JPH02165161A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH02165161A
JPH02165161A JP32084788A JP32084788A JPH02165161A JP H02165161 A JPH02165161 A JP H02165161A JP 32084788 A JP32084788 A JP 32084788A JP 32084788 A JP32084788 A JP 32084788A JP H02165161 A JPH02165161 A JP H02165161A
Authority
JP
Japan
Prior art keywords
layer
electrophotographic photoreceptor
photoconductive layer
substrate
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32084788A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Hitoshi Takemura
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32084788A priority Critical patent/JPH02165161A/en
Publication of JPH02165161A publication Critical patent/JPH02165161A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • G03G5/08228Silicon-based comprising one or two silicon based layers at least one with varying composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0436Photoconductive layers characterised by having two or more layers or characterised by their composite structure combining organic and inorganic layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain high surface potential by forming in an a-SiC photoconductive layer a layer region containing carbon in a content distribution decreasing in the layer thickness direction from a substrate to the surface of the photosensitive body. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on the conductive substrate 1 the amorphous silicon carbide (a-SiC) photoconductive layer 2 having a function of generating charges, and an organic semiconductor layer 3 having a function of transferring charges, and the layer 2 has the layer region containing carbon in a content distribution decreasing in the layer thickness upward direction, thus permitting high surface potential to be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド先導電層と有
機光半導体層を積層して成る電子写真感光体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous silicon carbide conductive layer and an organic optical semiconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料にはSe+5e−Te、Δ
5□Sa:++ZnO+CdS、アモルファスシリコン
などの無機材料があり、最初に実用化されたのはSeで
あり、そして、Z n Or Cd S +アモルファ
スシリコンも実用化された。
The photoconductive material of the electrophotographic photoreceptor includes Se+5e-Te, Δ
There are inorganic materials such as 5□Sa:++ZnO+CdS and amorphous silicon, of which Se was first put into practical use, and ZnOrCdS+amorphous silicon was also put into practical use.

一方、有機系の光導電材料としてPVKが最初に実用化
され、その後、電荷の発生と輸送を別々の材料に分担さ
せる機能分離型感光体が提案され、この感光体により有
機材料の開発が飛鑵的に発展した。
On the other hand, PVK was first put into practical use as an organic photoconductive material, and later a functionally separated photoreceptor was proposed in which charge generation and transport were shared between separate materials, and this photoreceptor led to the rapid development of organic materials. It developed rapidly.

他方、無機光導?i!層の上に有機光半導体層を積層し
た電子写真感光体も提案された。
On the other hand, inorganic light guide? i! An electrophotographic photoreceptor in which an organic photoconductor layer is laminated on top of the layer has also been proposed.

例えば、Se層と有機光半導体層の積層型感光体があり
、既に実用化されたが、この感光体によれば、Se自体
有害であり、しかも、長波長側の感度に劣るという欠点
もあった。
For example, there is a laminated photoreceptor consisting of a Se layer and an organic optical semiconductor layer, which has already been put into practical use, but this photoreceptor has the disadvantage that Se itself is harmful and has poor sensitivity on the long wavelength side. Ta.

そこで、アモルファスシリコンカーバイド光導1iN(
Ju下、アモルファスシリコン力・−バイトをa−3i
Cと略ず)と有機光半導体層から成る積層型感光体が提
案され(特開昭56−14241号)、上記問題点を解
消して無公害性並びに高光感度な特性が得られた。
Therefore, amorphous silicon carbide light guide 1iN (
Under Ju, amorphous silicon force - byte a-3i
A laminated photoreceptor was proposed (Japanese Unexamined Patent Application Publication No. 14241/1983) consisting of an organic optical semiconductor layer (abbreviated as C) and an organic optical semiconductor layer, which solved the above problems and achieved non-polluting properties and high photosensitivity.

