JPH02165571A - Solid electrolytic tube for sodium-sulfur battery and its surface shaping - Google Patents

Solid electrolytic tube for sodium-sulfur battery and its surface shaping

Info

Publication number
JPH02165571A
JPH02165571A JP63321336A JP32133688A JPH02165571A JP H02165571 A JPH02165571 A JP H02165571A JP 63321336 A JP63321336 A JP 63321336A JP 32133688 A JP32133688 A JP 32133688A JP H02165571 A JPH02165571 A JP H02165571A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte tube
sodium
solid electrolytic
electrolytic tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63321336A
Other languages
Japanese (ja)
Other versions
JP2535394B2 (en
Inventor
Masaaki Oshima
正明 大島
Akira Kobayashi
朗 小林
Yoshiji Atsumi
渥美 宣二
Hiromi Shimada
博己 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP63321336A priority Critical patent/JP2535394B2/en
Priority to EP89312583A priority patent/EP0375192B1/en
Priority to DE68910949T priority patent/DE68910949T2/en
Priority to CA002005899A priority patent/CA2005899C/en
Priority to US07/452,430 priority patent/US5024907A/en
Publication of JPH02165571A publication Critical patent/JPH02165571A/en
Application granted granted Critical
Publication of JP2535394B2 publication Critical patent/JP2535394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/113Fine ceramics based on beta-aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve durability by defining an average roughness and the maximum height of the surface of a solid electrolytic tube as a center-line average roughness and the maximum height to set the average roughness and the maximum height of a protorusion portion as specified values. CONSTITUTION:For a solid electrolytic tube 4, a center-line average roughness (Ra) of the surface 4a is set as 2.0mum or less, and the maximum height (Rmax) of the protrusion portion 7 as 15mum or less. In case it is used for a sodium-sulfur battery, fine roughness of the surface prevents centralization of sodium ions or sulfur and even sodium polysulfide which have contact with the surface of the solid electrolytic tube on the local portions of the surface of the solid electrolytic tube. Also, when the sodium-sulfur battery is heated and cooled, the centralization of thermal stress on the solid electrolytic tube surface is relaxed, so that deteriolation of the solid electrolytic tube is restrained. It is thus possible to improve durability of the solid electrolytic tube 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はナトリウム−硫黄電池用の固体電解質管及びそ
の固体電解質管の表面整形方法に係わり、特に、固体電
解質管の耐久性及び信頼性を向上することができる固体
電解質管及びその表面整形方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a solid electrolyte tube for a sodium-sulfur battery and a method for shaping the surface of the solid electrolyte tube. The present invention relates to a solid electrolyte tube that can be improved and a method for shaping its surface.

(従来の技術) 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面及び経済面の両面において優れ、300〜350
℃で作動する高温型のナトリウム−硫黄電池の研究開発
が進められている。
(Prior art) Recently, as a secondary battery for electric vehicles and nighttime power storage, it has been developed to be excellent in both performance and economical aspects.
Research and development is progressing on high-temperature sodium-sulfur batteries that operate at ℃.

このナトリウム−硫黄電池として、従来、第3図に示す
ように陽極活物質である溶融硫黄Sを含浸したカーボン
マット等の陽極用導電材Mを収納する円筒状の陽極容器
1と、該陽極容器lの上端部に対し、α−アルミナ製の
絶縁リング2を介して連結され、かつ溶融金属ナトリウ
ムNaを貯留する陰極容器3と、前記絶縁リング2の内
周部に固着され、かつ陰極活物質であるナトリウムイオ
ンNa+を選択的に透過させる機能を有した下方へ延び
る円筒状の袋管を形成する多結晶β°°−アルミナ製の
固体電解質管4とからなっている。
Conventionally, as shown in FIG. 3, this sodium-sulfur battery includes a cylindrical anode container 1 that houses a conductive material M for the anode, such as a carbon mat impregnated with molten sulfur S, which is an anode active material, and the anode container 1. A cathode container 3 is connected to the upper end of the l through an insulating ring 2 made of α-alumina and stores molten metal Na, and a cathode active material is fixed to the inner circumference of the insulating ring 2. It consists of a solid electrolyte tube 4 made of polycrystalline β°°-alumina forming a downwardly extending cylindrical bag tube having the function of selectively transmitting sodium ions Na+.

