JPH02166237A - Operation of autogenous furnace - Google Patents

Operation of autogenous furnace

Info

Publication number
JPH02166237A
JPH02166237A JP32172888A JP32172888A JPH02166237A JP H02166237 A JPH02166237 A JP H02166237A JP 32172888 A JP32172888 A JP 32172888A JP 32172888 A JP32172888 A JP 32172888A JP H02166237 A JPH02166237 A JP H02166237A
Authority
JP
Japan
Prior art keywords
steam
amount
heat
furnace
mcal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32172888A
Other languages
Japanese (ja)
Inventor
Kenichi Moriyama
森山 健一
Sadaji Aono
青野 貞二
Harumasa Kurokawa
晴正 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP32172888A priority Critical patent/JPH02166237A/en
Publication of JPH02166237A publication Critical patent/JPH02166237A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0033Optimalisation processes, i.e. processes with adaptive control systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To operate an autogenous furnace at the minimum energy cost by using the material balance model and heat balance model of the furnace and its equipment at the time of operating the furnace for producing the copper sheet from a copper sulfide concentrate. CONSTITUTION:The copper sulfide concentrate 10 is dried in a drying furnace 3 by the hot air 11 from a hot air stove 2, supplied to the autogenous furnace 1, and melt- refined into the matte 24 of copper by the combustion heat of fuel and air. The matte is sent to a converter 25 and oxidation-refined into crude copper. In this case, the high-temp. exhaust gas 17 from the furnace 1 is sent to a waste-heat boiler 4 to generate steam 18. The steam is heated in a steam heater 5 by a fuel 21 (heavy oil or coal), and sent to an air preheater 6. The heated air is utilized to dry the concentrate 10. A part of the steam 18 is injected with water by a temp.-reducing water injector 7, and the temp. is controlled. The steam is heated to a specified temp. by a steam reheater 8 along with the steam 19 from a converter boiler, and utilized in a generator steam turbine 9. The conditions to minimize the energy cost for the whole furnace system are obtained by an electronic computer from the material and heat balance models in the furnace system. The furnace is operated under such conditions always at the minimum energy cost irrespective of the variations in the operational condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は銅などの硫化精鉱を主原料とし酸を産出する
自熔炉、及び自熔炉に付帯するエネルギ−利用設備の操
業方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a flash smelting furnace that produces acid using sulfide concentrates such as copper as a main raw material, and a method of operating energy utilization equipment attached to the flash smelting furnace. be.

〔従来の技術〕[Conventional technology]

従来より、銅などの硫化精鉱を原料とする自熔炉におい
ては、例えば自熔炉の廃熱回収や、精鉱を予熱乾燥する
ために第1図に示すような種々の装置を組合せ、自熔炉
付帯設備として用いている。
Traditionally, flash melting furnaces that use sulfide concentrates such as copper as raw materials have been equipped with various devices such as those shown in Figure 1 in order to recover the waste heat of the flash melting furnace and to preheat and dry the concentrate. It is used as ancillary equipment.

この自熔炉と自熔炉付帯設備は、自熔炉1と該自熔炉I
Gこ装入する原料精鉱を乾燥するための熱風炉2を備え
た乾燥炉3と、前記自熔炉IGこ接続された廃熱ボイラ
ー4と、該廃熱ボイラー4と結合された蒸気加熱器5と
、該蒸気加熱器5と結合された空気予熱器6と、該空気
予熱器6と減温注水器7を経由して結合された蒸気再熱
器8と、該蒸気再熱器8より得た蒸気により発電を行な
う蒸気タービン9とからなり、その使用に際しては自熔
炉1に装入する原料精鉱IOを乾燥炉3で、熱風炉2で
燃料(重油)20を燃焼させて発生した熱風11と、蒸
気加熱器5で燃料(重油・石炭〕21を燃焼した排ガス
12及び蒸気再熱器8で燃料(重油)22を燃焼した排
ガス13を用いて乾燥し、得た乾燥原料精鉱14を燃料
(重油・石炭)15や反応用空気16と共に自熔炉1内
に装入し、乾燥原料精鉱14を酸化溶解する。そして、
発生した廃ガス17を廃熱ボイラー4Gこ導入し、蒸気
18を発生させる。発生した蒸気18は蒸気加熱器5に
導入し、必要とする温度になるまで加熱し、その後空気
予熱器6に送る。蒸気加熱器5で発生した燃焼排ガス1
2は、前記したように乾燥炉3に導入し原料精鉱10の
乾燥に用いる。空気予熱器6では前記自熔炉1に用いる
反応用空気16を予熱するが、蒸気18は必要があれば
、減温注水器7で注水して温度を調節し、転炉ボイラー
蒸気19と合わせて蒸気再熱器8で所定温度まで昇温す
る。
The flash-melting furnace and the flash-melting furnace auxiliary equipment include the flash-melting furnace 1 and the flash-melting furnace I.
A drying furnace 3 equipped with a hot blast furnace 2 for drying the raw material concentrate to be charged, a waste heat boiler 4 connected to the flash melting furnace IG, and a steam heater coupled to the waste heat boiler 4. 5, an air preheater 6 coupled to the steam heater 5, a steam reheater 8 coupled to the air preheater 6 via a cooling water injector 7, and from the steam reheater 8. It consists of a steam turbine 9 that generates electricity using the obtained steam, and when used, the raw material concentrate IO to be charged into the flash smelting furnace 1 is generated by burning the raw material concentrate IO in the drying furnace 3 and the fuel (heavy oil) 20 in the hot blast furnace 2. Dry raw material concentrate obtained by drying using hot air 11, exhaust gas 12 from burning fuel (heavy oil/coal) 21 in steam heater 5, and exhaust gas 13 from burning fuel (heavy oil) 22 in steam reheater 8. 14 is charged into the flash melting furnace 1 together with fuel (heavy oil/coal) 15 and reaction air 16, and the dry raw material concentrate 14 is oxidized and dissolved.
The generated waste gas 17 is introduced into a waste heat boiler 4G to generate steam 18. The generated steam 18 is introduced into the steam heater 5, heated to the required temperature, and then sent to the air preheater 6. Combustion exhaust gas 1 generated in steam heater 5
2 is introduced into the drying furnace 3 and used for drying the raw material concentrate 10 as described above. The air preheater 6 preheats the reaction air 16 used in the flash-melting furnace 1, and if necessary, the steam 18 is injected with a cooling water injector 7 to adjust the temperature, and is combined with the converter boiler steam 19. The steam reheater 8 raises the temperature to a predetermined temperature.

蒸気再熱器8で発生した燃焼排ガス13は、乾燥炉3に
導入し原料精鉱10の乾燥に用いる。蒸気再熱器8で昇
温した蒸気は蒸気タービン9に送り発電に用いる。
The combustion exhaust gas 13 generated in the steam reheater 8 is introduced into the drying furnace 3 and used for drying the raw material concentrate 10. The steam heated in the steam reheater 8 is sent to a steam turbine 9 and used for power generation.

ところで、上記自熔炉及び自熔炉付帯設備全体のエネル
ギーコストを低下させるため乾燥炉入口の温度を500
〜650 Uに維持し、熱風炉で使用する燃料を最小限
とする操業方法が特開昭62−263934号公報に開
示されている。
By the way, in order to reduce the energy cost of the above-mentioned flash-melting furnace and the flash-melting furnace auxiliary equipment as a whole, the temperature at the drying furnace entrance was set at 500°C.
JP-A No. 62-263934 discloses an operating method that maintains the air pressure at ~650 U and minimizes the amount of fuel used in the hot stove.

しかし、自熔炉で使用している反応用空気の酸素富化の
割合を操業状況に合わせ変動させる場合等には、上記操
業方法は満足できるものではない。
However, the above operating method is not satisfactory in cases where the oxygen enrichment ratio of the reaction air used in the flash-melting furnace is varied depending on the operating conditions.

即ち、 (1)酸素富化の割合を増加させた場合低酸素富化操業
より高酸素富化操業に変更した場合には反応用空気の体
積が減少し、これに伴い自熔炉1の排ガス17の体積も
減少する。しかし排ガス17の温度はあまり変化しない
ので、廃熱ボイラー4からの発生する蒸気]8の量が減
少する。又反応用空気体積の減少に比例して蒸気加熱器
5及び蒸気再熱器9の各々の燃料21及び22が減少し
、これらの燃焼排ガス12及び13の母も減少する。そ
の結果、乾燥炉3への供給熱量が不足し、熱風炉2の燃
料20の使用量を増加させなければならない。又、空気
予熱器6では、予熱すべき反応用空気16の量の減少の
効果が発生蒸気18の量の減少の効果より大さく、その
結果、空気予熱器6の出口蒸気温度は上昇する。そこで
蒸気再熱器8で補熱するための燃料使用量をバーナーで
の燃焼が困難になる程度まで低下させ、減温注水器7に
より注水を行ない蒸気再熱器8の入口蒸気温度を下げる
が、転炉廃熱ボイラー蒸気19の流入がない場合には減
温注水器7の能力上限まで注水しても蒸気再熱器8の入
口蒸気温度が重油バナーの安定して燃焼しうる蒸気温度
まで下がらないという事態が生じる。
That is, (1) When increasing the oxygen enrichment ratio When changing from low oxygen enrichment operation to high oxygen enrichment operation, the volume of reaction air decreases, and as a result, the exhaust gas 17 of the flash furnace 1 decreases. The volume of will also decrease. However, since the temperature of the exhaust gas 17 does not change much, the amount of steam generated from the waste heat boiler 4 decreases. Further, in proportion to the decrease in the reaction air volume, the fuels 21 and 22 in the steam heater 5 and the steam reheater 9 decrease, and the base of these combustion exhaust gases 12 and 13 also decreases. As a result, the amount of heat supplied to the drying oven 3 becomes insufficient, and the amount of fuel 20 used in the hot blast oven 2 must be increased. Furthermore, in the air preheater 6, the effect of reducing the amount of reaction air 16 to be preheated is greater than the effect of reducing the amount of generated steam 18, and as a result, the outlet steam temperature of the air preheater 6 increases. Therefore, the amount of fuel used for reheating in the steam reheater 8 is reduced to the extent that combustion in the burner becomes difficult, and water is injected by the cooling water injector 7 to lower the steam temperature at the inlet of the steam reheater 8. If there is no inflow of converter waste heat boiler steam 19, even if water is injected to the upper limit of the capacity of the cooling water injector 7, the inlet steam temperature of the steam reheater 8 will not reach the steam temperature at which heavy oil banner can be stably combusted. A situation arises where it does not go down.

