JPH02165101A - Optical antireflection film - Google Patents
Optical antireflection filmInfo
- Publication number
- JPH02165101A JPH02165101A JP63319627A JP31962788A JPH02165101A JP H02165101 A JPH02165101 A JP H02165101A JP 63319627 A JP63319627 A JP 63319627A JP 31962788 A JP31962788 A JP 31962788A JP H02165101 A JPH02165101 A JP H02165101A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- yttria
- zirconia
- sputtering
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 28
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000004544 sputter deposition Methods 0.000 claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 22
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 claims abstract description 9
- 238000005245 sintering Methods 0.000 claims abstract description 7
- 239000006104 solid solution Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 230000002093 peripheral effect Effects 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000000465 moulding Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 47
- 239000010410 layer Substances 0.000 description 25
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 11
- 238000007740 vapor deposition Methods 0.000 description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 4
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- WKMKTIVRRLOHAJ-UHFFFAOYSA-N oxygen(2-);thallium(1+) Chemical compound [O-2].[Tl+].[Tl+] WKMKTIVRRLOHAJ-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910003438 thallium oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
【発明の詳細な説明】 C産業上の利用分野) 本発明は、光学反射防止膜に関する。[Detailed description of the invention] C) Industrial application field) The present invention relates to optical antireflection coatings.
カメラレンズ、メガネ、カソードレイチューブなどの表
面の光反射を防止するために、その表面に光学反射防止
膜がコーティングされている。In order to prevent light reflection on the surfaces of camera lenses, glasses, cathode ray tubes, etc., the surfaces are coated with optical anti-reflection films.
このような光学反射防止膜は、例えば、特開昭55−2
2704号公報、特開昭56−59202号公報、特開
昭60−29701号公報、特開昭61−189501
号公報、特開昭62−272202号公報などに記載さ
れている。Such an optical antireflection film is disclosed in, for example, Japanese Patent Application Laid-Open No. 55-2
2704, JP 56-59202, JP 60-29701, JP 61-189501
JP-A No. 62-272202, etc.
これらの光学反射防止膜はいずれも蒸着法により形成さ
れている。All of these optical antireflection films are formed by a vapor deposition method.
特開昭55−22704号公報に記載された発明では、
それまでの蒸着法による反射防止膜が計算値通りの光学
特性が得られるように蒸着することが困難ft(Dで、
l 着膜の一部に酸化タリウムとジルコニヤを混合した
物質を用いて大きな強度を持ち均一で温度依存性のない
反射防止膜を得ている。In the invention described in Japanese Patent Application Laid-open No. 55-22704,
It was difficult to deposit the anti-reflection film by the conventional vapor deposition method so as to obtain the optical properties as calculated.
l By using a mixture of thallium oxide and zirconia as part of the deposited film, an anti-reflection film with high strength, uniformity, and no temperature dependence is obtained.
特開昭56−59202号公報に記載された発明では、
それまでの光学反射防止膜の空気側最外層がシリカ膜で
構成されたものの耐久性が悪いので、このシリカ層の下
にアルミナ層を設けて改良したものを得ている。In the invention described in JP-A-56-59202,
The air-side outermost layer of conventional optical antireflection films was made of silica, but the durability was poor, so an improved version was obtained by providing an alumina layer under the silica layer.
特開昭60−29701号公報に記載された発明では、
アルミナ層の上にフッ化マグネシュウム層があってもア
ルミナ膜は耐アルカリ性に劣ることを詳細に説明し、こ
れを改良するために、最外層のフシ化マグネシュウムの
厚みを規定し、がっ、各層を斜め真空蒸着させて優れた
光学反射防止膜を得ることが記載されている。In the invention described in JP-A-60-29701,
It is explained in detail that even if there is a magnesium fluoride layer on the alumina layer, the alumina film has poor alkali resistance, and in order to improve this, the thickness of the outermost layer of magnesium fluoride is specified, and each layer It has been described that an excellent optical antireflection coating can be obtained by oblique vacuum deposition.