又、陰極容器3の上部蓋の中央部には、該陰極容器3を
通して固体電解質管4底部まで延びた細長い陰極管5が
貫通支持されている。
Further, an elongated cathode tube 5 extending through the cathode container 3 to the bottom of the solid electrolyte tube 4 is supported through the center of the upper lid of the cathode container 3 .

そして、放電時には次のような反応によってナトリウム
イオンが固体電解質管4を透過して陽極容器1内の硫黄
Sと反応し、多硫化ナトリウムを生成する。
During discharge, sodium ions pass through the solid electrolyte tube 4 and react with the sulfur S in the anode container 1 to produce sodium polysulfide through the following reaction.

2Na+XS→Na2 Sx 又、充電時には放電時とは逆の反応が起こり、ナトリウ
ムNa及び硫黄Sが生成される。
2Na+XS→Na2Sx Also, during charging, a reaction opposite to that during discharging occurs, and sodium Na and sulfur S are generated.

上記のように構成されたナトリウム−硫黄電池の固体電
解質管4は、プレス成形前の素材が多結晶βパ−アルミ
ナ含有の粒体であるため、第4図に示すようにラバープ
レス成形装置(アイソスタティックプレス機)を構成す
る剛性のある内側成形型11と、ゴム製の外側成形型1
2との間隙に前記多結晶β”−アルミナ含有粉末を充填
し、高圧容器内に収納して外側成形型12の外周面を所
定の圧力Pで静圧加圧成形するいわゆるラバープレス成
形法をとる必要がある。そして、固体電解質管4全体に
均等に圧力を作用させて製品の密度が均一となるように
している。
The solid electrolyte tube 4 of the sodium-sulfur battery configured as described above is made of granules containing polycrystalline β-peralumina before being press-molded, so it is assembled into a rubber press-molding device (as shown in FIG. 4). A rigid inner mold 11 and a rubber outer mold 1 make up the isostatic press machine.
The so-called rubber press molding method is used in which the polycrystalline β''-alumina-containing powder is filled into the gap between the mold 12 and the mold 12, and the outer peripheral surface of the outer mold 12 is statically pressed at a predetermined pressure P by storing the powder in a high-pressure container. Then, pressure is applied uniformly to the entire solid electrolyte tube 4 so that the density of the product becomes uniform.

(発明が解決しようとする課題) 上記のようなラバープレス成形方法により得られた固体
電解質管4は、内表面4bは剛性のある内側成形型11
により強圧成形されるので、第5図の左側に示すように
各粉体6が緻密に圧縮されて内表面4bがかなり平滑と
なるので、放電時にナトリウムイオンが均等に固体電解
質管4内を透過するためそれ程問題はない、ところが、
固体電解質管4の外表面4aは剛性のないゴム製の成形
型12により形成されるので、第5図の右側に示すよう
にその表面状態が必ずしも平滑かつ均一ではない、この
外表面4aの平均粗さRaを、各凸部7の高さhを全部
合計して、該凸部の個数で割ったものと定義すると、こ
の外表面4aの平均粗さRaが内表面の平均粗さに比較
して非常に粗くなる。又、前記凸部7の最大高さRma
xも大きくなる。この結果、固体電解質管4の使用状態
において、第6図に示すように固体電解質管表面と接触
するナトリウムイオンNa十あるいは硫黄Sさらには多
硫化ナトリウムNa2 Sxが凸部7より谷部8に集ま
り易くなるため、そこに電流が集中して、該谷部8が劣
化し易くなる。又、ナトリウム−硫黄電池、を加熱した
り冷却した時に、該谷部8に熱応力が集中し易くなる。
(Problems to be Solved by the Invention) The solid electrolyte tube 4 obtained by the rubber press molding method as described above has an inner mold 11 having a rigid inner surface 4b.
Since each powder 6 is densely compressed and the inner surface 4b becomes quite smooth as shown on the left side of FIG. 5, sodium ions permeate through the solid electrolyte tube 4 evenly during discharge. However, there is no problem because
Since the outer surface 4a of the solid electrolyte tube 4 is formed by a non-rigid rubber mold 12, its surface condition is not necessarily smooth and uniform, as shown on the right side of FIG. If roughness Ra is defined as the sum of all the heights h of each convex part 7 divided by the number of convex parts, then the average roughness Ra of this outer surface 4a is compared to the average roughness of the inner surface. and become very rough. Further, the maximum height Rma of the convex portion 7
x also becomes larger. As a result, when the solid electrolyte tube 4 is in use, as shown in FIG. Therefore, current is concentrated there, and the valley portion 8 is likely to deteriorate. Furthermore, when the sodium-sulfur battery is heated or cooled, thermal stress tends to concentrate in the valleys 8.

