JP2001210267A - Particle detector and mass spectrograph using it - Google Patents

Particle detector and mass spectrograph using it

Info

Publication number
JP2001210267A
JP2001210267A JP2000017007A JP2000017007A JP2001210267A JP 2001210267 A JP2001210267 A JP 2001210267A JP 2000017007 A JP2000017007 A JP 2000017007A JP 2000017007 A JP2000017007 A JP 2000017007A JP 2001210267 A JP2001210267 A JP 2001210267A
Authority
JP
Japan
Prior art keywords
ion
particles
particle detector
particle
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000017007A
Other languages
Japanese (ja)
Inventor
Naoaki Saito
直昭 齋藤
Mitsushi Tanimoto
充司 谷本
Kazuyoshi Koyama
和義 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000017007A priority Critical patent/JP2001210267A/en
Publication of JP2001210267A publication Critical patent/JP2001210267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize analysis of particles covering broad mass ranges from a light atomic to heavy particle cluster and amicron, at a high detection efficiency, at a high resolving power and at a high SIN(signal to noise) ratio. SOLUTION: The ion to be measured inside the particle detector is first decelerated due to the retarding field caused by the decelerating electrode and then accelerated due to the accelerating field caused by the accelerating electrode to reach the detection point for particle detection. The ion which lost the required energy due to the charge having the homopolarity with the ion for measurement, is all reflected due to the retarding field and cannot reach the detection point. The charge ion having a code opposite to the ion for measurement is accelerated due to the retarding field but cannot reach the detection point due to the reflection caused by the accelerating field. The detection efficiency can be raised to only the extent of the energy brought by the accelerating field. The particle detector can be used for a mass spectrograph analyzing the mass and charge condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子,分子,クラ
スター,超微粒子などを分析する質量分析器に用いる、
高い検出効率,広い質量範囲において高い質量分解能と
高いS/N比を実現する粒子検出器、質量分析器に関す
る。
The present invention relates to a mass spectrometer for analyzing atoms, molecules, clusters, ultrafine particles, etc.
The present invention relates to a particle detector and a mass analyzer that realize high detection efficiency, high mass resolution and a high S / N ratio in a wide mass range.

【0002】図2は、質量分析器を示している。1は到
達した粒子を検出する粒子検出器、11は粒子導入真空
容器、12は真空容器、13は加速電極、14は接地グ
リッド電極、15はレンズ、16はリフレクター(Re
flector、反射器)、17はレーザーパルス発生
器、17aはレーザパルス、18は測定対象である粒子
を表している。
FIG. 2 shows a mass spectrometer. 1 is a particle detector for detecting the arrived particles, 11 is a particle introduction vacuum vessel, 12 is a vacuum vessel, 13 is an accelerating electrode, 14 is a ground grid electrode, 15 is a lens, and 16 is a reflector (Re).
17, a laser pulse generator, 17a a laser pulse, and 18 a particle to be measured.

【0003】図中A点より質量分析器に導入された粒子
18が、中性粒子であるならぱ、B点でレーザパルス1
7aによリイオン化されて、加速電極13と接地グリッ
ド電極14の間に加えられた電場により加速されて所定
のエネルギーEが与えられ、イオン化粒子はC点に向
けて飛行し、リフレクタ16により反射し、D点の粒子
検出器に至る。イオン化の瞬間から検出器に至るまでの
粒子の飛行時間を計測することにより、質量を求めるこ
とができる。
[0003] If the particles 18 introduced into the mass spectrometer from point A in the figure are neutral particles, the laser pulse 1 at point B
7a, the ionized particles are accelerated by an electric field applied between the accelerating electrode 13 and the ground grid electrode 14 and given a predetermined energy E 0 , and the ionized particles fly toward the point C, and are reflected by the reflector 16. It reflects and reaches the particle detector at point D. By measuring the time of flight of the particles from the moment of ionization to the detector, the mass can be determined.