さらに、特開昭61−189501号公報に記載された
発明では、上記の発明とは観点を異にして、ジルコニヤ
層を蒸着法で形成するとき、蒸着時間が経過していくに
従い基板側から空気層側に向って屈折率が低下するので
、これを改良するためにジルコニヤにチタニャを混合し
て蒸着させて解決したものが記載されている。Furthermore, in the invention described in JP-A-61-189501, different from the above-mentioned invention, when forming a zirconia layer by vapor deposition, as the vapor deposition time elapses, air is removed from the substrate side. The refractive index decreases toward the layer side, and in order to improve this problem, a solution is described in which titania is mixed with zirconia and deposited by vapor deposition.
特開昭62−272202号公報にはジルコニヤとイツ
トリヤの混合物を用いて蒸着させた場合、被蒸着体が5
Ki6またはLaK7のような耐酸性の悪い基材に蒸着
すると、クモリと称する光散乱現象が発生することが記
載されている。Japanese Unexamined Patent Publication No. 62-272202 discloses that when a mixture of zirconia and yttriya is used for vapor deposition, the object to be vaporized is
It is described that when deposited on a substrate with poor acid resistance such as Ki6 or LaK7, a light scattering phenomenon called clouding occurs.
上記の各公開公報に記載された反射防止膜の形成方法は
、いずれも蒸着法によって形成する方法である。The methods for forming an antireflection film described in each of the above-mentioned publications are all methods of forming the antireflection film by a vapor deposition method.
蒸着法によって反射防止膜を形成しようとすると、特開
昭55−22704号公報に記載されるように、反射防
止膜を計算値通りの光学特性が得られるように蒸着する
ことは困難である。When attempting to form an antireflection film by a vapor deposition method, it is difficult to deposit the antireflection film in such a way that optical properties as calculated are obtained, as described in Japanese Patent Application Laid-Open No. 55-22704.
一方、蒸着膜の耐久性は、層の組成、多層の場合の層の
構成などにより左右される。アルミナ層は耐久性が低い
のでシリカ層で保護しても、その膜厚や膜の構成により
耐久性が低(なることが多い。耐久性を向上させるため
に膜厚を厚くすると光学特性が狂うという矛盾を生ずる
。On the other hand, the durability of the deposited film depends on the composition of the layers, the structure of the layers in the case of multilayers, and the like. The alumina layer has low durability, so even if it is protected with a silica layer, the durability will often be low depending on the thickness and structure of the film.If the film thickness is increased to improve durability, the optical properties will be disrupted. This creates a contradiction.
そこで表面層の耐久性を向上させるために耐久性の良い
フッ化マグネシウムを蒸着させた場合、特開昭60−2
9701号公報で説明されているように、屈折率の関係
から1.66〜1.76の範囲の中間屈折率の物質膜が
必要で、この膜物質としてアルミナが選択される。Therefore, in order to improve the durability of the surface layer, magnesium fluoride, which has good durability, was vapor-deposited.
As explained in Japanese Patent No. 9701, a material film having an intermediate refractive index in the range of 1.66 to 1.76 is required due to the relationship of refractive index, and alumina is selected as the film material.
ところが、上記のようにアルミナ膜は耐久性が低く、ま
た、蒸着法で蒸着させると、蒸着時の蒸着原子の飛来方
向と基板のなす角、すなわち、入射角が30°以上とな
る条件の下で光学反射防止膜を斜め蒸着すると、斜め蒸
着による蒸着膜の構造の変化のためにアルミナ膜および
その上の膜の耐アルカリ性が低下してアルミナ膜のアル
カリによる溶出を押えきれないという問題点がある。However, as mentioned above, alumina film has low durability, and when it is deposited by evaporation method, it cannot be used under conditions where the angle between the flying direction of the evaporated atoms during evaporation and the substrate, that is, the angle of incidence, is 30° or more. When an optical anti-reflection film is deposited obliquely, the alkali resistance of the alumina film and the film on it decreases due to changes in the structure of the deposited film due to the oblique deposition, resulting in the problem that the elution of the alumina film by alkali cannot be suppressed. be.