しかしながら、本発明者等が1記のようなa −S i
C層から成るam型感光体を製作し、その表面電位を測
定したところ、未だ満足し得るような特性が得られず、
更に改善を要することが判明し、た。
However, the present inventors have proposed a -S i as described in 1.
When we fabricated an am-type photoreceptor consisting of a C layer and measured its surface potential, we were unable to obtain satisfactory characteristics.
It became clear that further improvements were needed.

したがって、本発明の目的は高い表面電位が得られた電
子写真感光体を掃供することにある。
Therefore, an object of the present invention is to provide an electrophotographic photoreceptor with a high surface potential.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電子写真感光体は、導電性基板上にaSiC光
導電層と有機半導体層を順次積層するに当たって、その
a−3iC光導電層に基板から16光体表面の層厚方向
に亘ってカーボン含有量が漸次減少するNmW域を形成
し7たことを特徴とする。
In the electrophotographic photoreceptor of the present invention, when an aSiC photoconductive layer and an organic semiconductor layer are sequentially laminated on a conductive substrate, carbon is added to the a-3iC photoconductive layer from the substrate to the 16-photoconductor surface in the layer thickness direction. It is characterized by forming a NmW region in which the content gradually decreases.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
同図によれば、導電性基板(1)の上にa−3iC光導
電層(2)及び有機光半導体層(3)が順次積層されて
いイ)、、そして、a−SiC光導電層(2)には電荷
発生という機能があり、他方の有機光′+導体序(3)
には電荷輸送ノ・いう機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
According to the figure, an a-3iC photoconductive layer (2) and an organic photoconductive layer (3) are sequentially laminated on a conductive substrate (1), and an a-SiC photoconductive layer (a). 2) has the function of charge generation, and the other organic light + conductor sequence (3)
has a function called charge transport.

本発明は上記a4xc光勇電層(2)に前述した通りカ
ーボン含有量が漸次減少する層領域を形成しこれによっ
て表面電位が高められたことが特徴である。
The present invention is characterized in that a layer region in which the carbon content gradually decreases is formed in the a4xc photoelectric layer (2), thereby increasing the surface potential.

このようなa SiC光導電層(2)のカーボン含有分
布は例えば第2図〜第゛1図に示される。
The carbon content distribution of such a SiC photoconductive layer (2) is shown, for example, in FIGS. 2 to 1.

これらの図において、横軸は層厚方向であり、縦軸はカ
ーボン量であり、そして、aは基板(1)との訝面を、
bは有機光半導体層(3)との界面を表す。
In these figures, the horizontal axis is the layer thickness direction, the vertical axis is the amount of carbon, and a is the diagonal surface with the substrate (1).
b represents the interface with the organic optical semiconductor layer (3).

また、このa−3iC光導電層(2)の元素比率を平均
値としてF記の通りの範囲内に設定した場合、このIt
!(2) 自体の光感度が8i著に高められろという点
で望ましい。
Moreover, when the element ratio of this a-3iC photoconductive layer (2) is set as an average value within the range as shown in F, this It
! (2) It is desirable that the photosensitivity of 8i itself be significantly increased.

組成式:  (Si、−ウe X) l−y^、(但L
Aは水素又はハロゲン) 0.05 < x < 0.5、好適には0.1 < 
x (0,AO,1< y < 0.5、好適には0.
2 < y < 0.5L記x (1ヴが0.05以下
の場合には短波長側の光感度が高められず、y値が0.
5以上の場合には光導電性が著しく低(なり、光キャリ
アの励起機能が低下する。
Composition formula: (Si, -e X) l-y^, (However, L
A is hydrogen or halogen) 0.05 < x < 0.5, preferably 0.1 <
x (0, AO, 1 < y < 0.5, preferably 0.
2 < y < 0.5
When the number is 5 or more, the photoconductivity becomes extremely low, and the excitation function of photocarriers deteriorates.

また、y値が0□1以下の場合には暗導電率が大きくな
る傾向にあり、。1.かも、光導電率が低下傾向にあり
、そのために所望通りの光導電性が得られず、一方、y
値が0.5以上の場合にはa−SiC層の内部応力が増
大し、基板との密着性が低下i−7で剥離し7易くなる
Furthermore, when the y value is 0□1 or less, the dark conductivity tends to increase. 1. However, the photoconductivity tends to decrease, and therefore the desired photoconductivity cannot be obtained;
When the value is 0.5 or more, the internal stress of the a-SiC layer increases, the adhesion with the substrate decreases, and it becomes easy to peel off at i-7.