そのため該谷部8よりクラックが発生し易くなり、固体
電解質管4の寿命が低下し、電池としての信転性が低下
するという問題があった。
Therefore, there was a problem that cracks were more likely to occur in the valleys 8, the life of the solid electrolyte tube 4 was shortened, and the reliability of the battery was lowered.

本発明の第1の目的は耐久性及び信顧性を向上すること
ができるナトリウム−硫黄電池用の固体電解質管を提供
することにある。
A first object of the present invention is to provide a solid electrolyte tube for a sodium-sulfur battery that can improve durability and reliability.

又、本発明の第2の目的は表面の整形加工が容易な固体
電解質管の表面整形方法を提供することにある。
A second object of the present invention is to provide a method for shaping the surface of a solid electrolyte tube, which allows easy surface shaping.

又、本発明の第3の目的は第2の目的に加えて表面の粗
さをさらに向上することができる固体電解質管の表面整
形方法を提供することにある。
A third object of the present invention is to provide a method for shaping the surface of a solid electrolyte tube, which can further improve the surface roughness in addition to the second object.

さらに、本発明の第4の目的は固体電解質管の寸法を所
望の寸法に形成することができるとともに、表面の粗さ
をさらに平滑にすることができる固体電解質管の表面整
形方法を提供することにある。
Furthermore, a fourth object of the present invention is to provide a method for shaping the surface of a solid electrolyte tube, which can form the solid electrolyte tube to desired dimensions and further smooth the surface roughness. It is in.

(課題を解決するための手段) 請求項1記載の固体電解質管は、第1の目的を達成する
ため、固体電解質管の表面に形成される凸部の高さを合
計して凸部の個数で割った平均高さを前記表面の平均粗
さとし、該平均粗さを2.0μm以下、前記凸部の最大
高さを15μm以下とした団体電解質管である。
(Means for Solving the Problems) In order to achieve the first object, the solid electrolyte tube according to claim 1 is characterized in that the number of convex portions is calculated by adding up the heights of the convex portions formed on the surface of the solid electrolyte tube. The average height divided by the average height of the surface is defined as the average roughness of the surface, the average roughness is 2.0 μm or less, and the maximum height of the convex portion is 15 μm or less.

請求項2記載の固体電解質管の表面整形方法の第1は、
第2の目的を達成するため、固体電解質管の表面を未焼
成、かつ未脱脂状態の生成形体の状態で整形装置により
固体電解質管の外表面を整形するという方法を採用して
いる。
A first method of surface shaping a solid electrolyte tube according to claim 2 includes:
In order to achieve the second objective, a method is adopted in which the outer surface of the solid electrolyte tube is shaped using a shaping device while the surface of the solid electrolyte tube is in an unfired and undegreased state.

請求項2記載の固体電解質管の表面整形方法の第2は、
第3の目的を達成するため、固体電解質管を脱脂仮焼し
た後の状態で、該固体電解質管の外表面を整形装置によ
り整形するという方法を採用している。
A second method for shaping the surface of a solid electrolyte tube according to claim 2 includes:
In order to achieve the third objective, a method is adopted in which the outer surface of the solid electrolyte tube is shaped by a shaping device after the solid electrolyte tube has been degreased and calcined.