これらのことから、耐久性を増すために保護膜を設ける
と、全体としての反射率を調整するための層を必要とし
、このような層を設けると層構造による耐久性の変化を
生じるから、層厚を調整しなければならず、層厚はまた
耐久性に影響するという多元問題に発展し、錯綜した関
係となるという問題点がある。For these reasons, if a protective film is provided to increase durability, a layer is required to adjust the overall reflectance, and if such a layer is provided, the durability will change depending on the layer structure. The problem is that the layer thickness has to be adjusted, and the layer thickness also affects durability, resulting in a complicated relationship.
また、耐酸性の悪い基材であると、クモリと称する光散
乱現象が発生する問題点がある。Further, if the base material has poor acid resistance, there is a problem in that a light scattering phenomenon called clouding occurs.
本発明は、上記のような課題を解決するために発明され
たもので、イツトリヤ粉末とジルコニヤ粉末とをイツト
リヤとジルコニヤの固溶範囲の組成割合で混合し、これ
を焼結したイツトリヤ安定化ジルコニヤの焼結体を極と
して、光学素子透光体上にイツトリヤ安定化ジルコニヤ
層をスパッタリングにより形成したことを特徴とする光
学反射防止膜である。The present invention was invented in order to solve the above-mentioned problems, and it is made by mixing Yttriya powder and zirconia powder in a composition ratio within the solid solution range of Yttria and zirconia, and sintering the mixture to produce an Yttriya-stabilized zirconia powder. This is an optical antireflection film characterized in that an yttria-stabilized zirconia layer is formed by sputtering on a transparent body of an optical element using a sintered body of the present invention as a pole.
上記の発明における固溶範囲は、ブイ・ニス・スタビカ
ン・アール・シー・ヒンク・ニス・ビーーL/イ[V、
S、5TtlBICAN、 R,C,1IINK、 S
、P、RAY]シ+ −ナル・オブ・ザ・アメリカン・
セラミック・ソサエティ[J、Amer、Ceram、
Soc、] 62 p17(1878)の表に示されて
いるように、ZrO□に対してY2O,が0.1〜40
mo1%の範囲である。The solid solution range in the above invention is as follows:
S, 5TtlBICAN, R, C, 1IINK, S
, P, RAY] S+ - Nar of the American
Ceramic Society [J, Amer, Ceram,
Soc,] 62 p17 (1878), as shown in the table, Y2O, is 0.1 to 40 for ZrO□.
The mo is in the range of 1%.
この組成範囲にZrO2粉末とY2O3粉末とを細密に
混合し、その成形物を焼結して得たものをスバ・ツタリ
ングの一極にする。ZrO2 powder and Y2O3 powder are finely mixed within this composition range, and the molded product is sintered to form a single pole of suba-tsutering.
スパッタリング法により光学素子透光体に膜を付着させ
るのであるから、ターゲットとスパッター極との距離が
短く、各膜が強固に付着する作用がある。Since the film is attached to the transparent body of the optical element by the sputtering method, the distance between the target and the sputtering pole is short, and each film has the effect of firmly adhering.
スパッター源のほうが被スパッター物よりも大きいので
被着膜の中心部と周辺部の膜厚の差がなくなる作用があ
る。Since the sputtering source is larger than the object to be sputtered, it has the effect of eliminating the difference in film thickness between the center and peripheral parts of the deposited film.
Zr0z粉末とY2O3粉末とを混合しただけのもので
はスパッター時または蒸着時に成分のあるものが還元さ
れることがあるが、原料を細密に混合して焼結してイツ
トリヤ安定化ジルコニヤとなっているので、スパッタリ
ング時に安定した形態で飛翔し光学素子透光体に付着す
るので、屈折率などで異常を来たすことがない。If it is just a mixture of Zr0z powder and Y2O3 powder, some of the components may be reduced during sputtering or vapor deposition, but the raw materials are mixed finely and sintered to become Ittria-stabilized zirconia. Therefore, during sputtering, it flies in a stable form and adheres to the transparent body of the optical element, so it does not cause abnormalities in the refractive index or the like.