また、上記a−SiC光導電層(2)には水素(II)
元素やハロゲン元素がダングリングボンド終端用に含有
されているが、これらの元素のなかでH元素が終端部に
取り込まれ易く、これによってバンドギャップ中の局在
準位密度が低減化されるとい・う点で望ましい。
Further, the a-SiC photoconductive layer (2) contains hydrogen (II).
Elements and halogen elements are contained for terminating dangling bonds, but among these elements, H element is likely to be incorporated into the terminating portion, which is said to reduce the localized level density in the band gap. - Desirable in terms of points.

a−SiC光導電層(?)の厚みは0.05−5μm、
好適には0.1〜3μ−の範囲内に設定すればよく、こ
の範囲内であれば、高い光感度が得られ、残留電位が低
くなる。
The thickness of the a-SiC photoconductive layer (?) is 0.05-5 μm,
It is preferable to set it within the range of 0.1 to 3 .mu.-; within this range, high photosensitivity can be obtained and the residual potential will be low.

前記基板(1)には黄銅、銅、5tlS、AI等の金属
導電体、あるいはガラス、セラミックス等の絶縁体の表
面に導電体薄膜をコーティングj7だものがあり、就中
、AIがコスト面並びGこa−SiC層との密着性とい
う点で有利である。
The substrate (1) includes a metal conductor such as brass, copper, 5TLS, and AI, or a conductor thin film coated on the surface of an insulator such as glass and ceramics. This is advantageous in terms of adhesion to the Ga-SiC layer.

また、本発明の電子写真感光体は有機光半導体層(3)
の材料選択により負帯電型又は正帯電型に設定すること
ができる。即ち、負帯電型電子写真感光体の場合、有機
光半導体層(3)に電子供り性化合物が選ばれ、一方、
正帯電型電子写真感光体の場合には有機光半導体層(3
)に電子吸引)↑化合物が選ばれる。
Further, the electrophotographic photoreceptor of the present invention has an organic photoconductor layer (3).
It can be set to a negatively charged type or a positively charged type by selecting the material. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-prone compound is selected for the organic photosemiconductor layer (3);
In the case of a positively charged electrophotographic photoreceptor, an organic optical semiconductor layer (3
) with electron withdrawal) ↑ Compound is selected.

電子供与性化合物には高分子層のものとしこ1、ポリ−
N−ビニルカルバゾール、ポリビニルピレン、ポリビニ
ルアントラセン、ビレニ/〜ホルムアルデヒド縮重合体
などがあり、また、低分子■のものとしてオヤザジアゾ
ール、オキサゾール、ビラシリン、トリフェニルメタン
、ヒドラゾン、トリアリールアミン、N−フェニルカル
バゾール、スチルベンなどがあり、この低分子物質は、
ポリカーボネート、ポリエステル、メタアクリル樹脂、
ポリアミド、アクリルエポキシ、ポリエチレン、フェノ
ール、ポリウレタン、ブチラール樹脂、ポリ酢酸ビニル
、ユリア樹脂などのバインダに分散されて用いられる。
Electron-donating compounds include those with a polymer layer.
These include N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, bireni/-formaldehyde condensation polymers, and low molecular weight products such as oyazadiazole, oxazole, biracillin, triphenylmethane, hydrazone, triarylamine, and N-phenylcarbazole. , stilbene, etc., and these low-molecular substances are
polycarbonate, polyester, methacrylic resin,
It is used dispersed in a binder such as polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, butyral resin, polyvinyl acetate, or urea resin.

電子吸引性化合物には2.4.7− )リニトロフルオ
レノンなどがある。
Electron-withdrawing compounds include 2.4.7-)linitrofluorenone.