請求項2記載の固体電解質管の表面整形方法の第3は、
第4の目的を達成するため、固体電解質管を脱脂し、か
つ焼成した焼成体の状態で、該固体電解質管の外表面を
整形装置により整形するという方法を採用している。
A third aspect of the solid electrolyte tube surface shaping method according to claim 2 is:
In order to achieve the fourth objective, a method is adopted in which the solid electrolyte tube is degreased and the outer surface of the solid electrolyte tube is shaped using a shaping device in the state of a fired body.

(作用) 請求項1記載の固体電解質管は、その表面粗さが細かい
ので、ナトリウム−硫黄電池に使用した場合に、固体電
解質管表面と接触するナトリウムイオンあるいは硫黄さ
らには多硫化ナトリウムが固体電解質管表面の局部に集
中しなくなるとともに、ナトリウム−硫黄電池を加熱、
冷却した時に固体電解質管表面への熱応力の集中が緩和
されるため、固体電解質管の劣化が抑制される。
(Function) Since the solid electrolyte tube according to claim 1 has a fine surface roughness, when it is used in a sodium-sulfur battery, sodium ions, sulfur, and even sodium polysulfide that come into contact with the solid electrolyte tube surface are absorbed into the solid electrolyte. It is no longer concentrated locally on the tube surface, and the sodium-sulfur battery is heated.
When the solid electrolyte tube is cooled, the concentration of thermal stress on the surface of the solid electrolyte tube is alleviated, so deterioration of the solid electrolyte tube is suppressed.

又、請求項2記載の固体電解質管の表面整形方法の第1
は、未焼成の生成形体の固体電解質管の表面が焼結体と
比較して軟らかいので、容易に整形できる大きな利点が
ある。
Moreover, the first method of surface shaping of a solid electrolyte tube according to claim 2
Since the surface of the solid electrolyte tube of the unfired formed body is softer than that of the sintered body, there is a great advantage that it can be easily shaped.

請求項2記載の固体電解質管の表面整形方法の第2は、
脱脂仮焼された固体電解質管の表面を未焼成の生成形体
の状態に近い状態で表面整形できるので、整形が容易で
あるとともに、成形後の表面粗さが細かくなる。
A second method for shaping the surface of a solid electrolyte tube according to claim 2 includes:
Since the surface of the degreased and calcined solid electrolyte tube can be shaped in a state close to that of the unfired formed body, shaping is easy and the surface roughness after shaping becomes fine.

請求項2記載の固体電解質管の製造方法の第3は、焼成
後の固体電解質管の表面を整形加工するので、表面粗さ
が研磨粗さに等しく一段と細かくできるとともに、固体
電解質管の最終所望寸法に形成できる大きな利点がある
The third aspect of the method for manufacturing a solid electrolyte tube according to claim 2 is that the surface of the solid electrolyte tube after firing is shaped, so that the surface roughness can be made even finer to the same level as the polishing roughness, and the final desired state of the solid electrolyte tube can be achieved. It has the great advantage of being able to be formed to any size.

(第一実施例) 次に、本発明のナトリウム−硫黄電池用の固体電解質管
の製造方法を具体化した第一実施例を説明する。
(First Example) Next, a first example that embodies the method of manufacturing a solid electrolyte tube for a sodium-sulfur battery according to the present invention will be described.

最初に、所定の配合割合で調合したα−アルミナ、炭酸
ナトリウム、シュウ酸リチウムを例えば1001のボー
ルミルによる湿式粉砕により粉砕・混合する。
First, α-alumina, sodium carbonate, and lithium oxalate prepared in a predetermined proportion are pulverized and mixed by wet pulverization using, for example, a 1001 ball mill.

その後、好ましくはスプレードライヤーにより所定粒径
(平均粒径が40〜120μm)の粉体を造粒する。
Thereafter, a powder having a predetermined particle size (average particle size of 40 to 120 μm) is preferably granulated using a spray dryer.

次に、ラバープレス成形装置(アイソスタティックプレ
ス機)を使用し、圧力2,5ton/cdで例えば外径
が15鶴、肉厚が1.On、長さ150nの袋管状をな
す固体電解質管4(第2図参照)を成形する。
Next, a rubber press molding device (isostatic press machine) is used, and at a pressure of 2.5 tons/cd, for example, the outer diameter is 15 mm and the wall thickness is 1 mm. On, a solid electrolyte tube 4 (see FIG. 2) having a bag tube shape and having a length of 150 nm is formed.