イツトリヤ安定化ジルコニヤとアルミナとはバルクでの
熱膨張係数が近似しており、薄膜になったものの熱膨張
係数もバルクのものの値を取るものとすると、熱膨張係
数が近似しているから、剥れ難くい。特に光学素子透光
体にルチル結晶を採用したときは、ルチル結晶とも熱膨
張係数が近似しているので、−層、この作用は顕著とな
る。Ittriya-stabilized zirconia and alumina have similar coefficients of thermal expansion in bulk, and assuming that the coefficient of thermal expansion of the thin film also takes the value of that of the bulk, the coefficients of thermal expansion are similar, so it is possible to peel it off. It's hard to do. In particular, when a rutile crystal is used as a transparent material for an optical element, this effect becomes remarkable since the coefficient of thermal expansion is similar to that of the rutile crystal.
また、イツトリヤ安定化ジルコニヤには、ジルコニヤ結
晶に特有な異常膨張領域のようなものがないので、光学
素子透光体やアルミナ層やフッ化マグネシュウム層との
付着強度が増加する。In addition, since Yttria-stabilized zirconia does not have abnormal expansion regions that are unique to zirconia crystals, the strength of adhesion to optical element transparent bodies, alumina layers, and magnesium fluoride layers increases.
イツトリヤ安定化ジルコニヤの屈折率は、α=2.13
で、またジルコニヤの屈折率もまたα=2.13で等価
であるから、従来ジルコニヤ膜が使用されていたものと
同じようになる。The refractive index of Ittria stabilized zirconia is α=2.13
Also, since the refractive index of zirconia is also equivalent to α=2.13, it becomes the same as that in which a zirconia film was conventionally used.
以下に実施例を述べる。Examples will be described below.
〔実施例]
実施例l
Zr0 z粉末に8molχのY2O3粉末を添加して
焼結したイツトリヤ安定化ジルコニヤ焼結体を極として
スパッタガス圧8 X 1(” ’Torr、アルゴン
ガス流量5cc/win、スパッタ出力300Wでスパ
ッタリングして、λ/4(λ= 1550nn+)の厚
さにイツトリヤ安定化ジルコニヤ層の光学反射防止膜を
形成したルチル単結晶の透過率は第1図のグラフに示す
通りであった。[Example] Example 1 A sputtering gas pressure of 8 x 1 Torr, Argon gas flow rate of 5 cc/win, The transmittance of the rutile single crystal, which was sputtered with a sputtering power of 300 W to form an optical anti-reflection coating of a Yttriya-stabilized zirconia layer to a thickness of λ/4 (λ = 1550 nn+), is as shown in the graph of Figure 1. Ta.
このものを温度120°C1圧力2気圧の水蒸気飽和の
圧力容器中に8時間曝らした結果は試験前後で膜に変化
がなかった。This material was exposed to a steam-saturated pressure vessel at a temperature of 120° C. and a pressure of 2 atm for 8 hours. As a result, there was no change in the film before and after the test.
また、O−!:O〜5°Cの水中に15秒間漬けつぎに
3秒以内に100°C±O〜5 ’Cの渦中に漬け15
秒間保持し、3秒以内にまたO±0〜5°Cの水中に1
5秒間漬けるサイクルを10回繰返えした冷熱試験で試
験前後で膜に変化がなかった。Also, O-! : Soak in water at O~5°C for 15 seconds, then in a vortex at 100°C±O~5'C within 3 seconds.15
Hold for 1 second, and within 3 seconds return to 1°C in water at 0±0~5°C.
There was no change in the film before and after the test in a cold/heat test in which the 5-second dipping cycle was repeated 10 times.