次に本発明電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−SiC層を形成するにはグロー放電分解法、イオン
ブレーティング法、反応性スパッタリング法、真空蒸着
法、CVD法などの薄膜形成方法がある。
To form the a-SiC layer, there are thin film forming methods such as glow discharge decomposition method, ion blating method, reactive sputtering method, vacuum evaporation method, and CVD method.

グロー放電分解法を用いる場合、Si元素含有ガスとC
元素含有ガスを組合せ、この混合ガスをプラズマ分解し
て成膜形成する。このSi元素含有ガスにはSiH4,
SiJi+SiJ*、5IFI、SiC14,SiHC
h等々があり、また、C元素含有ガスにはC114,C
d4.CJ2+C3H1等々があり、就中、CtHzは
高速成膜性が得られるという点で望ましい。
When using the glow discharge decomposition method, Si element-containing gas and C
A film is formed by combining element-containing gases and plasma decomposing the mixed gas. This Si element-containing gas includes SiH4,
SiJi+SiJ*, 5IFI, SiC14, SiHC
h, etc., and gases containing C element include C114, C
d4. There are CJ2+C3H1, etc., and CtHz is particularly desirable in that it can provide high-speed film formation.

本実施例に用いられるグロー放電分解装置を第8図によ
り説明する。
The glow discharge decomposition device used in this example will be explained with reference to FIG.

図中、第1タンク(4)、第2タンク(5)、第3タン
ク(6)にはそれぞれSiH4+CJz及びH2が密封
され、これらのガスは各々対応する第31!整弁(7)
、第2調整弁(8)及び第31!整弁(9)を開放する
ことにより放出される。その放出ガスの流量はそれぞれ
マスフローコントローラ(10) (11) (12)
により制御され、各々のガスは混合されて主管(13)
へ送られる。尚、(14) (15)は止め弁である。
In the figure, SiH4+CJz and H2 are sealed in the first tank (4), the second tank (5), and the third tank (6), respectively, and these gases are in the corresponding 31st! Valve adjustment (7)
, the second regulating valve (8) and the 31st! It is released by opening the regulating valve (9). The flow rate of the released gas is determined by the mass flow controller (10) (11) (12).
controlled by the main pipe (13), each gas is mixed
sent to. Note that (14) and (15) are stop valves.

主管(13)を通じて流れるガスは反応管(16)へ流
入されるが、この反応管(16)の内部には容量結合型
放電用電掻(17)が設置され、また、筒状の成膜用基
板(18)が基板支持体(19)の上に載置され、基板
支持体(19)がモータ(20)により回転駆動され、
これに伴って基板(18)が回転される。そして、電極
(17)に電力50−〜3Kw、周波数1〜50Mtl
zの高周波電力が印加され、しかも、基板(18)が適
当な加熱手段により約200〜400℃、好適には約2
00〜350℃の温度に加熱される。また、反応管(1
6)は回転ポンプ(21)と拡散ポンプ(22)に連結
されており、これによってグロー放電による成膜形成時
に所要な減空状態(放電時のガス圧0.O1〜2.0T
orr)が維持される。
The gas flowing through the main pipe (13) flows into the reaction tube (16), and a capacitively coupled discharge electric scraper (17) is installed inside this reaction tube (16). A substrate (18) is placed on a substrate support (19), and the substrate support (19) is rotationally driven by a motor (20).
Along with this, the substrate (18) is rotated. Then, the electrode (17) has a power of 50 to 3 Kw and a frequency of 1 to 50 Mtl.
z high frequency power is applied, and the substrate (18) is heated to about 200 to 400°C, preferably about 2
It is heated to a temperature of 00 to 350°C. In addition, a reaction tube (1
6) is connected to a rotary pump (21) and a diffusion pump (22).
orr) is maintained.