(2)酸素富化の割合を低下させた場合高酸素富化操業
より低酸素富化操業に変更した場合には、反応用空気の
体積が増加し、これに伴い自熔炉1の排ガス17の体積
も増加する。しかし排ガス17の温度はあまり変らない
ので、廃熱ボイラー4で発生する蒸気18の量が増加す
る。
(2) When reducing the oxygen enrichment rate When changing from high oxygen enrichment operation to low oxygen enrichment operation, the volume of reaction air increases, and as a result, the exhaust gas 17 of the flash furnace 1 increases. The volume also increases. However, since the temperature of the exhaust gas 17 does not change much, the amount of steam 18 generated in the waste heat boiler 4 increases.

又、増加した反応用空気16を所定の温度まで加熱する
ために、蒸気加熱器5の燃料21を多く燃焼して出口蒸
気温度を装置の上限まで上げるようにすると蒸気加熱器
5の排ガス12の容積も増加し、乾燥炉3に導入される
蒸気加熱器排ガス12の持込み熱量が増加して入熱過剰
となり熱風炉2の燃料使用量がバーナーの安定操業が困
難になる程度まで低下させなければならなくなるが、燃
焼を停止しても熱過剰となり、乾燥炉3内で原料精鉱1
0が燃焼するのを防止するために排ガス12の一部を大
気中に放出しなければならない事態が生ずる。
Furthermore, in order to heat the increased reaction air 16 to a predetermined temperature, a large amount of the fuel 21 in the steam heater 5 is combusted to raise the outlet steam temperature to the upper limit of the device. The volume also increases, and the amount of heat brought in by the steam heater exhaust gas 12 introduced into the drying furnace 3 increases, resulting in excessive heat input and the amount of fuel used in the hot blast furnace 2 must be reduced to the extent that stable operation of the burner becomes difficult. However, even if the combustion is stopped, there will be excess heat, and the raw material concentrate 1 will be lost in the drying furnace 3.
A situation arises in which part of the exhaust gas 12 must be released into the atmosphere in order to prevent the combustion of the exhaust gas 12.

(3)゛乾燥炉での精鉱処理量が減少した場合この場合
にも入熱過剰となり熱風炉3の燃料使用量がバーナーの
安定操業が困難になる程度までするのを防止するため1
こ排ガスの一部を大気中に放出しなければならないとい
う事態が生ずる。
(3) ``If the amount of concentrate processed in the drying furnace decreases, in this case too, excessive heat input will occur, and in order to prevent the amount of fuel used in the hot blast furnace 3 from reaching a level where stable operation of the burner becomes difficult, 1
A situation arises in which part of the exhaust gas must be released into the atmosphere.

このような事態が発生したとき、全体的な影響を考慮し
つつエネルギーコストを最小にするように操業条件を変
更しなければならないが、前記操業方法では酸素富化量
の変化等に対応しされず、別途、熟練工による経験と勘
に頼り操業条件を決定せざるを得す、必ずしもエネルギ
ーコストを最小にする操業条件で操業呂来なかった。
When such a situation occurs, operating conditions must be changed to minimize energy costs while considering the overall impact, but the operating method described above does not accommodate changes in oxygen enrichment, etc. However, the operating conditions had to be determined separately based on the experience and intuition of skilled workers, and it was not always possible to operate under operating conditions that would minimize energy costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、酸素富化の割合の変動等に拘らず、自
熔炉及びその付帯設備の操業条件を常に系全体でエネル
ギーコストが最小となるように迅速に定め、操業するこ
とにある。
An object of the present invention is to quickly determine and operate the operating conditions of a flash melting furnace and its auxiliary equipment so that the energy cost of the entire system is always minimized, regardless of changes in the oxygen enrichment ratio.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、石炭及び/又は重油を補助燃料として使用す
る自熔炉と、該自熔炉の排ガスより熱回収する廃熱ボイ
ラーと;該廃熱ボイラーからの蒸気を石炭及び/又は重
油の燃焼により加熱する蒸気加熱器と;該蒸気加熱器で
加熱された蒸気により自熔炉に供給する酸素を富化した
反応用空気を石炭及び/又は重油の燃焼により予熱する
空気予熱器と;該空気予熱器を経た蒸気を重油の燃焼に
より再加熱する蒸気再熱器と;該蒸気再熱器を経た蒸気
により運転される発電機運転用の蒸気タービンと;前記
蒸気加熱器及び蒸気再熱器の排ガスと、熱風炉での重油
の燃焼により得られた熱風とにより自熔炉に供給する原
料精鉱を乾燥する乾燥炉とを備えた自熔炉の操業方法に
おいて:自熔炉での物質収支バランスより生成する各物
質量を求めながら、下記[1]〜[3]式を組合せた線
形計画法による第1のLPモデルを解き廃熱ボイラーで
の発生蒸気量を求め、この値を用いて下記[1]〜[3
]式を用いて作成した第2のLPモデルを解き反応用空
気温度が収束するまで計算して重油使用量及び石炭使用
量を求め、次にこの重油使用量及び石炭使用量、前記廃
熱ボイラーでの発生蒸気量から求められる蒸気タービン
での発電量、及び必要とされる総電力量を用いてエネル
ギーコストを算出し、得られたエネルギーコストが最少
となるまで上記計算を繰り返すことGこより、最適操業
条件となる自熔炉での補助燃料としての重油使用量、蒸
気加熱器での重油使用量、蒸気再熱器での重油使用量、
熱風炉での重油使用量、自熔炉での補助燃料としての石
炭使用量、及び蒸気加熱器での石炭使用量を得、この値
に従い操業を行なうことを特徴とする自熔炉の操業方法
にある。
The present invention provides a flash melting furnace that uses coal and/or heavy oil as auxiliary fuel; a waste heat boiler that recovers heat from the exhaust gas of the flash furnace; steam from the waste heat boiler is heated by combustion of coal and/or heavy oil. an air preheater that preheats oxygen-enriched reaction air to be supplied to the flash furnace by the steam heated by the steam heater; an air preheater that preheats oxygen-enriched reaction air by burning coal and/or heavy oil; a steam reheater that reheats the steam that has passed through the steam reheater by burning heavy oil; a steam turbine for operating a generator that is driven by the steam that has passed through the steam reheater; an exhaust gas from the steam heater and the steam reheater; In a method for operating a flash melting furnace equipped with hot air obtained by burning heavy oil in a hot blast furnace and a drying furnace that dries the raw material concentrate supplied to the flash melting furnace: Each substance produced from the material balance in the flash melting furnace. While determining the amount, solve the first LP model by linear programming combining the following formulas [1] to [3] to determine the amount of steam generated in the waste heat boiler, and use this value to calculate the following [1] to [3]. 3
] Solve the second LP model created using the formula and calculate until the reaction air temperature converges to obtain the heavy oil usage and coal usage, and then calculate the heavy oil usage and coal usage, and the waste heat boiler. Calculate the energy cost using the amount of power generated by the steam turbine determined from the amount of steam generated at , and the total amount of electricity required, and repeat the above calculation until the obtained energy cost is minimized. The amount of heavy oil used as auxiliary fuel in the flash-melting furnace, the amount of heavy oil used in the steam heater, the amount of heavy oil used in the steam reheater, which is the optimal operating condition.
A method for operating a flash-melting furnace, characterized in that the amount of heavy oil used in the hot blast furnace, the amount of coal used as auxiliary fuel in the flash-melting furnace, and the amount of coal used in the steam heater are obtained, and the operation is performed according to these values. .