実施例2
ZrO□粉末に8molχのY2O3粉末を添加して焼
結したイツトリヤ安定化ジルコニヤ焼結体を極としてス
パッタガス圧2 Xl0−3Torr、酸素ガス流量1
0cc/minで、スパッタ出力500 Wでスパッタ
リングして、λ/4(λ= 1550nm)の厚さにイ
ツトリヤ安定化ジルコニヤ層の光学反射防止膜を形成し
たルチル単結晶の透過率は実施例1と同様であった。Example 2 Sputtering gas pressure 2 Xl0-3 Torr, oxygen gas flow rate 1 using as a pole a Yttria-stabilized zirconia sintered body made by adding 8 molχ Y2O3 powder to ZrO□ powder and sintering it.
The transmittance of the rutile single crystal was sputtered at 0 cc/min with a sputtering power of 500 W to form an optical anti-reflection coating of a Ytturia-stabilized zirconia layer to a thickness of λ/4 (λ = 1550 nm) as in Example 1. It was the same.
このものを温度120°C1圧力2気圧の水蒸気飽和の
圧力容器中に8時間曝らした結果は試験前後で膜に変化
がなかった。This material was exposed to a steam-saturated pressure vessel at a temperature of 120° C. and a pressure of 2 atm for 8 hours. As a result, there was no change in the film before and after the test.
また、0±0〜5°Cの水中に15秒間漬けつぎに3秒
以内に100°C±0〜5°Cの湯中に漬け15秒間保
持し、3秒以内にまたO±0〜5°Cの水中に15秒間
漬けるサイクルを10回繰返えした冷熱試験で試験前後
で膜に変化がなかった。In addition, it was immersed in water at 0 ± 0 to 5°C for 15 seconds, then immersed in water at 100°C ± 0 to 5°C for 15 seconds, and again within 3 seconds at O ± 0 to 5°C. There was no change in the film before and after the test in a cold/heat test in which the film was immersed in water at °C for 15 seconds and repeated 10 times.
実施例3
ZrO□粉末に8molχのY2O3粉末を添加して焼
結したイツトリヤ安定化ジルコニヤ焼結体を極としてス
パッタガス圧I X 10− ’Torr、アルゴンガ
ス流量2cc/win、酸素ガス流量5cc/ll1i
n、スパッタ出力300Wでスパッタリングし、λ/4
(λ=1550nm)の厚さにイツトリヤ安定化ジルコ
ニヤ層の光学反射防止膜を形成したルチル単結晶の透過
率は実施例1と同様であった。Example 3 Sputtering gas pressure IX 10-'Torr, argon gas flow rate 2cc/win, oxygen gas flow rate 5cc/win, using as a pole a Yttriya-stabilized zirconia sintered body made by adding 8 molχ Y2O3 powder to ZrO□ powder and sintering it. ll1i
n, sputtering with a sputtering power of 300W, λ/4
The transmittance of the rutile single crystal in which the optical anti-reflection coating of the Yttriya-stabilized zirconia layer was formed with a thickness of (λ=1550 nm) was the same as in Example 1.
このものを温度120°C1圧力2気圧の水蒸気飽和の
圧力容器中に8時間曝らした結果は試験前後で膜に変化
がなかった。This material was exposed to a steam-saturated pressure vessel at a temperature of 120° C. and a pressure of 2 atm for 8 hours. As a result, there was no change in the film before and after the test.
また、0±0〜5°Cの水中に15秒間漬けつぎに3秒
以内にioo’c±0〜5°Cの渦中に漬け15秒間保
持し、3秒以内にまたO±0〜5°Cの水中に15秒間
漬けるサイクルを10回繰返えした冷熱試験で試験前後
で膜に変化がなかった。In addition, it was immersed in water at 0 ± 0 to 5 °C for 15 seconds, then within 3 seconds it was immersed in a vortex at ioo'c ± 0 to 5 °C for 15 seconds, and again within 3 seconds at O ± 0 to 5 °C. There was no change in the film before and after the test in a cold/hot test in which the cycle of immersing the film in C water for 15 seconds was repeated 10 times.