【0004】図中A点より質量分析器に導入された粒子
が、イオンであるならば、加速電極13と接地グリッド
電極14の間に加えられたパルス電場により加速されて
所定のエネルギーEが与えられ、C点に向けて飛行
し、リフレクタ16により反射し、D点の粒子検出器に
至る。パルス電場印加の瞬間から検出器に至るまでの粒
子の飛行時間を計測することにより、粒子の質量を求め
ることができる。
[0004] figure introduced particles to the mass analyzer from the point A, if an ion, predetermined energy E 0 being accelerated by a pulse electric field applied between the acceleration electrode 13 and the ground grid electrode 14 Given, it flies towards point C, is reflected by reflector 16 and reaches the particle detector at point D. The mass of the particles can be determined by measuring the time of flight of the particles from the moment of application of the pulsed electric field to the detector.

【0005】しかし、C点に向けた飛行中での真空容器
壁などとの接触、接地グリッド電極14とリフレクタ1
6に用いているメッシュ電極を通過する際などの散乱に
より、所定のエネルギー失った粒子が発生し、これら粒
子であっても、D点の粒子検出器に至るものがある。こ
れら粒子は、質量分解能の低下とSN比の低下をもたら
した。
However, contact with the vacuum vessel wall during flight toward point C, grounding grid electrode 14 and reflector 1
Due to scattering when passing through the mesh electrode used in 6, for example, particles having a predetermined energy loss are generated, and some of these particles reach the particle detector at point D. These particles resulted in reduced mass resolution and reduced SNR.

【0006】D点の粒子検出器では、到達した粒子が検
出器全面に衝突した際に発生する2次電子を増幅して、
これを検出信号として取り出す。粒子が検出器に衝突す
る際に持つエネルギーが高いほど、多くの2次電子が発
生するので、検出効率が向上する。この目的で、従来の
方式では、検出器近傍に到着した粒子を追加加速(後加
速、post acceleration)して、検出器に衝突させるた
めの加速電場を検出器の全面に配置していた。
In the particle detector at point D, secondary electrons generated when the arriving particles collide with the entire surface of the detector are amplified,
This is extracted as a detection signal. The higher the energy that the particle has when it collides with the detector, the more secondary electrons are generated, so that the detection efficiency is improved. For this purpose, in the conventional method, an accelerating electric field for additionally accelerating (post-acceleration) particles arriving near the detector and causing the particles to collide with the detector is arranged on the entire surface of the detector.

【0007】図3は従来の粒子検出器を示している。図
3を参照して、従来の粒子検出器の動作を説明する。2
は接地グリッド電極、3は検出部、4は検出部3に入力
する粒子を追加加速するための加速電極を表している。
粒子検出器の最前面にあるグリッド電極2の電位は、通
常、グランド電位とするが、必要に応じて、所定の電位
にしてもよい。図3のように測定対象が正イオン粒子で
ある場合、加速電極4には加速電場を発生させる負電圧
−Vが印加されている。
FIG. 3 shows a conventional particle detector. The operation of the conventional particle detector will be described with reference to FIG. 2
Represents a ground grid electrode, 3 represents a detecting unit, and 4 represents an accelerating electrode for additionally accelerating particles input to the detecting unit 3.
The potential of the grid electrode 2 at the forefront of the particle detector is usually set to the ground potential, but may be set to a predetermined potential as needed. When measured as in FIG. 3 is a positive ion particles, the negative voltage -V 1 is applied to generate the accelerating electric field in the accelerating electrode 4.

