addition, in the case of steel sheets containing Be, the secondary recrystallized grains are less likely to become coarse compared to conventional steels, so there is no particular upper limit for the annealing temperature, but common sense suggests that annealing should be carried out below the 3rd transformation point. desirable.

なお、焼鈍後の調質圧延も板形状の矯正などの目的で通
常常識の範囲((板厚(mm) )  %程度)で行っ
てかまわない。
Incidentally, the skin pass rolling after annealing may also be carried out within the range of common sense (approximately (plate thickness (mm) %) for the purpose of straightening the plate shape, etc.

(実施例) 表−1に示す成分組成になる鋼スラブを1250°Cに
加熱後、仕上げ温度900°C1巻取り温度600°C
という条件にて熱延、圧下率65〜75%で冷延を施し
て板厚1.0mm(7)鋼板としたのち、焼鈍を施した
(Example) After heating a steel slab with the composition shown in Table 1 to 1250°C, finishing temperature 900°C, winding temperature 600°C
A steel plate having a thickness of 1.0 mm (7) was obtained by hot rolling under these conditions and cold rolling at a rolling reduction of 65 to 75%, followed by annealing.

なお、供試鋼No、2については780°C(1次再結
晶温度+10°C)、それ以外は830°Cにて各1分
間の焼鈍を行った。また供試鋼No、12については固
溶Cの多量の残留を防ぐためにその後300°CX5分
間の過時効処理をおこなった。
Note that test steel No. 2 was annealed at 780°C (primary recrystallization temperature +10°C), and the others were annealed at 830°C for 1 minute each. Further, for test steel No. 12, in order to prevent a large amount of solid solution C from remaining, over-aging treatment was performed at 300° C. for 5 minutes.

得られた各鋼板より第2図(a)に示す如きサイズにな
る試料を切り出した後、プレス成形により第2図(b)
に示す形状に仕上げる深絞り成形をおこない、加工後に
おける各試料の表面性状を目視および表面粗度分析で4
段階評価をおこなった。その結果を、表−2に示す。な
お各試料のnおよびr値を表−1に示す。
After cutting out a sample of the size shown in Figure 2(a) from each of the obtained steel plates, it was press-formed to the size shown in Figure 2(b).
After deep drawing, the surface texture of each sample was visually inspected and analyzed for surface roughness.
A graded evaluation was performed. The results are shown in Table-2. Note that the n and r values of each sample are shown in Table 1.

表面性状の目視および表面粗度分析の4段階評価は◎:
はぼ加工前と変わらず、○:色褪が生じていて波長50
〜200μ■の成分中、振幅増加が2μmを超えるもの
がある場合(ただしΔ、×に相当するものを除く)、△
:裏表面凹凸が見られ、波長200〜1000μmの成
分中、振幅増加が10μmを超えるものがある場合(た
だし×に相当するものを除く)、 ×:肌あれ又は皺を
生じ、波長1000〜5000μmの成分中、振幅増加
が10011mを超えるものがある場合としてしめした
Visual inspection of surface texture and surface roughness analysis were evaluated in four stages: ◎:
Same as before processing, ○: Fading occurs, wavelength 50
If there is an amplitude increase exceeding 2 μm among the components of ~200 μ■ (excluding those corresponding to Δ and ×), △
: When unevenness is observed on the back surface, and some of the components with a wavelength of 200 to 1000 μm have an amplitude increase of more than 10 μm (excluding those corresponding to ×), ×: Skin roughness or wrinkles occur, and the wavelength is 1000 to 5000 μm Among the components, there is a case where the amplitude increase exceeds 10011 m.

なお上記の表面粗度分析はランダムにとった20開長の
線に沿って測定したプロフィルをもとに10〜5000
 p mの各波長成分の振幅(8M)を求め、また振幅
増加は加工後の振幅がら加工前の振幅(μm)の差より
求めた。
The above surface roughness analysis is based on a profile measured along a line of 20 randomly taken opening lengths of 10 to 5,000.
The amplitude (8M) of each wavelength component of pm was determined, and the amplitude increase was determined from the difference between the amplitude after processing and the amplitude before processing (μm).

表−1および表−2より明らかなように、比較材では加
工性に劣るものが多く加工後における表面性状の劣化が
著しいが、この発明に従う鋼板は加工性、加工後の表面
性状がともに良好であることが確かめられた。
As is clear from Tables 1 and 2, many of the comparative materials have poor workability and the surface quality deteriorates significantly after processing, but the steel sheet according to the present invention has good workability and surface quality after processing. It was confirmed that.