実施例4
ZrO□粉末に8molχのY2O3粉末を添加して焼
結したイツトリヤ安定化ジルコニヤ焼結体を極としてス
パッタガス圧I X 10− ”Torr、アルゴンガ
ス流量4cc/min、酸素ガス流量1 cc/lll
1n、スパッタ出力300Wでスパッタリングし、λ/
4(λ=1550nm)の厚さにイツトリヤ安定化ジル
コニヤ層の光学反射防止膜を形成したルチル単結晶の透
過率は実施例1と同様であった。Example 4 A sputtering gas pressure of IX 10-'' Torr, an argon gas flow rate of 4 cc/min, an oxygen gas flow rate of 1 cc using as a pole an Yttoria-stabilized zirconia sintered body obtained by adding 8 molχ of Y2O3 powder to ZrO□ powder and sintering it. /lll
1n, sputtering with a sputtering power of 300W, λ/
The transmittance of the rutile single crystal in which the optical anti-reflection coating of the Yttriya-stabilized zirconia layer was formed with a thickness of 4 (λ=1550 nm) was the same as in Example 1.
このものを温度120°C1圧力2気圧の水蒸気飽和の
圧力容器中に8時間曝らした結果は試験前後で膜に変化
がなかった。This material was exposed to a steam-saturated pressure vessel at a temperature of 120° C. and a pressure of 2 atm for 8 hours. As a result, there was no change in the film before and after the test.
また、O±O〜5°Cの水中に15秒間漬けつぎに3秒
以内に工00°C±0〜5°Cの湯中に漬け15秒間保
持し、3秒以内にまた0士O〜5°Cの水中に15秒間
漬けるサイクルを10回繰返えした冷熱試験で試験前後
で膜に変化がなかった。In addition, it was immersed in water at 0±0~5°C for 15 seconds, then immersed in water at 00°C±0~5°C for 15 seconds, and again within 3 seconds. There was no change in the film before and after the test in a cold/heat test in which the cycle of immersing the film in water at 5°C for 15 seconds was repeated 10 times.
以上に詳細に説明したように、本発明の光学反射防止膜
はスパッタリング法によって形成されているから、蒸着
法によって蒸着したものと異り、形成された膜の中心部
と周辺部とで膜構造に差異がなく、これが耐久性の向上
に大きく寄与しており、また、蒸着法とスパッタリング
法に共通するが、イツトリヤとジルコニヤを単に混合し
たものを飛翔させるのではなくイツトリヤ安定化ジルコ
ニヤとして焼結したものを原料としているので、被着物
表面まで飛翔させる際に分解していて減圧の不活性雰囲
気により組成物が金属に還元されることもなく、設計通
りの膜を形成することができるという利点がある。As explained in detail above, since the optical antireflection film of the present invention is formed by sputtering, unlike a film deposited by vapor deposition, the film has a structure in the center and periphery of the formed film. There is no difference in zirconium, which greatly contributes to improved durability.Also, although it is common to the vapor deposition method and the sputtering method, instead of simply flying a mixture of ittria and zirconia, it is sintered as ittriya-stabilized zirconia. The advantage is that the composition is decomposed when it is flown to the surface of the adherend, and the composition is not reduced to metal by the reduced pressure inert atmosphere, allowing the film to be formed as designed. There is.
そして、光学素子透光体に特にルチル結晶を用いたとき
は、ルチル結晶と光学反射防止膜の熱膨張率が近似して
いるから、熱サイクルによって劣化することもなく、剥
離しないから、耐久性に優れたものとなる。When rutile crystal is used in the optical element's transparent material, the thermal expansion coefficients of the rutile crystal and the optical anti-reflection film are similar, so it does not deteriorate or peel off due to thermal cycles, resulting in increased durability. Becomes excellent.