【0008】[0008]

【発明の解決しようとする課題】図中、,,は粒
子検出器に到着したイオン粒子を示している。イオン粒
子はエネルギーEが加速エネルギーEで、電荷が+
Zeである測定対象の粒子を、イオン粒子はエネルギ
Eが加速エネルギーE以下、電荷が+Zeである粒子
を、イオン粒子は電荷が−Zeの粒子を表している。
イオン粒子、は測定対象でないイオン粒子である。
図3の粒子検出器では、加速電極4の加速電場により測
定対象とするイオン粒子だけでなく、これと同符号の
電荷を持つイオン粒子も全て検出部3に引き込まれ、
検出されるので、粒子検出器の分解能が低下するだけで
なく、ノイズの原因となりSN比が低下する。
In the figure, ,, and indicate the ion particles that have arrived at the particle detector. The ion particles have an energy E of an acceleration energy E 0 and a charge of +
The measured particle is Ze, ion particles are energy E acceleration energy E 0 below, the particles are charge + Ze, ion particles, electric charge represents the particles -ze.
An ion particle is an ion particle that is not a measurement target.
In the particle detector of FIG. 3, not only the ion particles to be measured but also all the ion particles having the same sign as the measurement target are drawn into the detection unit 3 by the acceleration electric field of the acceleration electrode 4.
Since the detection is performed, not only the resolution of the particle detector is lowered, but also noise is caused and the SN ratio is lowered.

【0009】半導体薄膜製造過程等に使用,生成される
粒子の素性,大気分析,生体高分子分析,医療などでの
粒子の素性を調べる場合には、単数,複数の原子種(同
位体原子,多種原子)組成からなるクラスター(原子が
数個〜数千個からなる集合体),超微粒子(原子が数千
個〜数万個からなる集合体)を測定対象とするので、数
原子から数万個の原子範囲までの広い質量範囲で、精密
な質量分解能が必要とされるが、このような広い質量範
囲で、精密な質量分解能を有する粒子検出器,質量分析
器はなかった。
When examining the characteristics of particles used in the process of manufacturing semiconductor thin films, the characteristics of particles in atmospheric analysis, biopolymer analysis, medical treatment, etc., one or more atomic species (isotope atoms, Clusters composed of many kinds of atoms) (aggregates of several to thousands of atoms) and ultrafine particles (aggregates of thousands to tens of thousands of atoms) are measured. Accurate mass resolution is required in a wide mass range up to 10,000 atoms, but there is no particle detector or mass analyzer having such a wide mass range and precise mass resolution.

【0010】更に、入射粒子のエネルギーが同じであれ
ば、軽い粒子に比べて重い粒子ほど速度が遅いために、
検出部3内に設けられた衝突粒子により2次電子を放出
するチャンネル内側壁材料の2次電子放出特性は低下す
る。このため、粒子検出器の感度は低下する。軽いイオ
ン(H+,He+,Ar+)では、入射粒子のエネルギ
ーが10〜100keV程度の範囲で粒子検出器の検出
効率で最大となるのに対して、市販されている質量分析
器の加速電位は1〜10kV程度の範囲で、粒子検出器
の最高効率状態における加速電位で粒子を測定していな
かった。また、重い粒子ではさらに高いエネルギーで検
出効率が最大となる。
Furthermore, if the energy of the incident particle is the same, the speed of a heavy particle is lower than that of a light particle, so that
The secondary electron emission characteristics of the channel inner wall material that emits secondary electrons by the collision particles provided in the detection unit 3 are deteriorated. For this reason, the sensitivity of the particle detector decreases. In the case of light ions (H +, He +, Ar +), the energy of the incident particles becomes maximum in the detection efficiency of the particle detector in the range of about 10 to 100 keV, whereas the acceleration potential of a commercially available mass analyzer is 1 The particles were not measured at the accelerating potential in the maximum efficiency state of the particle detector in the range of about 10 kV to about 10 kV. For heavy particles, the detection efficiency is maximized with higher energy.

