JPH02165038A - Flying time type particle analyzer - Google Patents

Flying time type particle analyzer

Info

Publication number
JPH02165038A
JPH02165038A JP63322916A JP32291688A JPH02165038A JP H02165038 A JPH02165038 A JP H02165038A JP 63322916 A JP63322916 A JP 63322916A JP 32291688 A JP32291688 A JP 32291688A JP H02165038 A JPH02165038 A JP H02165038A
Authority
JP
Japan
Prior art keywords
particles
grid
detector
particle
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63322916A
Other languages
Japanese (ja)
Other versions
JPH0748373B2 (en
Inventor
Takao Marui
隆雄 丸井
Shigeki Hayashi
茂樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63322916A priority Critical patent/JPH0748373B2/en
Publication of JPH02165038A publication Critical patent/JPH02165038A/en
Publication of JPH0748373B2 publication Critical patent/JPH0748373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To achieve higher resolutions discriminating neutral particles, charged particles, polarity of charged particles and the like by an electric field acceleration by arranging a grid in the course of a flying space of particles to form an electric field in a space between the grid and a detector. CONSTITUTION:A sample S is irradiated with a pulse-like ion beam and scattered ions and neutral particles are radiated in pulses. Incoming particles are converted with a particle detector D into secondary electrons to be multiplied and converted into a current signal with an anode A to detect. Here, a grid G is arranged within a particle flying space to the front of the detector D from the sample S to earth while a voltage is applied to the front of the detector D. With such an arrangement, particles pass through the grid G at time different according to the speed thereof and positive ions are accelerated while negative ions are decelerated by an electric field between the grid G and the detector D thereby enabling higher resolutions of analysis.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は飛行時間型粒子分析装置に関する。同じ場所か
ら一方向に同時に発進した種々な速度を持つ粒子を出発
位置から適当に離れた位置で検出すると、粒子が検出器
に入射する時刻が飛行速度によって異るから、この時間
差から各粒子の速度を求めることができイオン散乱分光
装置、イオン前方反跳分析装置、ラザフオード後方散乱
分光装置等に用いられている。また粒子の質量が同じで
あるとき、飛行速度の異いは粒子の持つ運動エネルギー
の異いであるから、この方法によって粒子のエネルギー
分析ができる。また粒子がイオンで質量が異り、同一加
速電圧で加速されたときは質量の異いにより粒子の速度
が異るから飛行時間型粒子分析装置で質量分析を行うこ
ともできるる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a time-of-flight particle analyzer. When particles with various velocities launched simultaneously in one direction from the same place are detected at a position appropriately distant from the starting position, the time at which the particles enter the detector differs depending on the flight speed, and this time difference allows the detection of each particle. It can determine velocity and is used in ion scattering spectrometers, ion forward recoil analyzers, Rutherford backscattering spectrometers, etc. Furthermore, when particles have the same mass, a difference in flight speed is due to a difference in the kinetic energy of the particles, so this method can be used to analyze the energy of the particles. Furthermore, since the particles are ions and have different masses, and when they are accelerated by the same acceleration voltage, the speed of the particles differs due to the difference in mass, so mass spectrometry can also be performed using a time-of-flight particle analyzer.

本発明はこのような用途を持つ飛行時間型粒子分析装置
に関するものである。
The present invention relates to a time-of-flight particle analyzer having such uses.

(従来技術) 飛行時間型粒子分析装置は電界も磁界もない空間で粒子
を飛行させ速度差を時間差に換えて粒子のエネルギー分
析または質量分析を行うものであるから、荷電粒子だけ
でなく中性粒子についてもエネルギー分析または質量分
析を行うことができる。このことは分析対象の荷電粒子
を生成させるとき中性粒子も生成され、両者が同じ分析
情報を持っているときは電界とか磁界を用いるエネルギ
ー分析器とか質・量分析計と異り荷電粒子の検出信号に
中性粒子の検出信号も重なって全粒子検出信号を強くす
るので測定感度が上がると云う利点となるが、中性粒子
と荷電粒子が異る分析情報を持っているときは、荷電粒
子の検出信号に中性粒子の検出信号が重なり、荷電粒子
或は中性粒子単独の検出出力に対してバックグラウンド
を強め分解能を低下させると云う不利益をもたらす。
(Prior art) A time-of-flight particle analyzer performs energy or mass analysis of particles by flying particles in a space with no electric or magnetic fields and converting the speed difference into a time difference, so it analyzes not only charged particles but also neutral particles. Particles can also be subjected to energy or mass spectrometry. This means that when a charged particle to be analyzed is generated, a neutral particle is also generated, and unlike an energy analyzer or a mass/quantitative analyzer that uses electric or magnetic fields, when both particles have the same analysis information, charged particles are generated. The detection signal of neutral particles also overlaps with the detection signal, making the total particle detection signal stronger, which has the advantage of increasing measurement sensitivity. However, when neutral particles and charged particles have different analytical information, The neutral particle detection signal overlaps with the particle detection signal, which has the disadvantage of strengthening the background and lowering the resolution compared to the detection output of charged particles or neutral particles alone.