さらに、前記未焼成、かつ未脱脂状態の生成形体の状態
の固体電解質管4の表面4aをセンタレス研削盤を使用
して、ダイヤモンド砥石(#180)で乾式研磨加工す
る。
Further, the surface 4a of the solid electrolyte tube 4 in the unfired and undegreased formed state is dry polished with a diamond grindstone (#180) using a centerless grinder.

次いで、紙ワイパー又はナイロンメツシュにより表面仕
上げを行って固体電解質管の外表面の成形を完了する。
Next, surface finishing is performed using a paper wiper or a nylon mesh to complete the shaping of the outer surface of the solid electrolyte tube.

そして約1000℃で2時間脱脂し、約1600℃で1
0分間焼成してβ″−アルミナよりなるナトリウム−硫
黄電池に最適な固体電解質管を得た。
Then, it was degreased at about 1000℃ for 2 hours, and then heated to about 1600℃ for 1 hour.
After firing for 0 minutes, a solid electrolyte tube made of β''-alumina and suitable for a sodium-sulfur battery was obtained.

このようにして製造された固体電解質管4の表面4aは
第1図に示すように平滑となっていた。
The surface 4a of the solid electrolyte tube 4 manufactured in this manner was smooth as shown in FIG.

そして、表面4aの平均粗さRaは、表に示すように0
.5〜0.8μm1又、凸部の最大高さRmaxは6〜
11μmであった。
The average roughness Ra of the surface 4a is 0 as shown in the table.
.. 5~0.8μm 1 Also, the maximum height Rmax of the convex part is 6~
It was 11 μm.

なお、前記ラバープレス成形時において、固体電解質管
4の内周面の表面平均粗さRaを0.5μm以下、凸部
の最大高さRma xを5.0μm以下とすることが、
固体電解質管4の内部から外部への陰極活物質の移動を
円滑にする上で特に望ましい。
Note that during the rubber press molding, the average surface roughness Ra of the inner circumferential surface of the solid electrolyte tube 4 is 0.5 μm or less, and the maximum height Rmax of the convex portion is 5.0 μm or less.
This is particularly desirable in order to facilitate the movement of the cathode active material from the inside of the solid electrolyte tube 4 to the outside.

(第二実施例) この第二実施例では前述した第一実施例により製造した
未焼成、かつ未脱脂状態の生成形体の固体電解質管4を
、約1000℃で2時間脱脂し、その後、センタレス研
削盤を使用し、脱脂された仮焼成状態の固体電解質管4
の表面をダイヤモンド砥石(#180)で乾式加工する
(Second Example) In this second example, the unfired and undegreased solid electrolyte tube 4 produced in the first example described above was degreased at about 1000°C for 2 hours, and then the centerless Solid electrolyte tube 4 in a pre-fired state that has been degreased using a grinder
Dry process the surface with a diamond grindstone (#180).

最後に、約1610℃で5分間焼成して、固体電解質管
4を得た。この固体電解質管4の表面平均粗さRaは、
表に示すように0.2〜0.4μmと第一実施例で得ら
れた固体電解質管の表面平均粗さRaよりもさらに良好
であった。又、凸部の最大高さRmaxは、2〜6μm
であり第一実施例の固体電解質管4よりもより平滑であ
った。
Finally, the solid electrolyte tube 4 was obtained by firing at about 1610° C. for 5 minutes. The average surface roughness Ra of this solid electrolyte tube 4 is
As shown in the table, the surface average roughness Ra was 0.2 to 0.4 μm, which was even better than the surface average roughness Ra of the solid electrolyte tube obtained in the first example. In addition, the maximum height Rmax of the convex portion is 2 to 6 μm.
It was smoother than the solid electrolyte tube 4 of the first example.