【0011】本発明は、従来装置にみられる測定対象で
ないイオンの検出部への引き込みを防止し、かつ検出効
率向上を実現することにより、軽い原子から重い粒子で
あるクラスターや超微粒子までの広い質量範囲にわたっ
て、高い検出効率,質量分解能と高いS/N比を実現す
ることを目的としている。
According to the present invention, by preventing ions not to be measured, which are found in the conventional apparatus, from being drawn into the detection section and improving the detection efficiency, a wide range from light atoms to heavy particles such as clusters and ultrafine particles can be obtained. It is intended to realize high detection efficiency, mass resolution and high S / N ratio over a mass range.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、加速電場の直前に所定の強度の減速電
場を加えて、測定対象でないイオン粒子を検出部に到達
できないようにし、その後加速電場を加えた粒子検出
器、及びこの粒子検出器に用いた質量分析器を提供す
る。これにより軽い原子から重い粒子であるクラスター
や超微粒子に対しても従来通りの高い検出効率を維持し
ながら、高い質量分解能と高いS/N比を実現した粒子
検出器、質量分析器が可能となる。
In order to achieve the above object, according to the present invention, a deceleration electric field having a predetermined intensity is applied immediately before an acceleration electric field so that ion particles which are not to be measured cannot reach a detection unit, Thereafter, a particle detector to which an accelerating electric field is applied and a mass spectrometer used for the particle detector are provided. As a result, particle detectors and mass spectrometers that achieve high mass resolution and a high S / N ratio while maintaining the same high detection efficiency even for clusters and ultrafine particles, which are light to heavy particles, can be made possible. Become.

【0013】[0013]

【発明の実施の態様】図1は本発明の粒子検出器の一実
施例を示している。図1は正イオン粒子を測定対象とす
る場合である。5は減速電場を発生する電圧Vが印加
されたグリッド電極を表している。図1中で、図3と同
じ参照符号を付したものは同じもの又は同等のものを表
している。正電荷+Ze、エネルギーEの状態で、グ
リッド電極2に進入する正イオン粒子を測定対象とする
と、グリッド電極5に印加される正電圧+VはZeV
<Eを満たすように設定される。また、検出部3の
前面に配置された加速電極4には、負電圧−Vが印加
される。
FIG. 1 shows an embodiment of a particle detector according to the present invention. FIG. 1 shows a case where positive ion particles are measured. 5 represents a grid electrode voltage V 2 is applied for generating a deceleration electric field. In FIG. 1, components denoted by the same reference numerals as those in FIG. 3 represent the same or equivalent components. If positive ion particles entering the grid electrode 2 are to be measured in a state of positive charge + Ze and energy E 0 , the positive voltage + V 2 applied to the grid electrode 5 is ZeV
It is set to satisfy 2 <E 0. Further, the acceleration electrode 4 disposed in front of the detector 3, the negative voltage -V 1 is applied.

【0014】測定対象とするイオン粒子は、まず、グリ
ッド電極2とグリッド電極5の間の電場によって減速さ
れ、次いで、グリッド電極5と検出器前の加速電極4間
の電場により加速されて検出部3に至る。検出部3に到
達する際にイオン粒子が持つエネルギーは、E+Ze
となるので、ZeVのエネルギーの分だけ検出効
率を高めることができる。
The ion particles to be measured are first decelerated by the electric field between the grid electrode 2 and the grid electrode 5, and then accelerated by the electric field between the grid electrode 5 and the accelerating electrode 4 in front of the detector. Reaches 3. The energy of the ion particles when reaching the detection unit 3 is E 0 + Ze
Since the V 1, it can be increased by an amount detection efficiency of energy ZEV 1.

【0015】測定対象とするイオン粒子と同じ電荷+
Zeを持つが、飛行経路途中での散乱などの要因によっ
て、所定のエネルギーEを下回るエネルギーしか保持
できないイオン粒子は、グリッド電極2とグリッド電
極5の間の電場によって減速されるだけでなく、全て反
射されてしまうので、検出部3には至らず、イオン粒子
は測定されない。
The same charge as the ion particles to be measured +
Ion particles having Ze, but capable of holding only energy below a predetermined energy E 0 due to scattering or the like in the middle of the flight path, are not only decelerated by the electric field between the grid electrode 2 and the grid electrode 5, Since all of the light is reflected, the light does not reach the detection unit 3 and the ion particles are not measured.