(発明が解決しようとする課題) 本発明は飛行時間型粒子分析装置で中性粒子。(Problem to be solved by the invention) The present invention is a time-of-flight particle analyzer that analyzes neutral particles.

正負荷電粒子を夫々弁別して検出できるようにしようと
するものである。
This is intended to allow positively negatively charged particles to be discriminated and detected.

(課題を解決するための手段) 分析対象粒子の飛行空間の途中に分析対象の粒子が通過
できるグリッドを設け、このグリッドと粒子検出器との
関に荷電粒子を加速成は減速する電場を形成するように
した。
(Means for solving the problem) A grid is provided in the middle of the flight space of the particles to be analyzed through which the particles to be analyzed can pass, and an electric field is formed between this grid and the particle detector to accelerate or decelerate the charged particles. I decided to do so.

(作用) 飛行空間の粒子発進端を同時に出発した粒子のうち同じ
速度を持つ正負イオン、中性粒子グループは同時にグリ
ッドを通過し飛行空間の粒子発進端からグリッドまでの
間において、荷電粒子、中性粒子合わせたものの速度よ
による分離が行われる。グリッドを通過したー■工の粒
子はグリッドと検出器との間の電界により、中性粒子は
何の影響も受けず今までと同じ速さで飛行を続け、正負
イオンは一方が加速されるときは他方は減速されるから
、グリッドを同時に通過した1群の粒子は中性粒子、正
負イオンが夫々分離されて異る時間に検出器に入射する
ことになり、同じ速度を持つ中性粒子、荷電粒子を分離
し格別に検出することができる。
(Function) Groups of positive and negative ions and neutral particles having the same velocity among the particles departing from the particle starting end of the flight space at the same time pass through the grid at the same time, and between the particle starting end of the flight space and the grid, charged particles, neutral particles, Separation is performed by the velocity of the combined particles. Due to the electric field between the grid and the detector, the neutral particles that have passed through the grid continue to fly at the same speed as before, while the positive and negative ions are accelerated on the other hand. When one particle passes through the grid at the same time, the other one is decelerated, so in a group of particles that pass through the grid at the same time, the neutral particles and positive and negative ions are separated and enter the detector at different times, resulting in neutral particles having the same speed. , charged particles can be separated and exceptionally detected.

(実施例) 第1図に本発明の一実施例を示す。試料から分析すべき
粒子を放射させる方法は分析目的により種々あるが、図
の場合Sは試料で1は試料にイオンビームを照射するイ
オン銃であり、パルス状のイオンビームで試料Sを照射
する。イオンビームの照射を受けた試料から散乱イオン
が放射される。照射イオンビームがパルス状であるから
、散乱イオンとか中性粒子もパルス状に放射される。
(Example) FIG. 1 shows an example of the present invention. There are various methods for emitting particles to be analyzed from a sample depending on the purpose of the analysis, but in the figure, S is the sample and 1 is an ion gun that irradiates the sample with an ion beam.The sample S is irradiated with a pulsed ion beam. . Scattered ions are emitted from the sample that has been irradiated with the ion beam. Since the irradiation ion beam is pulsed, scattered ions and neutral particles are also emitted in a pulsed manner.