(発明の効果) この発明によれば、プレス成形等の加工性に優れしかも
加工後の表面性状が均一でかつ劣化のない冷延鋼板を、
工程的に無理なく製造することができる。
(Effects of the Invention) According to the present invention, a cold-rolled steel sheet that has excellent workability such as press forming, has a uniform surface texture after processing, and is free from deterioration.
It can be manufactured easily in terms of process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、結晶粒度と全伸びの関係を示すグラフ、 第2図(a)、 (b)は、実施例における鋼板の加工
要領の説明図である。 第1図 結晶a皮(Cr。 N、)
FIG. 1 is a graph showing the relationship between grain size and total elongation, and FIGS. 2(a) and 2(b) are illustrations of processing procedures for steel sheets in Examples. Figure 1 Crystal a skin (Cr. N,)

Claims (1)

【特許請求の範囲】 1、C:0.01wt%以下、 Si:0.1wt%以下、 Mn:1.0wt%以下、 Al:0.5wt%以下、 N:0.01wt%以下、 Be:0.0001〜0.01wt%およびTi:0.
0005〜0.1wt% を含み残部Feおよび不可避的不純物からなる、加工性
および加工後の表面性状に優れた冷延鋼板。 2、C:0.01wt%以下、 Si:0.1wt%以下、 Mn:1.0wt%以下、 Al:0.5wt%以下、 N:0.01wt%以下、 Be:0.0001〜0.01wt%およびTi:0.
0005〜0.1wt%、 を含み、さらに Nb:0.0005〜0.03wt%、 V:0.0005〜0.03wt%、 Mo:0.0005〜0.01wt%、 Cr:0.0005〜0.50wt%、 Cu:0.0010〜0.10wt%、 Sb:0.0010〜0.10wt%およびB:0.0
001〜0.01wt% のうちの少なくとも1種を含み残部Feおよび不可避的
不純物からなる、加工性および加工後の表面性状に優れ
た冷延鋼板。
[Claims] 1. C: 0.01wt% or less, Si: 0.1wt% or less, Mn: 1.0wt% or less, Al: 0.5wt% or less, N: 0.01wt% or less, Be: 0.0001-0.01wt% and Ti:0.
0005 to 0.1 wt% with the remainder being Fe and unavoidable impurities, the cold rolled steel sheet has excellent workability and surface quality after processing. 2. C: 0.01 wt% or less, Si: 0.1 wt% or less, Mn: 1.0 wt% or less, Al: 0.5 wt% or less, N: 0.01 wt% or less, Be: 0.0001 to 0. 01wt% and Ti:0.
0005 to 0.1 wt%, and further contains Nb: 0.0005 to 0.03 wt%, V: 0.0005 to 0.03 wt%, Mo: 0.0005 to 0.01 wt%, Cr: 0.0005 to 0.50wt%, Cu: 0.0010-0.10wt%, Sb: 0.0010-0.10wt% and B: 0.0
001 to 0.01 wt%, with the remainder being Fe and unavoidable impurities, and having excellent workability and surface quality after processing.
JP31963788A 1988-12-20 1988-12-20 Cold rolled steel sheet excellent in workability and surface characteristic after working Pending JPH02166259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31963788A JPH02166259A (en) 1988-12-20 1988-12-20 Cold rolled steel sheet excellent in workability and surface characteristic after working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31963788A JPH02166259A (en) 1988-12-20 1988-12-20 Cold rolled steel sheet excellent in workability and surface characteristic after working

Publications (1)

Publication Number Publication Date
JPH02166259A true JPH02166259A (en) 1990-06-26

Family

ID=18112519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31963788A Pending JPH02166259A (en) 1988-12-20 1988-12-20 Cold rolled steel sheet excellent in workability and surface characteristic after working

Country Status (1)

Country Link
JP (1) JPH02166259A (en)

Similar Documents

Publication Publication Date Title
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
JP7275137B2 (en) Steel plate with excellent toughness, ductility and strength and method for producing the same
JP4811528B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4525450B2 (en) High strength and high ductility steel sheet for cans and method for producing the same
EP1741800A1 (en) Steel sheet for can and method for production thereof
US10301700B2 (en) Method for producing a steel component
JP5924459B1 (en) Stainless steel for cold rolled steel
MX2007013677A (en) Cold rolled steel sheet having superior formability , process for producing the same.
JP3451830B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and workability and method for producing the same
EP3239335B1 (en) Ferritic stainless steel having excellent ductility and method for manufacturing same
JP5993570B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dip cold-rolled steel sheet, and cold-rolled steel sheet with excellent bake hardenability
JPH08253818A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP4471486B2 (en) Medium and high carbon steel plates with excellent deep drawability
JP2009500524A (en) Deep drawing thin steel sheet having excellent secondary work brittleness resistance, fatigue characteristics and plating characteristics, and its manufacturing method
WO2021020439A1 (en) High-strength steel sheet, high-strength member, and methods respectively for producing these products
JPH07310122A (en) Production of ferritic stainless steel strip having excellent bulging formability
JP3840855B2 (en) High-strength thin steel sheet with excellent secondary work brittleness resistance and formability and method for producing the same
JPS63100134A (en) Manufacture of cold rolled steel sheet for extra deep drawing of thick product
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JPH02166259A (en) Cold rolled steel sheet excellent in workability and surface characteristic after working
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
KR20200076789A (en) High strength cold rolled steel sheet having excellent burring property and manufacturing method for the same
JP4380010B2 (en) Ultra-low carbon cold-rolled steel sheet excellent in homogeneity and surface appearance after forming and method for producing the same
KR0146798B1 (en) Method for manufacturing ferritic stainless steel