このような構成のグロー放電分解装置を用いて基板(1
8)の上にa−SiC層を形成する場合、第1調整弁(
7)、第2調整弁(8)、第3調整弁(9)を開いてS
iH4,Cdh+Hzの各々のガスを放出し、その放出
量をマスフローコントローラ(10) (11) (1
2)により制御し、各々のガスは混合されて主管(13
)を介して反応管(16)へ流入される。そして、反応
管内をそれぞれ所定の条件に設定するとグロー放電が発
生し、ガスの分解に伴ってa−SiC膜が基板上に高速
に形成される。
A substrate (1
When forming an a-SiC layer on top of 8), the first regulating valve (
7), open the second regulating valve (8) and third regulating valve (9) and
Each gas of iH4, Cdh+Hz is released, and the release amount is controlled by a mass flow controller (10) (11) (1
2), each gas is mixed and sent to the main pipe (13
) into the reaction tube (16). When the interior of the reaction tube is set to predetermined conditions, glow discharge occurs, and an a-SiC film is rapidly formed on the substrate as the gas decomposes.

上述した通りの薄膜形成方法によりa−SiC層を形成
すると、次に有機光半導体層を形成する。
After forming the a-SiC layer by the thin film forming method described above, an organic optical semiconductor layer is then formed.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成され、前者は溶媒中に感光材が分散された塗工液
の中に浸漬し、次いで、一定な速度で引上げ、そして、
自然乾燥及び熱エージング(約150℃、1時間) を
行うという方法であり、また、後者のコーティング法に
よれば、コーター(塗機)を用いて溶媒に分散された感
光材を塗布し、次いで熱風乾燥を行う。
The organic optical semiconductor layer is formed by a dip coating method or a coating method, in which the former is immersed in a coating liquid in which a photosensitive material is dispersed in a solvent, and then pulled up at a constant speed, and
This method involves natural drying and heat aging (approximately 150°C, 1 hour).In the latter coating method, a photosensitive material dispersed in a solvent is applied using a coater, and then Perform hot air drying.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第8図のグロー放電分解装置を用いて下記に示す成膜条
件により厚み0.5 μ鏑のa−SiC光導電層を形成
した。
(Example 1) An a-SiC photoconductive layer having a thickness of 0.5 μm was formed using the glow discharge decomposition apparatus shown in FIG. 8 under the film forming conditions shown below.

ガス導入量 Silla ・・・200secm C2112・・・成膜開始時50sccmであり、その
流量を減らしなから成膜終 工時に零とした。
Gas introduction amount Silla... 200 sec C2112... 50 sccm at the start of film formation, and in order not to reduce the flow rate, it was set to zero at the end of film formation.

lh ・・・270secm ガス圧・・・0.60Torr 高周波電力・・・150 w 基板温度・・・・250℃ このa−SiC光導電層のカーボン平均含有量をXMΔ
により測定したところ、Sil−っC,、、のX値で0
゜22であった。
lh...270secm Gas pressure...0.60Torr High frequency power...150w Substrate temperature...250℃ The average carbon content of this a-SiC photoconductive layer is XMΔ
When measured by X value of Sil-C, , 0
It was ゜22.

次にポリカーボネートにヒドラゾン系化合物を分散させ
た有機光半導体層を上記a−3iC光導電層の上に15
μ−の厚みで形成し、電子写真感光体とした。
Next, an organic photo-semiconductor layer in which a hydrazone compound is dispersed in polycarbonate is placed on the a-3iC photoconductive layer for 15 minutes.
It was formed to have a thickness of .mu.-, and was used as an electrophotographic photoreceptor.

かくして得られた電子写真感光体の緒特性を電子写真特
性測定装置により測定したところ、高い表面電位並びに
優れた光感度が得られた。
When the properties of the electrophotographic photoreceptor thus obtained were measured using an electrophotographic property measuring device, it was found that a high surface potential and excellent photosensitivity were obtained.

(例2) (例1)の電子写真感光体を製作するに当たって、CJ
zガス流量を255CC1+1の一定値に設定し、他の
すべての成膜条件を同じとし、これによってaSiC光
導電層を形成し、更に同様に有機光半導体層を形成し、
比較例の電子写真感光体とした。
(Example 2) In manufacturing the electrophotographic photoreceptor of (Example 1), CJ
Setting the z gas flow rate to a constant value of 255CC1+1 and keeping all other film forming conditions the same, thereby forming an aSiC photoconductive layer, and further forming an organic photoconductive layer in the same manner,
This was used as a comparative electrophotographic photoreceptor.