以上のように本発明には多くの優れた利点があって、産
業の発達に寄与するところ極めて大なるものがある。As described above, the present invention has many excellent advantages and greatly contributes to the development of industry.
第1図は本発明の実施例の透過率のグラフである。 FIG. 1 is a graph of transmittance of an example of the present invention.
Claims (1)
コニヤの固溶範囲の組成割合で混合し、これを焼結した
イットリヤ安定化ジルコニヤの焼結体を極として、光学
素子透光体上にイットリヤ安定化ジルコニヤ層をスパッ
タリングにより形成したことを特徴とする光学反射防止
膜。A sintered body of yttria stabilized zirconia is formed by mixing yttria powder and zirconia powder in a composition ratio within the solid solution range of yttria and zirconia, and sintering the mixture.A sintered body of yttria stabilized zirconia is used as a pole, and a yttria stabilized zirconia layer is formed on the transparent body of the optical element. An optical antireflection film formed by sputtering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63319627A JPH02165101A (en) | 1988-12-20 | 1988-12-20 | Optical antireflection film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63319627A JPH02165101A (en) | 1988-12-20 | 1988-12-20 | Optical antireflection film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02165101A true JPH02165101A (en) | 1990-06-26 |
Family
ID=18112397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63319627A Pending JPH02165101A (en) | 1988-12-20 | 1988-12-20 | Optical antireflection film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02165101A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1148037A1 (en) * | 2000-04-19 | 2001-10-24 | Blösch Holding AG | Process for the production of an anti-reflective coating on watchcover glasses |
-
1988
- 1988-12-20 JP JP63319627A patent/JPH02165101A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1148037A1 (en) * | 2000-04-19 | 2001-10-24 | Blösch Holding AG | Process for the production of an anti-reflective coating on watchcover glasses |
WO2001079130A1 (en) * | 2000-04-19 | 2001-10-25 | Blösch Holding Ag | Method for applying an antireflection coating to inorganic optically transparent substrates |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3980643B2 (en) | Method for coating substrate with titanium dioxide | |
JP3836163B2 (en) | Method for forming high refractive index film | |
EP1211524B9 (en) | Method for producing composition for vapor deposition, composition for vapor deposition, and method for producing optical element with antireflection film | |
CA2360619C (en) | Composition for vapor deposition, method for forming antireflection film using it, and optical element | |
JP2005298833A (en) | Multilayer film-coated substrate and its manufacturing method | |
JPH03187733A (en) | Amorphous oxide film, preparation thereof and target thereof | |
KR20050102661A (en) | Vaporizing material for producing highly refractive optical layers | |
JPH02165101A (en) | Optical antireflection film | |
JP2008057045A (en) | Oxide sintered compact sputtering target | |
JPS61196201A (en) | Formation of film by low temperature vapor deposition | |
JPH02137801A (en) | Antireflection coating | |
JPS60156001A (en) | Reflection preventive film of plastic optical parts | |
JPH03218821A (en) | Heat ray reflective glass | |
JPH05221689A (en) | Radiant heat-shield glass | |
JP3353931B2 (en) | Optical thin film, optical component formed with this optical thin film, antireflection film, and plastic optical component formed with this antireflection film | |
JP4121022B2 (en) | Target manufacturing method | |
JP3121851B2 (en) | Thin film and manufacturing method | |
JPH0553001A (en) | Multilayered antireflection film of optical parts made of synthetic resin | |
WO2023042438A1 (en) | Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member | |
JPS6363002A (en) | Reflecting mirror for laser | |
JPH02171701A (en) | Antireflection coating | |
JP3404346B2 (en) | Method of manufacturing optical thin film and method of manufacturing substrate having optical thin film | |
CN117930407A (en) | High-performance reflector and preparation method and application thereof | |
JPH03132601A (en) | Antireflection film of optical parts made of plastic and production thereof | |
JPH04132639A (en) | Heat ray screening glass |