(第三実施例) この第三実施例では第一実施例で得られた未焼成、未脱
脂状態の生成形体の固体電解質管4を約1590℃で1
5分間焼成した後、センタレス研削盤を使用し、焼結状
態の固体電解質管4の表面4aをダイヤモンド砥石(9
800)で湿式加工し、さらに、#1200のダイヤモ
ンド砥石で湿式加工した。
(Third Example) In this third example, the solid electrolyte tube 4 in the unfired, undegreased state obtained in the first example was heated to about 1590°C.
After firing for 5 minutes, use a centerless grinder to grind the surface 4a of the solid electrolyte tube 4 in a sintered state with a diamond grindstone (9
800), and further wet processing was performed using a #1200 diamond grindstone.

この固体電解質管4の表面平均粗さRaは、表に示すよ
うに0.2〜0.4μmと第二実施例で得られた固体電
解質管の表面平均粗さRaと同様に良好であった。又、
凸部の最大高さRmaxも、第二実施例の固体電解質管
4と同様に2〜6μmであった。
The surface average roughness Ra of this solid electrolyte tube 4 was 0.2 to 0.4 μm as shown in the table, which was as good as the surface average roughness Ra of the solid electrolyte tube obtained in the second example. . or,
The maximum height Rmax of the convex portion was also 2 to 6 μm, similar to the solid electrolyte tube 4 of the second example.

なお、本発明は次のように具体化することも可能である
Note that the present invention can also be embodied as follows.

前記各実施例では整形装置としてダイヤモンド砥石を装
着したセンタレス研削盤を使用したが、この場合、ダイ
アモンド砥石の番手や粒径を変えることにより表面平均
粗さを変えることができるのは勿論である。そして、前
記各実施例においてもダイヤモンド砥石の粒径をさらに
細かくすることにより、表面平均粗さをさら更に細かく
することができる。又、センタレス研削盤に代えて旋盤
及び円筒研削盤等を使用したり、砥粒を使用した加工法
を行う等、本発明の特許請求の範囲内で構成を任意に変
更して具体化することも可能である。
In each of the above examples, a centerless grinder equipped with a diamond grinding wheel was used as the shaping device, but in this case, it is of course possible to change the average surface roughness by changing the number and particle size of the diamond grinding wheel. Also in each of the above embodiments, the average surface roughness can be made even finer by making the grain size of the diamond grinding wheel finer. Furthermore, the structure may be modified as desired within the scope of the claims of the present invention, such as using a lathe or cylindrical grinder instead of a centerless grinder, or using a processing method using abrasive grains. is also possible.

(発明の効果) 請求項1記載の固体電解質管はその表面の平均粗さが小
さいので、表面強度を向上するとともに、固体電解質管
をナトリウム−硫黄電池に使用した場合に、その表面に
ナトリウムイオンあるいは硫黄さらには多硫化ナトリウ
ム及び熱応力が局部的に集中するのを防止して、固体電
解質管の耐久性を向上することができる効果がある。
(Effect of the invention) Since the solid electrolyte tube according to claim 1 has a small average roughness on its surface, it improves the surface strength, and when the solid electrolyte tube is used in a sodium-sulfur battery, it is possible to prevent sodium ions from forming on the surface. Alternatively, it is effective in preventing local concentration of sulfur, sodium polysulfide, and thermal stress, thereby improving the durability of the solid electrolyte tube.