Qoono−Q8+QF8−(Qao+Q6、+QS、
。2+Qo)+Q8.    ■Q  +X Xq  
+Y Xq  +Q、a、−Qm、+Q、+Q、8■C
onCI   oil    I   coal十Lo
ss ■ Q8a8=WXqW+Qwg+LO°・W×(a2+b
2×t2)+X2×qo工、十Y2×qoo8□   
         ■−WX (a’2+b′2Xt′
2)+Q8b、+LossW×(a′2+b′2×t′
2)=WX(a″2+b″2×T″2)■十S  X(
(t′2−T、) + (T”2−25) )Xi/2
XK+Lossp W×(a″2+b″2×T″2)+X3×qo工、=W
×(a3+b3×t3)+Qrb8+LOSS■Q6b
8+Qrbg+x4×qo工1−Qdo+QdW+Qd
g+L0°8       ■上記各式中において、 Q  −精鉱反応により発生する熱量(Meal/H)
onc Q −硫黄の燃焼により発生する熱i (Mcaj/H
)Q、F8=鉄の酸化により発生する熱量(Mcal/
H)Q =装入精鉱の分解に必要とされる熱量(Mca
l/H)a Q =装入煙灰の分解に必要とされる熱量(McaA/
H)i Q8□。2−装入珪酸鉱の分解に必要とされる熱量(M
eal/H) Q −装入雑物の分解に必要とされる熱量(Mcat/
H)Q −暖の生成により発生する熱量 (Mcal/
H)sf X −自熔炉で補助燃料として燃焼させる重油量(kg
/l() q  −重油の単位発熱量     (Kc a l/
kQX 10−3)Y −自熔炉で補助燃料として燃焼
させる石炭量(kg/H) qcoal−石炭の単位発熱if     (K c 
a l/kg×10−3)Q、−自熔炉で使用する反応
用空気の保有熱量(MOa l/H) Q −自熔炉内の反応で生成する賊の保有熱量(Mca
l/H) Q −自熔炉内で生成する暖の保有熱量(lvlqa7
/H)I Q  −自熔炉内の反応で生成する廃ガスのas 保有熱量          (MOal/H)Los
s−ロス熱El            (Mcal/
H)W−廃熱ボイラーで発生する蒸気量 (T/I()
q −廃熱ボイラーで発生する蒸気の単位蒸発熱(Mc
aJ/T) Q −排熱ボイラー排ガス保有熱量 (Mc al/H
)g a −蒸気加熱器入口蒸気の単位蒸気当りの比熱を求め
るための定数       (McaJ/T)b2−蒸
気加熱器入口蒸気の単位蒸気当りの比熱を求めるための
係数      (Mc a l/T−c)t −蒸気
加熱器入口蒸気温度   (tl?)a′2−蒸気加熱
器出口蒸気の単位蒸気当りの比熱を求めるための定数 
     (McaA/T)b′2−蒸気加熱器出口蒸
気の単位蒸気当りの比熱を求めるための係数     
 (Mc ELI/T−’C)t′−蒸気加熱器出口蒸
気温度    (c)X −蒸気加熱器での重油使用量
  (kg/H)Y =蒸気加熱器での石炭使用量  
(kg/ H)Qsbg−蒸気加熱器で発生する排ガス
の保有熱量(Mehl/H) a″2−空気予熱器出口蒸気の単位蒸気当りの比熱を求
めるための定数      (Mcal/T)b″2−
空気予熱器出口蒸気の単位蒸気当りの比熱を求めるため
の係数      (Mca7!/T−U)T J/−
空気予熱器出口蒸気温度    (c)S =空気予熱
器伝熱面積     (イ)p T −反応用空気温度        (tr)25−
空気予熱器入口空気温度    1)K=総括伝熱係数
         (Kca4J−H−tXlo −3
)X−蒸気再熱器で使用する重油量 (kg/ H)a
 −蒸気再熱器出口蒸気の単位蒸気当りの比熱を求める
ための定数     (McaJ/T)b −蒸気再熱
器出口蒸気の単位蒸気当りの比熱を求めるための係数 
    (Mcal/T−tr)t =蒸気再熱器出口
蒸気温度   (1?、)Q =蒸気再熱器排ガス保有
熱   (Mc a t/H)bg X −熱風炉で使用する重油量   (kg/H)Q 
=乾燥後の原料の持去熱量   (Mcal/H)a Q −乾燥により除去された水分の蒸発熱量w (Mc a l/H) Q −熱風炉で発生する排ガスの保有熱量g (McaJ/H) 〔作用〕 本発明では自熔炉及びその付帯設備の物質収支モデルと
熱収支モデルとを用いて電子計算機により系全体でエネ
ルギーコストが最小となる条件を求めるが、以下各装置
における操業概要と関連する物質収支モデルと熱収支モ
デルについて説明する。
Qoono-Q8+QF8-(Qao+Q6, +QS,
. 2+Qo)+Q8. ■Q +X Xq
+Y Xq +Q, a, -Qm, +Q, +Q, 8■C
onCI oil I coal ten Lo
ss ■ Q8a8=WXqW+Qwg+LO°・W×(a2+b
2 x t2) + X2 x qo engineering, 1 Y2 x qoo8□
■-WX (a'2+b'2Xt'
2) +Q8b, +LossW×(a'2+b'2×t'
2)=WX(a″2+b″2×T″2)■10S X(
(t'2-T,) + (T"2-25) )Xi/2
XK+Lossp W×(a″2+b″2×T″2)+X3×qo engineering,=W
×(a3+b3×t3)+Qrb8+LOSS■Q6b
8+Qrbg+x4×qo 1-Qdo+QdW+Qd
g+L0°8 ■In each of the above formulas, Q - amount of heat generated by concentrate reaction (Meal/H)
onc Q - Heat generated by combustion of sulfur i (Mcaj/H
) Q, F8 = amount of heat generated by oxidation of iron (Mcal/
H) Q = amount of heat required for decomposition of charged concentrate (Mca
l/H) a Q = amount of heat required for decomposition of charged smoke ash (McaA/
H)i Q8□. 2-The amount of heat required for the decomposition of the charged silicate ore (M
eal/H) Q - Amount of heat required for decomposition of charge miscellaneous material (Mcat/H)
H) Q - amount of heat generated by the generation of warmth (Mcal/
H) sf
/l() q - Unit calorific value of heavy oil (Kc a l/
kQX 10-3) Y - Amount of coal burned as auxiliary fuel in a flash-melting furnace (kg/H) qcoal - Unit heat generation of coal if (K c
a l/kg×10-3) Q, - Heat capacity of the reaction air used in the flash melting furnace (MOa l/H) Q - Heat capacity of the air generated by the reaction in the flash melting furnace (Mca
l/H) Q - The amount of heat generated in the flash-melting furnace (lvlqa7
/H) I Q - as Heat capacity of the waste gas generated by the reaction in the flash-melting furnace (MOal/H)Los
s-loss heat El (Mcal/
H) W - Amount of steam generated in the waste heat boiler (T/I()
q - unit heat of vaporization of steam generated in the waste heat boiler (Mc
aJ/T) Q - Exhaust heat boiler exhaust gas retained heat (Mc al/H
) g a - Constant for determining the specific heat per unit steam of the steam at the inlet of the steam heater (McaJ/T) b2 - Coefficient for determining the specific heat per unit steam of the steam at the inlet of the steam heater (Mc a l/T- c) t - Steam temperature at the inlet of the steam heater (tl?) a'2 - Constant for determining the specific heat per unit steam of the steam at the outlet of the steam heater
(McaA/T) b'2 - Coefficient for determining specific heat per unit steam of steam heater outlet steam
(Mc ELI/T-'C) t' - Steam temperature at the outlet of the steam heater (c) X - Amount of heavy oil used in the steam heater (kg/H) Y = Amount of coal used in the steam heater
(kg/H) Qsbg - Heat capacity of the exhaust gas generated in the steam heater (Mehl/H) a''2 - Constant for determining the specific heat per unit steam of air preheater outlet steam (Mcal/T) b''2 −
Coefficient for determining specific heat per unit steam of air preheater outlet steam (Mca7!/T-U)T J/-
Air preheater outlet steam temperature (c) S = Air preheater heat transfer area (a) p T - Reaction air temperature (tr) 25 -
Air preheater inlet air temperature 1) K = overall heat transfer coefficient (Kca4J-H-tXlo -3
)X-Amount of heavy oil used in the steam reheater (kg/H)a
- Constant for determining the specific heat per unit steam of the steam at the steam reheater outlet (McaJ/T)b - Coefficient for determining the specific heat per unit steam of the steam at the steam reheater outlet
(Mcal/T-tr) t = Steam temperature at the outlet of the steam reheater (1?,) Q = Heat retained in the exhaust gas of the steam reheater (Mc a t/H)bg X - Amount of heavy oil used in the hot blast furnace (kg/ H)Q
= Amount of heat removed from the raw material after drying (Mcal/H) a Q - Amount of heat of evaporation of the water removed by drying w (Mcal/H) Q - Amount of heat retained in the exhaust gas generated in the hot air stove g (McaJ/H ) [Operation] In the present invention, a computer calculates the conditions under which the energy cost is minimized for the entire system using a material balance model and a heat balance model for the flash furnace and its ancillary equipment. We will explain the material balance model and heat balance model.

(1)各装置における操業概要と関連する物質収支モデ
ルと熱収支モデル ■自熔炉熱収支 自熔炉1では、粉状の原料精鉱10と7ラツクスと補助
燃料15等が予熱空気等の反応用空気16と共に精鉱バ
ーナーから炉内に吹込まれ、この原料精鉱10中の可燃
成分である硫黄と鉄とが反応用気体16と反応し、溶体
はセトラ一部に溜められ、セトラ一部では溶体は比重差
によって2 FaO・SiOを主成分とする銹と、Cu
2SとFsSとの混合物である鍼24とに分離される。
(1) Overview of operation in each device and related material balance model and heat balance model ■ Flash melting furnace heat balance In the flash melting furnace 1, powdered raw material concentrates 10 and 7 lux, auxiliary fuel 15, etc. are used for reactions such as preheated air. The raw material concentrate 10 is blown into the furnace from a concentrate burner together with air 16, and sulfur and iron, which are combustible components in this raw material concentrate 10, react with the reaction gas 16, and the solution is stored in a part of the settler. Depending on the difference in specific gravity, the solution is divided into rust whose main components are 2FaO・SiO and Cu.
The needle 24 is a mixture of 2S and FsS.

そして、暖は自熔炉外に排出され、錨24は次工程の転
炉25の要請に応じて自熔炉1より間欠的に抜出される
。又、燃焼排ガス17は廃熱ボイラー4に供給する。
Then, the heat is discharged to the outside of the flash melting furnace, and the anchor 24 is intermittently extracted from the flash melting furnace 1 in response to a request from the converter 25 in the next process. Further, the combustion exhaust gas 17 is supplied to the waste heat boiler 4.

この自熔炉1での物質収支モデルは で示される。こ\において、 Moo  −装入精鉱M        (’r7旧M
d□−装人煙灰量        (T/H)M  −
装入硅酸鉱量       (T/H)M −装入雑物
量         (T/H)Mai r−装入精鉱
の反応に必要な酸素i(T/H)M =生成鉱量   
       (T/H)Ms□=生成媛量     
     (T/H)M、。=発生煙灰量      
   (T/H)M  =発生排ガス量       
(T/H’ )as である。
The material balance model in this flash-melting furnace 1 is shown as follows. In this case, Moo - Charging concentrate M ('r7 old M
d□-Amount of smoke ash (T/H)M-
Charged amount of silicic acid (T/H)M - Charged amount of miscellaneous materials (T/H)Mair - Oxygen required for reaction of charged concentrate (T/H)M = Production amount
(T/H) Ms□=Amount of production volume
(T/H) M. = Amount of smoke and ash generated
(T/H)M = amount of exhaust gas generated
(T/H')as.

又、この反応に必要とされる反応用空気16の量−Ma
ir(Nm7H)は次式で示される。
Also, the amount of reaction air 16 required for this reaction - Ma
ir(Nm7H) is expressed by the following formula.

Ma、r=Mai、、+ (X、XAol、十Y、XA
ooa、)Xo、21÷Pこ\で Mairl−装入物を酸化するのに必要な酸素量を酸素
負荷率で除したもの      (NmyH)X  =
補助燃料として燃焼させる重油量(kg / H)Ao
□、−重油1に9を燃焼するのに必要な空気量(Nmz
〜〕 Y −補助燃料として燃焼させる石炭fj1.ckg/
H)。。8ニ一石炭1 kqを燃焼するのに必要な空気
量(Nrn/kg) P−酸素負荷率 である。
Ma, r=Mai,, + (X, XAol, 10Y, XA
ooa,)
Amount of heavy oil burned as auxiliary fuel (kg/H) Ao
□, - Amount of air required to burn 1 to 9 heavy oil (Nmz
~] Y - Coal fj1 to be burned as auxiliary fuel. ckg/
H). . The amount of air (Nrn/kg) required to burn 1 kq of 8-ni coal. P - Oxygen loading rate.

又、発生する皺の量M は以下の式より求められる。Further, the amount M of wrinkles generated can be obtained from the following formula.