【0016】また、測定対象とするイオンと正反対の電
荷を持つ全てのイオン粒子は、グリッド電極2と加速
電極4の間の電場によって加速されるが、グリッド電極
5と検出部3との間の電場により反射されてしまい、検
出部3に到着しない。検出効率を高めるために、V
なるべく大きな値を使用するので、通常,Vは全ての
イオン粒子を反射させるに必要な所定の値以上にな
る。
All ion particles having charges opposite to the ion to be measured are accelerated by the electric field between the grid electrode 2 and the accelerating electrode 4. The light is reflected by the electric field and does not reach the detection unit 3. To increase the detection efficiency, V 1 since as much as possible using a large value, typically, V 1 is equal to or larger than a predetermined value required to reflect all the ion particles.

【0017】測定対象とするイオン粒子が負電荷粒子で
ある場合は、上記の説明での電位V ,Vの極性を反
転設定することで、負イオン粒子の場合でも前記の正イ
オンの粒子検出と同じ効果で実現できる。
The ion particles to be measured are negatively charged particles.
In some cases, the potential V in the above description 1, V2Anti-polarity
By setting the rotation, the positive ion
It can be realized with the same effect as on-particle detection.

【0018】[他の実施例]上記図1の粒子検出器は、 1.イオンの飛行時間を計測することによって質量や電
荷を分析する方式(飛行時間式)の質量分析器の粒子検
出器として、 2.電場や磁場により所定の質量・電荷比のイオンのみ
を通過させることによって質量を分析する方式(電磁
式、電場式、4重極式、磁場電場複合式)の質量分析器
の粒子検出器として使用できる。
[Other Embodiments] The particle detector shown in FIG. 1. As a particle detector of a mass spectrometer of a type (time-of-flight type) for analyzing mass and charge by measuring the time of flight of ions; Used as a particle detector for mass spectrometers that analyze mass by passing only ions of a specified mass-to-charge ratio with an electric or magnetic field (electromagnetic, electric, quadrupole, or combined magnetic field and electric field) it can.

【0019】[0019]

【発明の効果】本発明の上記方式により、質量分解能を
低下させ、かつノイズの原因となるイオン粒子とイオ
ン粒子を排除し、測定対象のイオンのみを、軽い原
子から重い粒子であるクラスターや超微粒子までの広い
質量範囲に亘って高い検出効率、高い質量分解能と高い
S/N比で測定することが実現できる。
According to the above method of the present invention, mass resolution is reduced, ion particles and ion particles which cause noise are eliminated, and only ions to be measured are changed from light atoms to heavy particles such as clusters and super particles. High detection efficiency, high mass resolution and high S / N ratio can be measured over a wide mass range up to the fine particles.

【図面の簡単な説明】[Brief description of the drawings]

【図 1】本発明に係る粒子検出器の原理を説明する図
である。
FIG. 1 is a diagram illustrating the principle of a particle detector according to the present invention.

【図 2】粒子検出器を使用した質量分析器を説明する
図である。
FIG. 2 is a diagram illustrating a mass analyzer using a particle detector.

【図 3】従来の粒子検出器の動作を説明する図であ
る。
FIG. 3 is a diagram illustrating the operation of a conventional particle detector.