この電子写真感光体の表面電位を測定したところ、(例
1)の感光体に比べて約10χ低下した。
When the surface potential of this electrophotographic photoreceptor was measured, it was found to be about 10x lower than that of the photoreceptor of Example 1.

(例3) 次に本発明者等はく例1)のa−SiC光導電層を形成
するに当たって、基板側よりカーボンを漸次減少させた
第1のa−3iCrVJ領域及びカーボンが層厚方向に
亘、って一定である第2のa−SiCl1Rff域を順
次形成した。この成膜条件は第1表に示す通りである。
(Example 3) Next, in forming the a-SiC photoconductive layer of Example 1), the present inventors created a first a-3iCrVJ region in which carbon was gradually reduced from the substrate side and carbon was added in the layer thickness direction. A second a-SiCl1Rff region, which is constant over the period of time, was successively formed. The film forming conditions are as shown in Table 1.

第  1  表 本印のガス導入量は成膜開始時より成膜柊Y時に至るそ
れぞれの値である。
The gas introduction amounts marked in Table 1 are the respective values from the start of film formation to the time of film formation Hiiragi Y.

また、各々の層領域のカーボン含有量をXMAにより測
定したところ、第1のa−SiC層領域においては平均
値でX・0.38であり、第2のa−SiCffi領域
においてばx−0,17であった。
Furthermore, when the carbon content of each layer region was measured by XMA, the average value was X·0.38 in the first a-SiC layer region, and x−0 in the second a-SiCffi region. , 17.

かくして得られた電子写真感光体も表面電位及び光感度
の両特性に優れていた。
The electrophotographic photoreceptor thus obtained was also excellent in both surface potential and photosensitivity.

(例4) 本例においては、(例3)の電子写真感光体を製作する
に当たって、第8図のグロー放電分解装置にB10.ガ
ス(8211hが40ppn+の濃度で水素希釈されて
いる)が充填されたボンへを接続し、そのガスボンベよ
り90sce丘の流■でト1(、を第1、第2のa−S
iC1ijJ域の形成時に導入し、他のすべての製作条
件は(例3)と同じにし、電子写真感光体とした。
(Example 4) In this example, in manufacturing the electrophotographic photoreceptor of (Example 3), B10. Connect it to a cylinder filled with gas (8211h diluted with hydrogen at a concentration of 40ppn+), and connect it to the first and second a-S at a flow rate of 90sce from the gas cylinder.
It was introduced at the time of forming the iC1ijJ region, and all other manufacturing conditions were the same as in Example 3 to produce an electrophotographic photoreceptor.

このa−5jC光4電層のB含有量を二次イオン質量分
析法により測定したところ、15ppmであ、った。
The B content of this a-5jC photovoltaic layer was measured by secondary ion mass spectrometry and found to be 15 ppm.

かくして得られた電子写真感光体は、(例3)の感光体
に比べて光感度が8χ高められた。
The electrophotographic photoreceptor thus obtained had a photosensitivity increased by 8χ compared to the photoreceptor of Example 3.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、N厚方
向に亘ってカーボン含有量を変えたa−SiC光導電層
を形成しており、これにより、高い表面電位を得ること
ができた。
As described above, according to the electrophotographic photoreceptor of the present invention, an a-SiC photoconductive layer with varying carbon content in the N thickness direction is formed, and as a result, a high surface potential can be obtained. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の層構成を示す断面図、
また、第2図、第3図、第4図、第5図、第6図及び第
7図はカーボン含有量を示す線図、第8図はグロー放電
分解装置の説明図である。 (1)・・・導電性基板 (2)・・・アモルファスシリコンカーバイ1′光導i
層 (3)・・・有機光半導体層 特許出願人(663)京セラ株式会社 代表者 安城 数カ 同 河村孝夫
FIG. 1 is a sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention;
Moreover, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are diagrams showing the carbon content, and FIG. 8 is an explanatory diagram of the glow discharge decomposition apparatus. (1)... Conductive substrate (2)... Amorphous silicon carbide 1' light guide i
Layer (3)...Organic optical semiconductor layer Patent applicant (663) Kyocera Corporation Representative Kazuo Anjo Takao Kawamura