、Dは粒子検出器でマイクロチャンネルプレートが用い
られており、入射粒子を2次電子に変換して増倍し、増
倍された2次電子をアノードAで受けて電流信号に変え
検出する。試料Sから粒子検出器前面までの間が粒子飛
行空間である。この飛行空間内にグリッドGが配置され
、接地されている。検出器りの前面には電圧が印加され
ている。
, D is a particle detector that uses a microchannel plate, converts incident particles into secondary electrons and multiplies them, receives the multiplied secondary electrons at anode A, converts them into current signals, and detects them. The space between the sample S and the front of the particle detector is the particle flight space. A grid G is arranged within this flight space and is grounded. A voltage is applied to the front of the detector.

この構成により、粒子飛行空間のグリッドGより試料側
は全体がアース電位の無電界空間になっており、グリッ
ドGと検出器りの前面との間には電界が形成されている
With this configuration, the entire part of the particle flight space closer to the sample than the grid G is an electric field-free space with a ground potential, and an electric field is formed between the grid G and the front surface of the detector.

試料を照射するイオンビームのパルス幅が試料から検出
器までの飛行空間を試料から出た粒子が通過するのに要
する時間より充分小さくしであると、試料Sからは同時
に1群の粒子が放射されるとみてよい。これらの粒子は
速度に応じて異る時間にグリッドGを通過する。同じ速
度を有する粒子のグループは同時にグリッドGを通過す
るが、グリッドGと検出器りとの間の電界で図の例では
正イオンは加速され、負イオンは減速され、中性粒子は
グリッド通過前の速度を維持している。このためこのグ
ループに属していた粒子中正イオンは先に検出器りに入
射し、次いで中性粒子、その後負イオンが検出器りに入
射することになり、初め同一速度グループに属していた
粒子が正負イオンおよび中性粒子に分かれて検出される
If the pulse width of the ion beam that irradiates the sample is sufficiently smaller than the time required for the particles exiting the sample to pass through the flight space from the sample to the detector, a group of particles will be emitted from the sample S at the same time. It can be assumed that it will be done. These particles pass through the grid G at different times depending on their speed. A group of particles with the same velocity will pass through grid G at the same time, but in the example shown, positive ions will be accelerated, negative ions will be decelerated, and neutral particles will pass through grid G due to the electric field between grid G and the detector. Maintains previous speed. Therefore, the positive ions in the particles that belonged to this group will enter the detector first, then the neutral particles, and then the negative ions, and the particles that initially belonged to the same velocity group will enter the detector. It is detected separately into positive and negative ions and neutral particles.

チャンネルプレートDはイオン検出感度を−hlfるた
め、従来、チャンネルプレートの前面に近接させてグリ
ッドを置き、そのグリッドとチャンネルプレート前面と
の間でイオンを加速するようにしていたが、グリッドと
チャンネルプレートとの間の距離が小さいため、この間
で速度差による粒子弁別を行う時間的余裕はな(、ちと
同一速度をもっていた粒子を荷電の有無種別により弁別
して検出することはできない。本発明ではグリッドはチ
ャンネルプレートと試料との間の飛行空間の中間に位置
されているので、グリッドとイオン検出器との間の空間
でも速度弁別可能となる。上述実施例はグリッドがチャ
ンネルプレートの感度を上げるためのグリッドの作用を
兼務していることになる。
In order to increase the ion detection sensitivity of channel plate D, conventionally a grid was placed close to the front of the channel plate and ions were accelerated between the grid and the front of the channel plate. Since the distance between the grid and the plate is small, there is no time to perform particle discrimination based on the velocity difference between the two plates. Since the is located in the middle of the flight space between the channel plate and the sample, velocity discrimination is possible even in the space between the grid and the ion detector.In the above embodiment, the grid increases the sensitivity of the channel plate. This means that it also functions as a grid.