M  =((M    XO+HXC,−1−MXO)
−(M  Xma   cone  con、c  d
i  dlslO+HXO)l÷C sl  do  do   ma こ\で、 C−装入精鉱のCu品位     (重量%)conc Cdニー装大人煙灰Cu品位       ()C−装
入雑物のCu品位       (〃)C−銹のCu品
位          ()Cd0=発生煙灰のCu品
位       (〃)C−鋏のCu品位      
    ()又、発生する重量Mslは以下の式で求め
られる。
M = ((MXO+HXC, -1-MXO)
-(M Xma cone con, c d
i dlslO+HXO)l÷C sl do do ma Here, C-Cu grade of charged concentrate (wt%) conc Cd knee charge adult smoke ash Cu grade ()C-Cu grade of charged miscellaneous material (〃)C -Cu grade of rust ()Cd0=Cu grade of generated smoke ash (〃)C-Cu grade of scissors
() Also, the generated weight Msl is determined by the following formula.

M  −((M    XC!     +M’、XO
、+MXO、+sl     conc   conc
sl  dl  disユ  0  081M、   
XO,)−M  xc   、)÷a8102  51
o2si    do   dosl   5lsiこ
くで、 c   、=装入精鉱のSiO品位  (重量%)co
ncsl C−装入煙灰のSiO品位   (〃 disi                    2
C=装入雑物のSiO品位    (〃〕○si   
                 2C0=装入硅酸
鉱のSiO品位 (〃)S:LO2812 C−発生煙灰のSiO品位   (〃)dosi   
                 2Cj、−鉄中の
SiO品位      (〃)又、発生する廃ガスの量
は以下の式で与えられる。
M - ((M XC! +M', XO
, +MXO, +sl conc conc
sl dl disyu 0 081M,
XO,)-Mxc,)÷a8102 51
o2si do dosl 5lsi kokude, c, = SiO grade of charged concentrate (weight%) co
ncsl C- SiO grade of charged smoke ash (〃 disi 2
C = SiO grade of charged miscellaneous material (〃〕○si
2C0 = SiO grade of charged silicate ore (〃)S:LO2812 C-SiO grade of generated smoke (〃) dosi
2Cj, - SiO grade in iron (〃) Also, the amount of waste gas generated is given by the following formula.

G1=SO+O+H+(!O+H0 こくで、 G1−自熔炉で発生する廃ガス量(NmyH)SO−(
廃ガス中S量十重油中S量十石炭中S量)×22.4÷
32.1           (Mm’/H)O=必
要鉱石空気量×酸素富化率×(1−酸素効率)(N1n
/H) N =反応用空気量×(1−酸素富化率)+石炭燃焼量
×石炭中N品位X22.4÷28.0 (Ntn7H)
aO=(重油燃焼量×重油中O品位十石炭燃焼量×石炭
中C品位)X22.4÷12.0     (lJ++
!’a)HO−空気量×水分率十重油燃焼量×重油中H
品位X 22.4÷2+石炭燃焼量×石炭中H品位X2
2.4÷2CNm7H> 22.4=気体常数    32.1−硫黄の原子量2
8.0=窒素分子量   12.0−炭素原子数2−水
素分子量 尚、上記物質量、品位の中で以下のものは与件として与
える。
G1=SO+O+H+(!O+H0 In this case, G1-Amount of waste gas generated in the flash-melting furnace (NmyH)SO-(
Amount of S in waste gas Amount of S in 10 heavy oil Amount of S in 10 coal) x 22.4 ÷
32.1 (Mm'/H)O = required ore air amount x oxygen enrichment rate x (1-oxygen efficiency) (N1n
/H) N = reaction air amount x (1-oxygen enrichment rate) + coal combustion amount x N grade in coal x 22.4 ÷ 28.0 (Ntn7H)
aO = (Amount of heavy oil burned x O grade in heavy oil 10 Amount of coal burned x C grade in coal) x 22.4 ÷ 12.0 (lJ++
! 'a) HO - Air amount x Moisture percentage Burnt amount of heavy oil x H in heavy oil
Grade X 22.4÷2 + coal combustion amount x H grade in coal x2
2.4÷2CNm7H> 22.4=Gas constant 32.1-Atomic weight of sulfur 2
8.0=Nitrogen molecular weight 12.0-Number of carbon atoms 2-Hydrogen molecular weight Among the above substance amounts and qualities, the following are given as given conditions.

装入精鉱量(M  )、装人煙灰量(Mdi)、装入o
nC 硅酸鉱量(M  )、装入雑物量(M)、発生煙灰量(
102(、重油1kgを燃焼するのに必要な空気量(A
 )、石炭1 kgを燃焼するのに必要な空気量(A 
 )、酸素富化率(P)、装入精鉱のCu品位oal (C)、装入煙灰のCu品位(C)、装入雑物conc
                         
    aiのCu品位(C,、)、銹のCu品位(C
)、発生煙灰のCu品位(0)、sのCu品位(C)、
装入精鉱do                   
  maのS10 品位(C)、装入煙灰のSiO品位
(2concsi                 
     2C〕、装装入物のSiO品位(0、)、装
入硅dis1                   
 2酸鉱のSiO品位(0,)、発生煙灰のSiO品2
         51o2si          
           2位((!d。、) 、鉄中の
Si○2品位(C8,8,)、酸素効率、石炭中N品位
、重油中C品位、石炭中C品位、水分率、重油中H品位
、石炭中H品位である。
Charging concentrate amount (M), charging ash amount (Mdi), charging o
nC Silicate ore amount (M), amount of charged miscellaneous materials (M), amount of smoke ash generated (
102 (, Amount of air required to burn 1 kg of heavy oil (A
), the amount of air required to burn 1 kg of coal (A
), oxygen enrichment rate (P), Cu grade of charging concentrate oal (C), Cu grade of charging smoke ash (C), charging miscellaneous conc

Cu grade of ai (C,,), Cu grade of rust (C
), Cu grade of generated smoke ash (0), Cu grade of s (C),
Charging concentrate do
S10 grade (C) of ma, SiO grade of charged smoke ash (2 concsi
2C], SiO grade of charging material (0,), charging silicon dis1
SiO grade of diacid ore (0,), SiO grade of generated smoke 2
51o2si
2nd place ((!d.,), Si○2 grade in iron (C8,8,), oxygen efficiency, N grade in coal, C grade in heavy oil, C grade in coal, moisture content, H grade in heavy oil, The coal is of H grade.

上記の物質収支は当業者が与えられた与件を用いて算出
することが通常のことであり、本発明を特に特徴付ける
ものではない。
The above material balance is normally calculated by a person skilled in the art using given conditions, and does not particularly characterize the present invention.

この工程では、上記反応及び燃料の燃焼により多量の熱
量が発生するが、精鉱の反応により発生する熱量は0式
で示される。
In this step, a large amount of heat is generated due to the above reaction and combustion of the fuel, and the amount of heat generated due to the reaction of the concentrate is expressed by equation 0.

Qo。。。=Q8+QFe−(Q、。十Q、□十Q61
o2+Qo)+Q8.  ■こ(において、 Q  −精鉱反応により発生する熱量 (Mcal/H
) onc Q −硫黄の燃焼により発生する熱量  (Mcal/
H)QFo=鉄の酸化により発生する熱量  (Mc 
al/H)Qdc−装入精鉱の分解に必要とされる熱量
(Me a 7/H)Qdi−装入煙灰の分解に必要と
される熱fi CMCal/H)Qsi。2−装入珪酸
鉱の分解に必要とされる熱量(Mcaj/H) Q −装入雑物の分解に必要とされる熱量(McaJ/
H)Q8.、−gの生成により発生する熱量   (M
CaJ/H)そして、この自熔炉内での熱収支モデルは
0次式で示すことが出来るが、この際の制限条件としく
23) ては、■式の右辺あるいは左辺の値が自熔炉の許容熱負
荷量を超えないことである。
Qo. . . =Q8+QFe-(Q,.10Q, □10Q61
o2+Qo)+Q8. ■In this, the amount of heat generated by the Q - concentrate reaction (Mcal/H
) onc Q - amount of heat generated by combustion of sulfur (Mcal/
H) QFo = amount of heat generated by oxidation of iron (Mc
al/H) Qdc - heat required for decomposition of charge concentrate (Me a 7/H) Qdi - heat required for decomposition of charge smoke fi CMCal/H) Qsi. 2 - Amount of heat required for decomposition of charged silicate ore (Mcaj/H) Q - Amount of heat required for decomposition of charged silicate ore (McaJ/H)
H)Q8. , the amount of heat generated by the production of -g (M
CaJ/H) This heat balance model in the flash-melting furnace can be expressed as a zero-order equation, but the limiting condition at this time is23). The allowable heat load must not be exceeded.

Q+X1×qo□、+Y、1×q0゜a1+Qa、−Q
□、十Q8.十−8十L o s s   ■ X −自熔炉で補助燃料として燃焼させる重油量(kg
/H) qoil−重油の単位発熱量     (Kca4/k
gX10−3)Y −自熔炉で補助燃料として燃焼させ
る石炭量(’9/H) qcoal=石炭の単位発熱31      (K c
 a 4/ks+X10 = )Qa□−自熔炉で使用
する反応用空気の保有熱量(Mcal/H) Qma−自熔炉内の反応で生成する皺の保有熱量(Mc
a、//H) QB□−自熔炉内で生成する鍔の保有熱量(Mc a 
l/H)Qgas−自熔炉内の反応で生成する廃ガスの
保有熱量(Mc aJ/H) Loss−ロス熱量           (McaJ
/H)(24〕 ■廃熱ボイラー 廃熱ボイラー4では自熔炉1より排出された排ガス17
の保有熱量で蒸気18を発生させ、排ガス温度を次工程
の電気集塵機で処理可能な温度まで低下させて廃熱ボイ
ラー排ガス23として排出し、前記発生した蒸気18を
蒸気加熱器5への導入蒸気として蒸気加熱器5へ送る。
Q+X1×qo□, +Y, 1×q0゜a1+Qa, -Q
□, 10Q8. 10-80 L o s s ■ X - Amount of heavy oil to be burned as auxiliary fuel in the flash furnace (kg
/H) qoil - Unit calorific value of heavy oil (Kca4/k
G
a 4/ks +
a, //H) QB□ - Heat capacity of the tsuba generated in the flash-melting furnace
l/H) Qgas - The amount of heat retained by the waste gas generated by the reaction in the flash furnace (Mc aJ/H) Loss - The amount of heat lost (McaJ
/H) (24) ■Waste heat boiler In the waste heat boiler 4, the exhaust gas 17 discharged from the flash furnace 1
Steam 18 is generated with the retained heat amount, the exhaust gas temperature is lowered to a temperature that can be treated by the electrostatic precipitator in the next step, and the exhaust gas is discharged as waste heat boiler exhaust gas 23, and the generated steam 18 is introduced into the steam heater 5. The steam is sent to the steam heater 5 as a steam heater.