Claims (3)

【特許請求の範囲】[Claims] (1)導電性基板上にアモルファスシリコンカーバイド
光導電層と有機光半導体層を順次積層した電子写真感光
体において、前記アモルファスシリコンカーバイド光導
電層に基板から感光体表面の層厚方向に亘って漸次カー
ボン含有量が減少する層領域を形成したことを特徴とす
る電子写真感光体。
(1) In an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer and an organic photoconductive layer are sequentially laminated on a conductive substrate, the amorphous silicon carbide photoconductive layer is gradually applied from the substrate to the surface of the photoreceptor in the layer thickness direction. An electrophotographic photoreceptor characterized in that a layer region having a reduced carbon content is formed.
(2)前記アモルファスシリコンカーバイド光導電層の
カーボン平均含有量が組成式Si_1_−_xC_xの
X値で0.05<x<0.5の範囲内である請求項(1
)記載の電子写真感光体。
(2) Claim (1) wherein the average carbon content of the amorphous silicon carbide photoconductive layer is within the range of 0.05<x<0.5 as the X value of the composition formula Si_1_-_xC_x.
) The electrophotographic photoreceptor described above.
(3)前記アモルファスシリコンカーバイド光導電層の
厚みが0.05〜5μmの範囲内である請求項(1)記
載の電子写真感光体。
(3) The electrophotographic photoreceptor according to claim 1, wherein the amorphous silicon carbide photoconductive layer has a thickness in the range of 0.05 to 5 μm.
JP32084788A 1988-12-20 1988-12-20 Electrophotographic sensitive body Pending JPH02165161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32084788A JPH02165161A (en) 1988-12-20 1988-12-20 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32084788A JPH02165161A (en) 1988-12-20 1988-12-20 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH02165161A true JPH02165161A (en) 1990-06-26

Family

ID=18125911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32084788A Pending JPH02165161A (en) 1988-12-20 1988-12-20 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH02165161A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor
JPS6381439A (en) * 1986-09-26 1988-04-12 Kyocera Corp Electrophotographic sensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor
JPS6381439A (en) * 1986-09-26 1988-04-12 Kyocera Corp Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
US4997736A (en) Layered electrophotographic sensitive member comprising amorphous silicon carbide
JPH02165161A (en) Electrophotographic sensitive body
US5106711A (en) Electrophotographic sensitive member
JP2668241B2 (en) Electrophotographic photoreceptor
JPS5915940A (en) Photoreceptor
JP2668240B2 (en) Electrophotographic photoreceptor
JP2668242B2 (en) Electrophotographic photoreceptor
JP2761734B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JP2761741B2 (en) Electrophotographic photoreceptor
JP2775259B2 (en) Electrophotographic photoreceptor
JP2789100B2 (en) Electrophotographic photoreceptor
JP2678449B2 (en) Electrophotographic photoreceptor
JPH0647738B2 (en) Method for forming deposited film by plasma CVD method
US5529866A (en) Electrophotographic sensitive member
JPH02140754A (en) Electrophotographic sensitive body
JPH01315761A (en) Electrophotographic sensitive body
JP2742583B2 (en) Electrophotographic photoreceptor
JPH02181155A (en) Electrophotographic sensitive body
JPH02167555A (en) Electrophotographic sensitive body
JPH01232353A (en) Electrophotographic sensitive body
JPH01315764A (en) Electrophotographic sensitive body
JPH02213853A (en) Electrophotographic sensitive body
Lim et al. Low hydrogen content a-Si: H produced by layer by layer deposition technique
JPH01315762A (en) Electrophotographic sensitive body