第2図は本発明の第2の実施例で、グリッドをG、G’
の二つにしたものである。二つのグリッドG、G’は近
接して配置され、検出器りに近い側のグリッドG゛は検
出器前面と同電位にしである。従って、GoとDとの間
は無電界であり、Go゛間にイオン加速電界が形成され
、この間でイオンが加速酸は減速される。速度差を時間
差に変えるには成る程度の飛行距離が必要で、検出器に
近い所で加速されても、速度差が時間差となって現れる
効果は小さい。第1図の実施例ではグリッドGから検出
器りまでの間で次第に加速されているが、第2図の実施
例ではG、G’間で加速され、以後の空間で速度弁別が
されるので第1図の実施例より時間分解能が良くなる。
FIG. 2 shows a second embodiment of the present invention, in which the grids are G, G'
It is divided into two parts. The two grids G and G' are arranged close to each other, and the grid G' on the side closer to the detector is at the same potential as the front surface of the detector. Therefore, there is no electric field between Go and D, and an ion accelerating electric field is formed between Go, and the ions are accelerated and the acid is decelerated. A certain amount of flight distance is required to convert a speed difference into a time difference, and even if the speed difference is accelerated near the detector, the effect of the speed difference becoming a time difference is small. In the embodiment shown in Fig. 1, the acceleration is gradual from the grid G to the detector, but in the embodiment shown in Fig. 2, the acceleration is accelerated between G and G', and the velocity is discriminated in the subsequent space. The time resolution is better than that of the embodiment shown in FIG.

第3図の実施例は第2図の実施例で更にグリッドを増し
たもので、GoとGoとは同電位であり、GG’間で荷
電粒子は加速され、GoとG。
The embodiment shown in FIG. 3 is the embodiment shown in FIG. 2 with additional grids. Go and Go are at the same potential, and charged particles are accelerated between GG' and Go and G.

との間で速度差が時間差に変換され、G”と検出器前面
との間にも電界を形成して、検出器に入射するイオンの
速度を適当な範囲に入るように調整するようにした。こ
の構成によると、グリッドGG′間の電位差を検出器に
入射するイオンの検出上の最適速度を顧慮することなく
粒子の荷電状態による識別に最も効果的な値に設定する
ことができる。
The velocity difference between the two is converted into a time difference, and an electric field is also formed between G'' and the front of the detector to adjust the velocity of the ions entering the detector to fall within an appropriate range. According to this configuration, the potential difference between the grids GG' can be set to the most effective value for discrimination based on the charged state of particles without considering the optimum speed for detection of ions incident on the detector.

第4図は第3図の実施例より更にグリッドを増したもの
で、他のグリッドG’、G2.・・・Gnには夫々に任
意の電位を与えることができるようになっている。
FIG. 4 shows an example in which the number of grids is further increased compared to the embodiment shown in FIG. . . . It is possible to apply an arbitrary potential to each Gn.

(発明の効果) 本発明によれば速度差を時間差に変えて弁別した粒子を
電界加速により更に速度差をつけて中性粒子と荷電粒子
、荷電粒子の極性等を弁別して検出できるので、これら
の粒子を混合した状態で検出していた従来例に比し分析
の分解能が向上するだけでな(、より多くの分析情報が
入手できるようになり、イオンが飛行中に開裂して娘イ
オンを生成する場合の娘イオンの質量分析と云うような
ことも可能となって、分析情報が大へん多くなる。
(Effects of the Invention) According to the present invention, particles that have been discriminated by converting a velocity difference into a time difference can be further accelerated by an electric field to further differentiate between neutral particles, charged particles, polarity of charged particles, etc., and detected. This not only improves the resolution of the analysis (compared to the conventional method, which detected a mixture of particles), but also makes it possible to obtain more analysis information and prevent ions from fragmenting during flight and producing daughter ions. It also becomes possible to perform mass spectrometry of daughter ions when they are generated, which greatly increases the amount of analysis information.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図、第2図は他の実施
例の要部側面図、第3図は更に他の実施例の要部側面図
、第4図はもう一つの実施例の要部側面図である。 S・・・試料G、G’、G−,Gl、G2〜Gn−・−
グリッド、D・・・検出器、Δ・・・アノード。 代理人  弁理士 縣  浩 介
Fig. 1 is a side view of one embodiment of the present invention, Fig. 2 is a side view of main parts of another embodiment, Fig. 3 is a side view of main parts of yet another embodiment, and Fig. 4 is a side view of main parts of another embodiment. FIG. 3 is a side view of main parts of the embodiment. S...Samples G, G', G-, Gl, G2~Gn-.-
Grid, D...detector, Δ...anode. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 分析対象の粒子の飛行空間の途中にグリッドを配置し、
グリッドと上記検出器との間の空間に電界を形成し得る
ようにした飛行時間型粒子分析装置。
A grid is placed in the middle of the flight space of the particles to be analyzed,
A time-of-flight particle analyzer capable of forming an electric field in a space between a grid and the detector.
JP63322916A 1988-12-20 1988-12-20 Time-of-flight particle analyzer Expired - Lifetime JPH0748373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322916A JPH0748373B2 (en) 1988-12-20 1988-12-20 Time-of-flight particle analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322916A JPH0748373B2 (en) 1988-12-20 1988-12-20 Time-of-flight particle analyzer