この廃熱ボイラー4での熱収支は0式で示すことができ
、蒸気発生量も0式を用いて求めることができる。
The heat balance in this waste heat boiler 4 can be expressed by the equation 0, and the amount of steam generated can also be determined using the equation 0.

Q=WXq +Q+Loss     ■gas   
   w   wg こ\で W−廃熱ボイラーで発生する蒸気量  (T/H)qW
−廃熱ボイラーで発生する蒸気の単位蒸発熱(McaA
/T) Q =廃熱ボイラー排ガス保有熱量  (Mcal/H
)wg なお、廃熱ボイラーでの制限条件としては廃熱ボイラー
排ガスの温度が電気集塵機で処理可能な温度とすること
である。
Q=WXq +Q+Loss ■gas
w wg Here W - Amount of steam generated in the waste heat boiler (T/H) qW
- Unit heat of vaporization (McaA) of the steam generated in the waste heat boiler
/T) Q = Heat capacity of waste heat boiler exhaust gas (Mcal/H
)wg Note that the limiting condition for the waste heat boiler is that the temperature of the waste heat boiler exhaust gas must be at a temperature that can be processed by the electrostatic precipitator.

■蒸気加熱器 蒸気加熱器5では重油や微粉炭等を燃焼し、蒸気加熱器
5に導入した蒸気I8を昇温し、空気予熱器6に送ると
共に燃焼排ガス12を乾燥用気体として乾燥炉3に排出
する。この蒸気加熱器5での熱収支は0式で示すことが
できる。なお、この蒸気加熱器5での蒸気のロスは無視
することが出来る。
■Steam heater The steam heater 5 burns heavy oil, pulverized coal, etc., raises the temperature of the steam I8 introduced into the steam heater 5, sends it to the air preheater 6, and uses the combustion exhaust gas 12 as a drying gas to the drying furnace 3. to be discharged. The heat balance in this steam heater 5 can be expressed by equation 0. Note that the steam loss in the steam heater 5 can be ignored.

Wx(a2+b2×t2)+x2×q00、+Y2×q
ooa、=wx(a′2+b、ix七′2)十Q+ L
 o s s    ■ bg a −蒸気加熱器入口蒸気の単位蒸気当りの比熱を求め
るための定数      (Mcaj/T)b −蒸気
加熱器入口蒸気の単位蒸気当りの比熱を求めるための係
数       (M c a l/T−・tT)t 
=蒸気加熱器入口蒸気温度    (r)a′−蒸気加
熱器出口蒸気の単位蒸気当りの比熱を求めるための定数
      (Me a l/T )b′−蒸気加熱器
出口蒸気の単位蒸気当りの比熱を求めるための係数  
    (M Q a 7/T −C)t′−蒸気加熱
器出口蒸気温度    (1?)X =蒸気加熱器での
重油使用!    (kg/H)Y =蒸気加熱器での
石炭使用i    (kg/H)Q =蒸気加熱器で発
生する排ガスの保有熱量sbg (Mcal/H) 又、重油や微粉炭の燃焼により発生する排ガス量はそれ
ぞれ■−1、■−2式で示される。
Wx(a2+b2×t2)+x2×q00,+Y2×q
ooa, = wx (a'2+b, ix7'2) 10Q+L
o s s ■ bg a - Constant for determining the specific heat per unit of steam of steam at the inlet of the steam heater (Mcaj/T) b - Coefficient for determining the specific heat per unit of steam of the steam at the inlet of the steam heater (M c a l/T-・tT)t
=Steam heater inlet steam temperature (r)a' - constant for determining specific heat per unit steam of steam heater outlet steam (Me a l/T)b' - specific heat per unit steam of steam heater outlet steam Coefficients for finding
(M Q a 7/T -C) t' - Steam temperature at the outlet of the steam heater (1?) X = Use of heavy oil in the steam heater! (kg/H) Y = Coal usage i in the steam heater (kg/H) Q = Heat capacity sbg of exhaust gas generated in the steam heater (Mcal/H) Also, exhaust gas generated by combustion of heavy oil and pulverized coal The amounts are shown by formulas 1-1 and 2-2, respectively.

o   = x ×(R+(p−1)XA  )   
  ■−12oi1    2    oil    
      oilG   =Y X(A’   +(
p−1)XA   )  ■−22coal    2
     coal            coal
こ\で、 G  =重油燃焼により発生する排ガス量(IJn+/
H)o11 A′ −重油1kgの理論燃焼廃ガス量  (Nm′/
に9)oil G  −石炭燃焼により発生する排ガス量(Nm7H)
coal A′  −石炭1kgの理論燃焼廃ガス量  (N71
′A9〕oal P=空気比 この重油燃焼により発生する排ガX1t(G   )o
i1 と石炭燃焼により発生する排ガス量(G   )と2 
c o al を用いて蒸気加熱器排ガス保有熱量(Q  )を求bg めることになる。
o = x × (R + (p-1)XA)
■-12oil1 2 oil
oilG = Y X (A' + (
p-1)XA) ■-22coal 2
coal coal
Here, G = amount of exhaust gas generated by heavy oil combustion (IJn+/
H) o11 A' - Theoretical combustion waste gas amount of 1 kg of heavy oil (Nm'/
9) Oil G - Amount of exhaust gas generated by coal combustion (Nm7H)
coal A' - Theoretical amount of combustion waste gas for 1 kg of coal (N71
'A9] oal P = Air ratio Exhaust gas generated by this heavy oil combustion X1t (G )o
i1, the amount of exhaust gas generated by coal combustion (G), and 2
The amount of heat retained in the steam heater exhaust gas (Q) is calculated using c o al .

蒸気加熱器での制限条件は、蒸気加熱器の使用上限温度
と、重油や微粉炭等の燃焼量が設備として可能な範囲に
なるようにすることである。
The limiting conditions for the steam heater are that the upper limit temperature for use of the steam heater and the combustion amount of heavy oil, pulverized coal, etc. are within the range possible for the equipment.

本発明において、蒸気加熱器で使用する燃料を重油にす
るか、微粉炭にするか、或いは混合比をどうするかは、
X とY とを共に変数として計算処理することが好ま
しいが、これを行なうと計算量が膨大になりすぎるので
、X とY との何れか一方を固定値とすることが望ま
しい。
In the present invention, whether the fuel used in the steam heater is heavy oil or pulverized coal, or what the mixing ratio is, is determined by
Although it is preferable to perform calculations using both X and Y as variables, doing so would result in an excessively large amount of calculation, so it is desirable to set one of X and Y to a fixed value.

■空気予熱器 蒸気加熱器5で昇温された蒸気は空気予熱器6に導入さ
れ、反応用空気16を予熱した後、減温注水器7に送ら
れる。又、前記予熱された反応用空気16は自熔炉1に
送られる。便宜上、減温注水器7の蒸気増加分と空気予
熱器6での蒸気ロスが相殺するものと考えることができ
、反応用空気16との熱交換のみが起きているものと考
えることが出来る。空気予熱器6の熱収支は0式で示す
ことが出来る。
(2) Air preheater The steam heated by the steam heater 5 is introduced into the air preheater 6, and after preheating the reaction air 16, is sent to the cooling water injector 7. Further, the preheated reaction air 16 is sent to the flash-melting furnace 1. For convenience, it can be considered that the steam increase in the cooling water injector 7 and the steam loss in the air preheater 6 cancel each other out, and that only heat exchange with the reaction air 16 is occurring. The heat balance of the air preheater 6 can be expressed by equation 0.

W×(a′2+b′2×t′2)=W×(a″2+b″
2×T″2)+S  Xt (t’2−T、) +(T
″2−25) l刈/2XK十Loss   ■p こ\で、 a″=空気予熱器出口蒸気の単位蒸気当りの比熱を求め
るための定数      (McaJ/T)(28つ b″=空気予熱器出口蒸気の単位蒸気当りの比熱を求め
るための係数      (McaJ/T−’lZ’)
T″=空気予熱器出口蒸気温度    (tr)S −
空気予熱器伝熱面積      (ぜ)p 25=空気予熱器入口空気温度     (tr)K−
総括伝熱係数        (Kcaj/yf・HI
ZX10=)空気予熱器入口空気温度は本発明者等の使
用する設備の環境より求めた値であり、現実には設備が
設けられている環境により異なってくるものである。
W×(a′2+b′2×t′2)=W×(a″2+b″
2×T''2)+S Xt (t'2-T,) +(T
``2-25) l cutting / 2 Coefficient for determining specific heat per unit steam of outlet steam (McaJ/T-'lZ')
T″=Air preheater outlet steam temperature (tr)S −
Air preheater heat transfer area (ze)p 25 = Air preheater inlet air temperature (tr)K-
Overall heat transfer coefficient (Kcaj/yf・HI
ZX10=) The air preheater inlet air temperature is a value determined from the environment of the equipment used by the present inventors, and actually varies depending on the environment in which the equipment is installed.

空気予熱器での制限条件は装置の使用可能温度と燃焼バ
ーナーの能力である。
The limiting conditions for air preheaters are the usable temperature of the device and the capacity of the combustion burner.

■蒸気再熱器 空気予熱器6から排出された蒸気は、蒸気再熱器8で加
熱する必要がないほど高い場合には減温注水器7で蒸気
再熱器8の燃焼バーナーを安定に燃焼させうる温度以下
になるように注水し、転炉ボイラー蒸気19の流入があ
れば転炉ボイラー蒸気19と合一した後、蒸気再熱器8
で次工程の蒸気タービン9で必要とされる温度になるま
で加熱される。し力)シ、空気予熱器6までの熱バラン
スが取れ、各熱量等が適性であれば、前記注水は不要で
あり、又転炉ボイラー蒸気19は本発明の目的からする
と考慮する必要がない。よって、空気予熱器出口蒸気は
そのま\蒸気再熱器入口蒸気として蒸気再熱器に導入さ
れるものとして熱収支を求めれば良いことになる。よっ
て、蒸気再熱器8での熱収支モデルは0式で示すことが
出来る。
■Steam reheater If the steam discharged from the air preheater 6 is so high that it does not need to be heated in the steam reheater 8, the combustion burner of the steam reheater 8 is stably combusted in the cooling water injector 7. Water is injected so that the temperature is lower than the temperature that can be used, and if there is inflow of converter boiler steam 19, it is combined with the converter boiler steam 19, and then the water is poured into the steam reheater 8.
It is heated until it reaches the temperature required by the steam turbine 9 in the next step. (b) If the heat balance up to the air preheater 6 is maintained and each amount of heat is appropriate, the water injection is unnecessary, and the converter boiler steam 19 does not need to be considered from the purpose of the present invention. . Therefore, it is sufficient to calculate the heat balance assuming that the air preheater outlet steam is directly introduced into the steam reheater as the steam reheater inlet steam. Therefore, the heat balance model in the steam reheater 8 can be expressed by equation 0.