又、請求項2記載の固体電解質管の表面整形方法は、未
焼成の生成形体の固体電解質管の表面を容易に整形する
ことができ、又、脱脂仮焼された固体電解質管の表面を
生成形体の状態と同じように表面整形できるので、焼成
後の・表面平均粗さをより細かくすることもでき、さら
に、焼成後の焼結体の固体電解質管の表面を整形加工す
るので、表面平均粗さを前記と同様に細かくできるとと
もに、固体電解質管の寸法を最終製品の所望寸法に完全
に一致させることができる寸法精度の高い固体電解質管
を得ることができる。
Further, the method for shaping the surface of a solid electrolyte tube according to claim 2 can easily shape the surface of a solid electrolyte tube that is an unfired product, and can also shape the surface of a solid electrolyte tube that has been degreased and calcined. Since the surface can be shaped in the same way as the shape, the average surface roughness after firing can be made finer.Furthermore, since the surface of the solid electrolyte tube of the sintered body is shaped after firing, the surface average roughness can be made finer. It is possible to obtain a solid electrolyte tube with high dimensional accuracy, in which the roughness can be made as fine as described above, and the dimensions of the solid electrolyte tube can be completely matched to the desired dimensions of the final product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を具体化した一実施例を示す固体電解質
管の第2図におけるA部分の拡大断面図、第2図は固体
電解質管の中央部縦断面図、第3図はナトリウム−硫黄
電池の中央部縦断面図、第4図は固体電解質管の成形方
法を説明するための中央部縦断面図、第5図は第4図の
B部分の拡大断面図、第6図は固体電解質管の表面の拡
大部分断面図である。 4・・・固体電解質管、4a・・・外側表面、4b・・
・内側表面、Ra・・・固体電解質管の焼成状態の平均
表面粗さ、h・・・凸部7の高さ、Rmax・・・固体
電解質管の表面の最大高さ。 特 許 出 願 人  東京電力 株式会社日本碍子 
株式会社
FIG. 1 is an enlarged cross-sectional view of part A in FIG. 2 of a solid electrolyte tube showing an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of the central part of the solid electrolyte tube, and FIG. 3 is a sodium Figure 4 is a vertical cross-sectional view of the central part of a sulfur battery, Figure 4 is a vertical cross-sectional view of the central part for explaining the method of forming solid electrolyte tubes, Figure 5 is an enlarged cross-sectional view of part B in Figure 4, and Figure 6 is a solid electrolyte tube. FIG. 3 is an enlarged partial cross-sectional view of the surface of an electrolyte tube. 4...Solid electrolyte tube, 4a...Outer surface, 4b...
- Inner surface, Ra: Average surface roughness of the solid electrolyte tube in the fired state, h: Height of the convex portion 7, Rmax: Maximum height of the surface of the solid electrolyte tube. Patent applicant Tokyo Electric Power Company Nippon Insulator Co., Ltd.
Co., Ltd.

Claims (1)

【特許請求の範囲】 1、固体電解質管(4)の表面(4a)に形成される凸
部(7)の高さ(h)を合計して凸部の個数で割った平
均高さを前記表面(4a)の平均粗さ(Ra)とし、該
平均粗さ(Ra)を2.0μm以下、前記凸部(7)の
最大高さ(Rmax)を15μm以下としたことを特徴
とするナトリウム−硫黄電池用の固体電解質管。 2、圧縮成形後の生成形体、脱脂仮焼体及び焼成体のう
ちのいずれかの固体電解質管の外表面を整形装置により
整形することを特徴とす請求項1記載のナトリウム−硫
黄電池用の固体電解質管の表面整形方法。
[Claims] 1. The average height obtained by summing the heights (h) of the convex portions (7) formed on the surface (4a) of the solid electrolyte tube (4) and dividing the sum by the number of convex portions as described above. Sodium characterized in that the average roughness (Ra) of the surface (4a) is 2.0 μm or less, and the maximum height (Rmax) of the convex portion (7) is 15 μm or less. - Solid electrolyte tubes for sulfur batteries. 2. The method for a sodium-sulfur battery according to claim 1, wherein the outer surface of the solid electrolyte tube of any one of the formed body after compression molding, the degreased calcined body, and the fired body is shaped by a shaping device. Surface shaping method for solid electrolyte tubes.
JP63321336A 1988-12-19 1988-12-19 Solid electrolyte tube for sodium-sulfur battery and its surface shaping method Expired - Lifetime JP2535394B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63321336A JP2535394B2 (en) 1988-12-19 1988-12-19 Solid electrolyte tube for sodium-sulfur battery and its surface shaping method
EP89312583A EP0375192B1 (en) 1988-12-19 1989-12-01 Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof
DE68910949T DE68910949T2 (en) 1988-12-19 1989-12-01 Dry electrolyte tube for sodium / sulfur cells and method for surface treatment.
CA002005899A CA2005899C (en) 1988-12-19 1989-12-18 Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof
US07/452,430 US5024907A (en) 1988-12-19 1989-12-19 Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321336A JP2535394B2 (en) 1988-12-19 1988-12-19 Solid electrolyte tube for sodium-sulfur battery and its surface shaping method