Publications (2)

Publication Number Publication Date
JPH02165038A true JPH02165038A (en) 1990-06-26
JPH0748373B2 JPH0748373B2 (en) 1995-05-24

Family

ID=18149060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322916A Expired - Lifetime JPH0748373B2 (en) 1988-12-20 1988-12-20 Time-of-flight particle analyzer

Country Status (1)

Country Link
JP (1) JPH0748373B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206432A (en) * 1990-11-30 1992-07-28 Rikagaku Kenkyusho Ion scattering analyzing apparatus
JP2009289628A (en) * 2008-05-30 2009-12-10 Hitachi High-Technologies Corp Time-of-flight mass spectrometer
JP2012008082A (en) * 2010-06-28 2012-01-12 Institute Of Physical & Chemical Research Light element analyzer and analyzing method
JP2015179629A (en) * 2014-03-19 2015-10-08 株式会社島津製作所 Time-of-flight type mass spectroscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195554A (en) * 1985-02-22 1986-08-29 Shimadzu Corp Time of flight type mass spectrometer
JPS62291853A (en) * 1986-06-11 1987-12-18 Shimadzu Corp Time-of-flight mass spectrometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195554A (en) * 1985-02-22 1986-08-29 Shimadzu Corp Time of flight type mass spectrometer
JPS62291853A (en) * 1986-06-11 1987-12-18 Shimadzu Corp Time-of-flight mass spectrometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206432A (en) * 1990-11-30 1992-07-28 Rikagaku Kenkyusho Ion scattering analyzing apparatus
JP2009289628A (en) * 2008-05-30 2009-12-10 Hitachi High-Technologies Corp Time-of-flight mass spectrometer
JP2012008082A (en) * 2010-06-28 2012-01-12 Institute Of Physical & Chemical Research Light element analyzer and analyzing method
JP2015179629A (en) * 2014-03-19 2015-10-08 株式会社島津製作所 Time-of-flight type mass spectroscope

Also Published As

Publication number Publication date
JPH0748373B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US5202561A (en) Device and method for analyzing ions of high mass
CA1249381A (en) Low noise tandem quadrupole mass spectrometers and method
US5206508A (en) Tandem mass spectrometry systems based on time-of-flight analyzer
EP0488067B1 (en) Ion-scattering spectrometer
US11087966B1 (en) Mass spectrum resolution device for measuring laser ablation ion species with improved time of flight mass spectrometry
US5898173A (en) High resolution ion detection for linear time-of-flight mass spectrometers
JPH05251039A (en) Secondary ion mass spectrometry device
Gruntman et al. H atom detection and energy analysis by use of thin foils and TOF technique
JP4606270B2 (en) Time-of-flight measurement device for sample ions, time-of-flight mass spectrometer, time-of-flight mass spectrometry method
JPH11297267A (en) Time-of-fiight mass spectrometer
US5026988A (en) Method and apparatus for time of flight medium energy particle scattering
US7388193B2 (en) Time-of-flight spectrometer with orthogonal pulsed ion detection
JPH02165038A (en) Flying time type particle analyzer
US5872824A (en) Method for studying a sample of material using a heavy ion induced mass spectrometer source
JP2942815B2 (en) Particle selection method and time-of-flight type selection type particle analyzer
US20070057177A1 (en) Non-linear ion post-focusing apparatus and mass spectrometer using the same
JPH0637564Y2 (en) Neutral particle scattering analyzer
JP2001210267A (en) Particle detector and mass spectrograph using it
JP2757460B2 (en) Time-of-flight mass spectrometer
EP1357578A2 (en) Spectroscopic analyser for surface analysis, and method therefor
Wolf et al. A new method for electrostatic ion deflection
US6815689B1 (en) Mass spectrometry with enhanced particle flux range
JPH08339777A (en) Mass spectrograph and mass spectrometric device using same
JPH11185696A (en) Time-of-flight type mass spectrograph
JPH0330249A (en) Ion detector