W×(a″2+b″2×T″2)+x3×qOi、=W
X (a 十b  Xt )+Q   十Loss  
■3  3  3     rbg こ\で、 X=蒸気再熱器で使用する重油量  (kg/H)a=
蒸気再熱器出口蒸気の単位蒸気当りの比熱を求めるため
の定数       (McaJ/T)b−蒸気再熱器
出口蒸気の単位蒸気当りの比熱を求めるための係数  
     (Mcal/T−Dt =蒸気再熱器出口蒸
気温度     (tT)Q −蒸気再熱器排ガス保有
熱   (Mcal/H)rbg なお、燃焼排ガス量は前記■−1で示され、これよりQ
 が求められる。
W×(a″2+b″2×T″2)+x3×qOi,=W
X (a 10b Xt)+Q 10Loss
■3 3 3 rbg Here, X=Amount of heavy oil used in the steam reheater (kg/H)a=
Constant for determining the specific heat per unit steam of the steam at the steam reheater outlet (McaJ/T) b - Coefficient for determining the specific heat per unit steam of the steam at the steam reheater outlet
(Mcal/T-Dt = Steam reheater outlet steam temperature (tT) Q - Steam reheater exhaust gas retained heat (Mcal/H) rbg The amount of combustion exhaust gas is shown in ■-1 above, and from this Q
is required.

rbg 蒸気再熱器での制限条件は装置の使用可能温度と燃焼バ
ーナーの能力である。
The limiting conditions in the rbg steam reheater are the usable temperature of the device and the capacity of the combustion burner.

■乾燥設備 蒸気加熱器5及び、蒸気再熱器8で発生した燃焼排ガス
12.13は合わされ、乾燥炉3に送られる。乾燥設備
では、銅精鉱を所定水分率まで乾燥するが、このための
熱量を前記排ガス12.13と熱風炉2で発生させた熱
風より得ている。よって、こ\での熱収支モデルは0式
で示される。
(drying equipment) The combustion exhaust gases 12 and 13 generated in the steam heater 5 and the steam reheater 8 are combined and sent to the drying furnace 3. In the drying equipment, the copper concentrate is dried to a predetermined moisture content, and the amount of heat for this is obtained from the exhaust gas 12, 13 and the hot air generated by the hot air stove 2. Therefore, the heat balance model here is expressed by equation 0.

Q=Q   +XXq   =Q  +Q  +Q  
+Loss   ■sbg  rbg  4  oil
  dc  dw  dgこ\で、 Q −蒸気加熱器排ガス保有熱量  (Mca4/″H
)rbg Q −蒸気再熱器排ガス保有熱量   (Meat/H
)rbg X−熱風炉で使用する重油量    Ckg/H)Q 
=乾燥後の原料の持去熱量    (Mcal/H)d
c Q −乾燥により除去された水分の蒸発熱量w (McaJ/H) Q −熱風炉で発生する排ガスの保有熱量g (MOa l/H) この乾燥設備での制限条件としては、原料精鉱の水分率
と乾燥雰囲気温度である。原料精鉱の水分率は与件とし
て与えるものであるが、これにより蒸発水分量が決り、
水分蒸発熱量が決る。又、乾燥雰囲気温度があまり高い
と原料精鉱が乾燥炉内等で燃焼し、あまりに低いと、い
くら風量を増加させても乾燥不充分になってしまう。こ
の乾燥雰囲気温度の上、下限値は用いる設備により決ま
るため、本発明の適用に際しては事前に上、下限値を求
めておく必要がある。
Q=Q +XXq =Q +Q +Q
+Loss ■sbg rbg 4 oil
dc dw dg Here, Q - Heat capacity of steam heater exhaust gas (Mca4/″H
)rbg Q - Steam reheater exhaust gas retained heat (Meat/H
)rbg X-Amount of heavy oil used in hot stove Ckg/H)Q
= Amount of heat removed from the raw material after drying (Mcal/H) d
c Q - The amount of heat of evaporation of the water removed by drying w (McaJ/H) Q - The amount of heat held by the exhaust gas generated in the hot air stove g (MOa l/H) The limiting conditions for this drying equipment are the These are the moisture content and the drying atmosphere temperature. The moisture content of the raw material concentrate is given as a given condition, but this determines the amount of evaporated water,
The heat of water evaporation is determined. Furthermore, if the drying atmosphere temperature is too high, the raw concentrate will burn in the drying furnace, and if it is too low, the drying will be insufficient no matter how much the air volume is increased. Since the upper and lower limits of the drying atmosphere temperature are determined by the equipment used, it is necessary to determine the upper and lower limits in advance when applying the present invention.

■蒸気タービン 蒸気再熱器8で所定の温度にされた蒸気は蒸気タービン
9に導入され発電に供せられる。
(2) Steam Turbine Steam brought to a predetermined temperature by the steam reheater 8 is introduced into the steam turbine 9 and used for power generation.

発電量と蒸気量との関係は0式で示されるが、この関係
、及び必要とされる蒸気の温度は用いる装置により異な
るため、事前に調査決定しておくことが望まれる。
The relationship between the amount of power generation and the amount of steam is expressed by equation 0, but since this relationship and the required temperature of steam vary depending on the equipment used, it is desirable to investigate and determine it in advance.

W =WXal+bl        ■こ\で W−廃熱ボイラボで発生する蒸気量  (T/H)W−
発電量             (KWI(/H)a
l−蒸気による発電係数      (KwH/T)b
l=蒸気による発電定数     (KwH/H)(2
)  収支計算 本発明にあっては、上記各熱収支モデルを線形方程式に
変換し、電子計算機を用いてhp(線形計画法)モデル
により解を求める。しかし一部の式が非線形となり一つ
のLPモデルとして解くことが出来ないため、与えられ
た与件と物質収支モデルとを用いて発生する各物質の量
を求めつつ、前記■〜■式を組合せ第1のTJPモデル
とし、廃熱ボイラーでの発生蒸気量を求め、この値を用
いて式■〜■を用いて作成した第2のLPモデルを解き
、反応用空気温度T が収束するまで計算して各装置で
の重油使用量と石炭使用量を求める。
W = WXal+bl ■Here, W- Amount of steam generated in the waste heat boiler laboratory (T/H) W-
Power generation amount (KWI(/H)a
l - Power generation coefficient by steam (KwH/T)b
l = Power generation constant by steam (KwH/H) (2
) Balance Calculation In the present invention, each of the heat balance models described above is converted into a linear equation, and a solution is obtained using an HP (linear programming) model using an electronic computer. However, some of the equations are non-linear and cannot be solved as one LP model, so we combine the above equations 1 to 2 while calculating the amount of each substance generated using the given conditions and the material balance model. Using the first TJP model, determine the amount of steam generated in the waste heat boiler, use this value to solve the second LP model created using formulas ■ to ■, and calculate until the reaction air temperature T converges. to determine the amount of heavy oil and coal used in each device.

なお、前記各収支計算の項で示したように、各式は夫々
装置上等の制限条件をもつためこれを考慮して解くこと
は云うまでもない。
It should be noted that, as shown in the section on each income and expenditure calculation above, each equation has its own limitations due to the equipment, etc., so it goes without saying that these should be taken into consideration when solving the equations.

上記計算により求められた重油使用量と石炭使用量と、
各設備で必要とされる総使用電力量と上記0式を用いて
求めた発電量とを用いてエネルギーコストを次式に従い
算出する。
The amount of heavy oil used and the amount of coal used determined by the above calculation,
The energy cost is calculated according to the following formula using the total amount of power used by each facility and the amount of power generated using the above formula 0.

E−(X +X +x +x )XQ   十(Y 十
Y )Xo 0 S tj    2   3   4
    0 f 11   2■ooa 、十(W2 
 ” + ) 4゜こkで、 F  −エネルギーコスト       (円/H)o
st ■  −重油単価           (円/に9)
■coal=石炭単価           (円/に
9)W −自熔炉及び自熔炉付帯設備に必要とされる総
使用電力量         (KW)t/I()W 
−発電量            (KwH/H)Qい
=購入電力の単価         (円/KwH)そ
、して、エネルギーコストが最小となる重油使用量(X
 N X XX % X )及び石炭使用量(Y : 
y >が得られるまで電子計算機により上記計算を繰り
返す。
E-(X +X +x +x)XQ 10(Y 10Y)Xo 0 S tj 2 3 4
0 f 11 2■ooa, ten (W2
"+) 4゜kok, F - Energy cost (yen/H)o
st ■ - Heavy oil unit price (yen/9)
■coal = Coal unit price (yen/to 9) W - Total amount of electricity used for the flash-melting furnace and its auxiliary equipment (KW) t/I ()W
-Amount of electricity generated (KwH/H) Q = Unit price of purchased electricity (Yen/KwH) Then, amount of heavy oil used (X
N X XX % X ) and coal consumption (Y :
The above calculation is repeated using an electronic computer until y > is obtained.

このようにして得られたエネルギーコストが最少となる
x 、x 、x 、x 、y 、y  の値に基すき+
23412 操業を行なう。
Based on the values of x , x , x , x , y , y that minimize the energy cost obtained in this way +
23412 Perform operations.

以上説明したように、本発明は各工程での熱収支モデル
に基すきLPモデルを作成し、LPモデルで得られた解
を用いて行なったコスト計算値が最小となるまで計算を
行ない、最適燃料量を求めるものであるが、LIPモデ
ルを解くに際しては各設備の装置定数が入るため事前に
各装置定数を求めておくことが望ましい。
As explained above, the present invention creates a plow LP model based on the heat balance model in each process, performs calculations using the solutions obtained in the LP model until the cost calculation value is minimized, and optimizes the Although the amount of fuel is determined, it is desirable to determine each device constant in advance because the device constants of each facility are included when solving the LIP model.

〔実施例〕〔Example〕

第1図に示す自熔炉及び付帯設備を用いて、自熔炉の補
助燃料及び蒸気加熱器の燃料を微粉炭とし、蒸気再熱器
及び熱風炉の燃料を重油として、第1表に示す条件で試
験操業を行なった。
Using the flash melting furnace and auxiliary equipment shown in Figure 1, the auxiliary fuel for the flash melting furnace and the fuel for the steam heater are pulverized coal, and the fuel for the steam reheater and hot blast furnace is heavy oil, under the conditions shown in Table 1. A test operation was conducted.