Publications (2)

Publication Number Publication Date
JPH02165571A true JPH02165571A (en) 1990-06-26
JP2535394B2 JP2535394B2 (en) 1996-09-18

Family

ID=18131453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321336A Expired - Lifetime JP2535394B2 (en) 1988-12-19 1988-12-19 Solid electrolyte tube for sodium-sulfur battery and its surface shaping method

Country Status (5)

Country Link
US (1) US5024907A (en)
EP (1) EP0375192B1 (en)
JP (1) JP2535394B2 (en)
CA (1) CA2005899C (en)
DE (1) DE68910949T2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238905A (en) * 1989-03-13 1990-09-21 Ngk Insulators Ltd Manufacture of ceramic product
KR20090093819A (en) * 2008-02-28 2009-09-02 코바렌트 마테리얼 가부시키가이샤 Sintered body and member used in plasma treatment device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841780A (en) * 1981-08-03 1983-03-11 ゼネラル・エレクトリツク・カンパニイ Chemically polished ceramic body and manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113928A (en) * 1976-02-17 1978-09-12 University Of Utah Method of preparing dense, high strength, and electrically conductive ceramics containing β"-alumina
FR2416206A1 (en) * 1978-02-01 1979-08-31 Chloride Silent Power Ltd Polycrystalline alumina electrolyte for sodium-sulphur battery - is compacted by sintering in successive heating and cooling cycles
JPS60155359A (en) * 1984-01-20 1985-08-15 Sumitomo Special Metals Co Ltd Holeless polishing method of ceramic material
JPS61197485A (en) * 1985-02-26 1986-09-01 住友電気工業株式会社 Surface lubrication for ceramic substrate of thin film circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841780A (en) * 1981-08-03 1983-03-11 ゼネラル・エレクトリツク・カンパニイ Chemically polished ceramic body and manufacture

Also Published As

Publication number Publication date
CA2005899A1 (en) 1990-06-19
DE68910949D1 (en) 1994-01-05
US5024907A (en) 1991-06-18
EP0375192A2 (en) 1990-06-27
EP0375192A3 (en) 1991-12-27
EP0375192B1 (en) 1993-11-24
CA2005899C (en) 1994-12-13
DE68910949T2 (en) 1994-05-19
JP2535394B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
CN100373662C (en) Battery cathod
JP4868759B2 (en) Positive electrode plate for lithium secondary battery and method for producing the same
US4119771A (en) Negative cobalt electrode for an alkaline storage battery
JPH02165571A (en) Solid electrolytic tube for sodium-sulfur battery and its surface shaping
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
JP2634674B2 (en) Mold for isostatic pressing of ceramics tubes
EP0807601A2 (en) Anode material, method for producing it and nonaqueous electrolyte cell emploxing such anode materials
EP1533860B1 (en) Control valve type lead battery
JP3034883B2 (en) Solid electrolyte for sodium-sulfur battery and method for producing the same
JPH07211345A (en) Alkali storage battery hermetically sealed in form of button battery
JP2598825B2 (en) Mold for isostatic pressing of ceramics tubes
JPS6137733B2 (en)
JP2719352B2 (en) Method for manufacturing solid electrolyte tube for sodium-sulfur battery
EP0834940B1 (en) Sealed alkaline storage battery
JP2001130905A (en) Solid activated carbon-based structure, method for electric double-layered capacitor
CN109704741B (en) Preparation method of special ceramic material and application of special ceramic material
JPS5931830B2 (en) Manufacturing method of cylindrical electrode
JPS58102468A (en) Alkaline manganese battery
JPS58206046A (en) Enclosed type lead storage battery and production thereof
JPH0631647Y2 (en) Solid electrolyte tube for sodium-sulfur battery
CN115224369A (en) Method for manufacturing low-interface-resistance solid-state battery
JPS5996659A (en) Sintered substrate for alkaline battery
JP2004193570A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor employing it
JP2958785B2 (en) Manufacturing method of clad type positive plate
JP2002075338A (en) Positive electrode mix compact and battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13