まず、反応用空気の富化酸素量を4800 、Mm’/
Hとして操業した場合、第2表に示すように、自熔炉で
の微粉炭使用量(Y、)を2020 kg/l(とじ、
蒸気加熱器での微粉炭使用量(Y )を1840#/a
とし、熱風炉の重油使用量(X、 )を40Tcg/H
とし、蒸気再熱器を停止することによって、蒸気加熱器
出口蒸気温度を540 Cとして、過剰の熱量を発生さ
せることなく操業することが出来た。
First, the amount of enriched oxygen in the reaction air was set to 4800, Mm'/
As shown in Table 2, when operating as
The amount of pulverized coal used in the steam heater (Y) is 1840#/a
The amount of heavy oil used in the hot air stove (X, ) is 40Tcg/H.
By stopping the steam reheater, the steam temperature at the steam heater outlet was set at 540 C, and operation was possible without generating excessive heat.

次に、富化酸素量を3800 Nm”/Hに変更し、従
来法に従って第2表に示すように自熔炉での微粉炭(3
5〕 使用量(Y )を2420に97H及び蒸気加熱器での
微粉炭使用量(Y )を2090 kg/Hとし、蒸気
加熱器出口蒸気温度を540Cとした。この時、熱風炉
を停止し、且つ蒸気再熱器での燃焼量をバーナー能力下
限まで低下させたが、なお乾燥炉内の温度が上限を超え
たので、熱風炉での重油使用量20に9/H相当の熱気
を大気中に放出しなければならなかった。
Next, the amount of enriched oxygen was changed to 3800 Nm"/H, and the pulverized coal (3
5] The amount of pulverized coal used (Y ) was 2420 to 97H, the amount of pulverized coal used in the steam heater (Y ) was 2090 kg/H, and the steam temperature at the steam heater outlet was 540C. At this time, the hot blast furnace was stopped and the amount of combustion in the steam reheater was reduced to the lower limit of burner capacity, but the temperature inside the drying furnace still exceeded the upper limit, so the amount of heavy oil used in the hot blast furnace was reduced to 20%. Hot air equivalent to 9/H had to be released into the atmosphere.

これに対して本発明では、富化酸素量を380ONm/
Hに変更した場合の最適操業条件を、コンピューターに
より前記第1のLPモデル及び第2のLPモデルを基に
順次算出した結果、第2表に示すように自熔炉での微粉
炭使用量(Y )を2430VHとし、蒸気加熱器での
微粉炭使用量(Y )を2010 kg/Hとし、蒸気
再熱器での重油使用量(X )を175kvuとし、熱
風炉を停止することによって、蒸気加熱器出口蒸気温度
を527Cとして、熱風炉その他から過剰の熱量を発生
させることなく操業することが出来た。
In contrast, in the present invention, the enriched oxygen amount is reduced to 380ONm/
As a result of sequentially calculating the optimal operating conditions when changing to ) is set to 2430 VH, the amount of pulverized coal used in the steam heater (Y ) is set to 2010 kg/H, the amount of heavy oil used in the steam reheater (X ) is set to 175 kvu, and the hot blast furnace is stopped. By setting the outlet steam temperature to 527C, it was possible to operate without generating excessive heat from the hot stove or other sources.

第 表 第  2  表 几 〔発明の効果〕 本発明によれば、操業条件の変動に対して常にエネルギ
ーコストが最小となる最適操業条件で自熔炉を操業する
ことが出来る。
Table 2 Table 2 [Effects of the Invention] According to the present invention, a flash melting furnace can be operated under optimal operating conditions where energy costs are always minimized despite fluctuations in operating conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

図は自熔炉及び自熔炉付帯設備の概念図を示したもので
ある。 1・・自熔炉 3・・乾燥炉 5・・蒸気加熱器 7・・減温注水器 9・・蒸気タービン 11・・熱風 14・・乾燥原料精鉱 16・・反応用空気 18・・蒸気 20.21.22・・燃料 24・・鍍 26・・空気 2・・熱風炉 4・・廃熱ボイラー 6・・空気予熱器 8・・蒸気再熱器 10・・原料精鉱 12.13・・排ガス 15・・燃料 17・・排ガス エ9・・転炉ボイラー蒸気 23・・排ガス 25・・転炉 27・・酸素 出 願 人 住友金属鉱山株式会社
The figure shows a conceptual diagram of the flash-melting furnace and its auxiliary equipment. 1... Flash melting furnace 3... Drying oven 5... Steam heater 7... Temperature reduction water injector 9... Steam turbine 11... Hot air 14... Dry raw material concentrate 16... Reaction air 18... Steam 20 .21.22...Fuel 24...Flag 26...Air 2...Hot stove 4...Waste heat boiler 6...Air preheater 8...Steam reheater 10...Raw material concentrate 12.13... Exhaust gas 15... Fuel 17... Exhaust gas 9... Converter boiler steam 23... Exhaust gas 25... Converter 27... Oxygen Applicant Sumitomo Metal Mining Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)石炭及び/又は重油を補助燃料として使用する自
熔炉と;該自熔炉の排ガスより熱回収する廃熱ボイラー
と;該廃熱ボイラーからの蒸気を、石炭及び/又は重油
の燃焼により加熱する蒸気加熱器と;該蒸気加熱器で加
熱された蒸気により自熔炉に供給する酸素を富化した反
応用空気を石炭及び/又は重油の燃焼により予熱する空
気予熱器と;該空気予熱器を経た蒸気を重油の燃焼によ
り再加熱する蒸気再熱器と;該蒸気再熱器を経た蒸気に
より運転される発電機運転用の蒸気タービンと;前記蒸
気加熱器及び蒸気再熱器の排ガスと、熱風炉での重油の
燃焼により得られた熱風とにより自熔炉に供給する原料
精鉱を乾燥する乾燥炉とを備えた自熔炉の操業方法にお
いて:自熔炉での物質収支バランスより生成する各物質
量を求めながら、下記[1]〜[3]式を組合せた線形
計画法による第1のLPモデルを解き廃熱ボイラーでの
発生蒸気量を求め、この値を用いて下記[4]〜[7]
式を用いて作成した第2のLPモデルを解き反応用空気
温度が収束するまで計算して重油使用量及び石炭使用量
を求め、次にこの重油使用量及び石炭使用量、前記廃熱
ボイラーでの発生蒸気量から求められる蒸気タービンで
の発電量、及び必要とされる総電力量を用いてエネルギ
ーコストを算出し、得られたエネルギーコストが最少と
なるまで上記計算を繰り返すことにより、最適操業条件
となる自熔炉での補助燃料としての重油使用量、蒸気加
熱器での重油使用量、蒸気再熱器での重油使用量、熱風
炉での重油使用量、自熔炉での補助燃料としての石炭使
用量、及び蒸気加熱器での石炭使用量を得、この値に従
い操業を行なうことを特徴とする自熔炉の操業方法。 Q_c_o_n_c=Q_S+Q_F_e−(Q_d_
c+Q_d_i+Q_s_i_o_2+Q_o)+Q_
s_f[1] Q_c_o_n_c+X_1×q_o_i_l+Y_1
×q_c_o_a_l+Q_a_i=Q_m_a+Q_
s_l+Q_g_a_s+Loss[2] Q_g_a_s=W×q_w+Q_w_g+Loss[
3] W×(a_2+b_2×t_2)+X_2×q_o_i
_1+Y_2×q_c_o_a_l=W×(a′_2+
b′_2×t′_2)+Q_s_b_g+Loss[4
] W×(a′_2+b′_2×t′_2)=W×(a″_
2+b”_2×T”_2)+S_a_p×{(t′_2
−T_1)+(T″_2−25)}×1/2×K+Lo
ss[5] W×(a″_2+b″_2×T″_2)+X_3×q_
o_i_l=W×(a_3+b_3×t_3)+Q_r
_b_g+Loss[6] Q_s_b_g+Q_r_b_g+X_4×q_o_i
_l=Q_d_c+Q_d_w+Q_d_g+Loss
[7] 上記各式中において、 Q_c_o_n_c=精鉱反応により発生する熱量(M
cal/H) Q_S=硫黄の燃焼により発生する熱量(Mcal/H
) Q_F_e=鉄の酸化により発生する熱量(Mcal/
H) Q_d_c=装入精鉱の分解に必要とされる熱量(Mc
al/H) Q_d_i=装入煙灰の分解に必要とされる熱量(Mc
al/H) Q_s_i_o_2=装入硅酸鉱の分解に必要とされる
熱量(Mcal/H) Q_o=装入雑物の分解に必要とされる熱量(Mcal
/H) Q_s_f=■の生成により発生する熱量(Mcal/
H) X_1=自熔炉で補助燃料として燃焼させる重油量(k
g/H) q_o_i_l=重油の単位発熱量(Kcal/kg×
10^−^3) Y_1=自熔炉で補助燃料として燃焼させる石炭量(k
g/H) q_c_o_a_l=石炭の単位発熱量(Kcal/k
g×10^−^3) Q_a_i=自熔炉で使用する反応用空気の保有熱量(
Mcal/H) Q_m_a=自熔炉内の反応で生成する■の保有熱量(
Mcal/H) Q_s_l=自熔炉内で生成する■の保有熱量(Mca
l/H) Q_g_a_s=自熔炉内の反応で生成する廃ガスの保
有熱量(Mcal/H) Loss=ロス熱量(Mcal/H) W=廃熱ボイラーで発生する蒸気量(T/H) q_w=廃熱ボイラーで発生する蒸気の単位蒸発熱(M
cal/T) Q_w_g=排熱ボイラー排ガス保有熱量(Mcal/
H) a_2=蒸気加熱器入口蒸気の単位蒸気当りの比熱を求
めるための定数(Mcal/T) b_2=蒸気加熱器入口蒸気の単位蒸気当りの比熱を求
めるための係数(Mcal/T・℃) t_2=蒸気加熱器入口蒸気温度(℃) a′_2=蒸気加熱器出口蒸気の単位蒸気当りの比熱を
求めるための定数(Mcal/T) b′_2=蒸気加熱器出口蒸気の単位蒸気当りの比熱を
求めるための係数(Mcal/T・℃) t′_2=蒸気加熱器出口蒸気温度(℃) X_2=蒸気加熱器での重油使用量(kg/H) Y_2=蒸気加熱器での石炭使用量(kg/H) Q_s_b_g=蒸気加熱器で発生する排ガスの保有熱
量(Mcal/H) a″_2=空気予熱器出口蒸気の単位蒸気当りの比熱を
求めるための定数(Mcal/T) b″_2=空気予熱器出口蒸気の単位蒸気当りの比熱を
求めるための係数(Mcal/T・℃)T″_2=空気
予熱器出口蒸気温度(℃) S_a_p=空気予熱器伝熱面積(m^2) T_1=反応用空気温度(℃) 25=空気予熱器入口空気温度(℃) K=総括伝熱係数(Kcal/m^2・H・℃×10^
−^3) X_3=蒸気再熱器で使用する重油量(kg/H) a_3=蒸気再熱器出口蒸気の単位蒸気当りの比熱を求
めるための定数(Mcal/T) b_3=蒸気再熱器出口蒸気の単位蒸気当りの比熱を求
めるための係数(Mcal/T・℃) t_3=蒸気再熱器出口蒸気温度(℃) Q_r_b_g=蒸気再熱器排ガス保有熱(Mcal/
H) X_4=熱風炉で使用する重油量(kg/H) Q_d_c=乾燥後の原料の持去熱量(Mcal/H) Q_d_w=乾燥により除去された水分の蒸発熱量(M
cal/H) Q_d_g=熱風炉で発生する排ガスの保有熱量(Mc
al/H)
(1) A flash melting furnace that uses coal and/or heavy oil as auxiliary fuel; A waste heat boiler that recovers heat from the exhaust gas of the flash furnace; Steam from the waste heat boiler is heated by burning coal and/or heavy oil. an air preheater that preheats oxygen-enriched reaction air to be supplied to the flash furnace by the steam heated by the steam heater; an air preheater that preheats oxygen-enriched reaction air by burning coal and/or heavy oil; a steam reheater that reheats the steam that has passed through the steam reheater by burning heavy oil; a steam turbine for operating a generator that is driven by the steam that has passed through the steam reheater; an exhaust gas from the steam heater and the steam reheater; In a method for operating a flash melting furnace equipped with hot air obtained by burning heavy oil in a hot blast furnace and a drying furnace that dries the raw material concentrate supplied to the flash melting furnace: Each substance produced from the material balance in the flash melting furnace. While determining the amount, solve the first LP model by linear programming combining the following formulas [1] to [3] to determine the amount of steam generated in the waste heat boiler, and use this value to calculate the following [4] to [3]. 7]
Solve the second LP model created using the formula and calculate the amount of heavy oil and coal used until the reaction air temperature converges, and then calculate the amount of heavy oil and coal used in the waste heat boiler. The energy cost is calculated using the amount of power generated by the steam turbine determined from the amount of steam generated and the total amount of electricity required, and the above calculation is repeated until the obtained energy cost is minimized. The conditions are the amount of heavy oil used as auxiliary fuel in the flash melting furnace, the amount of heavy oil used in the steam heater, the amount of heavy oil used in the steam reheater, the amount of heavy oil used in the hot blast furnace, and the amount of heavy oil used as auxiliary fuel in the flash furnace. A method for operating a flash-smelting furnace, characterized in that the amount of coal used and the amount of coal used in a steam heater are obtained, and the operation is performed according to these values. Q_c_o_n_c=Q_S+Q_F_e−(Q_d_
c+Q_d_i+Q_s_i_o_2+Q_o)+Q_
s_f[1] Q_c_o_n_c+X_1×q_o_i_l+Y_1
×q_c_o_a_l+Q_a_i=Q_m_a+Q_
s_l+Q_g_a_s+Loss[2] Q_g_a_s=W×q_w+Q_w_g+Loss[
3] W×(a_2+b_2×t_2)+X_2×q_o_i
_1+Y_2×q_c_o_a_l=W×(a'_2+
b'_2×t'_2)+Q_s_b_g+Loss[4
] W×(a′_2+b′_2×t′_2)=W×(a″_
2+b”_2×T”_2)+S_a_p×{(t'_2
-T_1)+(T″_2-25)}×1/2×K+Lo
ss[5] W×(a″_2+b″_2×T″_2)+X_3×q_
o_i_l=W×(a_3+b_3×t_3)+Q_r
_b_g+Loss[6] Q_s_b_g+Q_r_b_g+X_4×q_o_i
_l=Q_d_c+Q_d_w+Q_d_g+Loss
[7] In each of the above formulas, Q_c_o_n_c = amount of heat generated by concentrate reaction (M
cal/H) Q_S = amount of heat generated by combustion of sulfur (Mcal/H
) Q_F_e = amount of heat generated by oxidation of iron (Mcal/
H) Q_d_c = amount of heat required for decomposition of charge concentrate (Mc
al/H) Q_d_i = amount of heat required for decomposition of charged smoke ash (Mc
al/H) Q_s_i_o_2 = Amount of heat required to decompose the charged silicate ore (Mcal/H) Q_o = Amount of heat required to decompose the charged miscellaneous material (Mcal
/H) The amount of heat generated by the generation of Q_s_f=■ (Mcal/
H) X_1=Amount of heavy oil to be burned as auxiliary fuel in the flash furnace (k
g/H) q_o_i_l=Unit calorific value of heavy oil (Kcal/kg×
10^-^3) Y_1 = Amount of coal burned as auxiliary fuel in the flash furnace (k
g/H) q_c_o_a_l=Unit calorific value of coal (Kcal/k
g x 10^-^3) Q_a_i = Heat capacity of the reaction air used in the flash-melting furnace (
Mcal/H) Q_m_a = Heat capacity of ■ generated by the reaction in the flash-melting furnace (
Mcal/H) Q_s_l = Heat capacity of ■ generated in the flash-melting furnace (Mcal/H)
l/H) Q_g_a_s = The amount of heat retained in the waste gas generated by the reaction in the flash furnace (Mcal/H) Loss = The amount of heat lost (Mcal/H) W = The amount of steam generated in the waste heat boiler (T/H) q_w= Unit heat of vaporization (M
cal/T) Q_w_g=heat capacity of exhaust heat boiler exhaust gas (Mcal/
H) a_2 = Constant for determining the specific heat per unit steam of the steam at the steam heater inlet (Mcal/T) b_2 = Coefficient for determining the specific heat per unit steam of the steam at the steam heater inlet (Mcal/T・℃) t_2 = Steam temperature at the inlet of the steam heater (℃) a'_2 = Constant for determining the specific heat per unit of steam of the steam at the outlet of the steam heater (Mcal/T) b'_2 = Temperature of the steam at the outlet of the steam heater per unit of steam Coefficient for determining specific heat (Mcal/T・℃) t'_2=Steam heater outlet steam temperature (℃) X_2=Amount of heavy oil used in the steam heater (kg/H) Y_2=Coal use in the steam heater Amount (kg/H) Q_s_b_g = Heat capacity of the exhaust gas generated in the steam heater (Mcal/H) a″_2 = Constant for determining the specific heat per unit steam of the air preheater outlet steam (Mcal/T) b″ _2 = Coefficient for determining specific heat per unit steam of air preheater outlet steam (Mcal/T・℃) T''_2 = Air preheater outlet steam temperature (℃) S_a_p = Air preheater heat transfer area (m^2 ) T_1 = Reaction air temperature (℃) 25 = Air preheater inlet air temperature (℃) K = Overall heat transfer coefficient (Kcal/m^2・H・℃×10^
-^3) X_3=Amount of heavy oil used in the steam reheater (kg/H) a_3=Constant for determining the specific heat per unit steam of steam at the steam reheater outlet (Mcal/T) b_3=Steam reheater Coefficient for determining specific heat per unit steam of outlet steam (Mcal/T・℃) t_3=Steam reheater outlet steam temperature (℃) Q_r_b_g=Steam reheater exhaust gas retained heat (Mcal/
H)
cal/H) Q_d_g=The amount of heat retained in the exhaust gas generated in the hot air stove (Mc
al/H)
JP32172888A 1988-12-20 1988-12-20 Operation of autogenous furnace Pending JPH02166237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32172888A JPH02166237A (en) 1988-12-20 1988-12-20 Operation of autogenous furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32172888A JPH02166237A (en) 1988-12-20 1988-12-20 Operation of autogenous furnace

Publications (1)

Publication Number Publication Date
JPH02166237A true JPH02166237A (en) 1990-06-26

Family

ID=18135779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32172888A Pending JPH02166237A (en) 1988-12-20 1988-12-20 Operation of autogenous furnace

Country Status (1)

Country Link
JP (1) JPH02166237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581273A1 (en) * 1992-07-29 1994-02-02 Praxair Technology, Inc. Chemical process optimization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0581273A1 (en) * 1992-07-29 1994-02-02 Praxair Technology, Inc. Chemical process optimization method

Similar Documents

Publication Publication Date Title
KR100395150B1 (en) How to recover sensible heat from hot exhaust gas
KR19980701311A (en) METHOD FOR CO-PRODUCING FUEL AND IRON
KR0152427B1 (en) Process for producing combustible gases in a melt-down gasifier
JP6016815B2 (en) Apparatus and method for heating a hot stove
PL194819B1 (en) Method of obtaining directly reduced iron along with lowered fuel consumption and lowered carbon monoxide emission
NO124697B (en)
KR20140019389A (en) Metallurgical plant with efficient waste-heat utilization
JPH02166237A (en) Operation of autogenous furnace
JPS63503006A (en) Method and device for preheating waste metal for furnaces
EP0577759A4 (en) Concurrent-flow multiple hearth furnace for the incineration of sewage sludge filter-cake.
JPS6044385B2 (en) Iron alloy manufacturing method and equipment
CN206279226U (en) The system for processing iron content greasy filth
JPS62263934A (en) Operating method for auxiliary facility to refining furnace
ES2247216T3 (en) PROCEDURE FOR THE USE OF THE RESIDUAL HEAT OF THE PRODUCTION OF GROSS IRON IN OVENS OF ROTATING SOLERA.
JP3746993B2 (en) Steelworks generated waste treatment system
RU2240472C1 (en) Power unit
CN1054263A (en) Coal burning accelerator
SU1201322A1 (en) Method of producing steel from scrap
JPH06228623A (en) Steelmaking method having small energy consumption
CN114561499A (en) Method and apparatus for producing iron with low carbon using mixed gas of hydrogen and oxygen
Batham et al. EAFs step on the gas
Semura et al. Innovative Melting Process of Iron and Scrap
JP2002054810A (en) Method for melting waste
JPS54159399A (en) Manufacture of calcium carbide
Dutton On the use of pulverized fuel