【符号の説明】[Explanation of symbols]

1 粒子検出器 2 グリッド電極 3 検出部 4 加速電極 5 グリッド電極 13 加速電極 14 接地電極 16 リフレクター 17 レーザパルス発生器 18 粒子 B 粒子がイオン化される位置 DESCRIPTION OF SYMBOLS 1 Particle detector 2 Grid electrode 3 Detector 4 Acceleration electrode 5 Grid electrode 13 Acceleration electrode 14 Ground electrode 16 Reflector 17 Laser pulse generator 18 Particle B Position where particles are ionized

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオン粒子の入射側から順に、第1の電
極、減速電場を発生させる電圧が印加された第2の電極
と、加速電場を発生させる電圧が印加された第3の電極
と、入射したイオン粒子を検出する検出部とを配置した
粒子検出器であって、 測定対象とするイオン粒子に対しては、初め減速させ、
次いで後加速させて検出器に到達させ、 測定対象とするイオン粒子と同符号の電荷をもつが、所
定のエネルギーを保持しないイオン粒子に対しては、上
記の減速電場により反射させて、検出部に到達させず、
又、 測定対象とするイオンと異符号の電荷をもつイオン粒子
に対しては、上記の加速電場により反射して、検出部に
到達させないようにしたことを特徴とする粒子検出器。
1. A first electrode, a second electrode to which a voltage for generating a decelerating electric field is applied, and a third electrode to which a voltage for generating an accelerating electric field is applied, in order from the incident side of the ion particles. A particle detector in which a detection unit that detects incident ion particles is arranged.
Subsequently, the ion particles are accelerated afterwards and reach the detector, and the ion particles having the same sign as the ion particles to be measured, but not retaining the predetermined energy are reflected by the above-described deceleration electric field, and are detected by the detection unit. Without reaching
A particle detector characterized in that ion particles having charges of opposite sign to the ions to be measured are reflected by the accelerating electric field and do not reach the detection unit.
【請求項2】 請求項1の粒子検出器を使用したことを
特徴とする質量分析器。
2. A mass spectrometer using the particle detector according to claim 1.
JP2000017007A 2000-01-26 2000-01-26 Particle detector and mass spectrograph using it Pending JP2001210267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017007A JP2001210267A (en) 2000-01-26 2000-01-26 Particle detector and mass spectrograph using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017007A JP2001210267A (en) 2000-01-26 2000-01-26 Particle detector and mass spectrograph using it

Publications (1)

Publication Number Publication Date
JP2001210267A true JP2001210267A (en) 2001-08-03

Family

ID=18544058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017007A Pending JP2001210267A (en) 2000-01-26 2000-01-26 Particle detector and mass spectrograph using it

Country Status (1)

Country Link
JP (1) JP2001210267A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387962A (en) * 2001-12-18 2003-10-29 Bruker Daltonik Gmbh Orthogonal acceleration TOF mass spectrometer with an angled ion reflector
JP2012003836A (en) * 2010-06-07 2012-01-05 Hamamatsu Photonics Kk Mass analyzer
JP2012169210A (en) * 2011-02-16 2012-09-06 Kobe Steel Ltd Charged-particle detector and time-of-flight mass spectrometer
JP2013175440A (en) * 2012-01-25 2013-09-05 Hamamatsu Photonics Kk Ion detection apparatus
JP2014532967A (en) * 2011-11-04 2014-12-08 マイクロマス ユーケー リミテッド Mass spectrometer with accelerator device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2387962A (en) * 2001-12-18 2003-10-29 Bruker Daltonik Gmbh Orthogonal acceleration TOF mass spectrometer with an angled ion reflector
GB2387962B (en) * 2001-12-18 2005-04-06 Bruker Daltonik Gmbh Reflector for time-of-flight mass spectrometers with orthogonal ion injection
US7223966B2 (en) 2001-12-18 2007-05-29 Bruker Daltonik, Gmbh Time-of-flight mass spectrometers with orthogonal ion injection
JP2012003836A (en) * 2010-06-07 2012-01-05 Hamamatsu Photonics Kk Mass analyzer
JP2012169210A (en) * 2011-02-16 2012-09-06 Kobe Steel Ltd Charged-particle detector and time-of-flight mass spectrometer
JP2014532967A (en) * 2011-11-04 2014-12-08 マイクロマス ユーケー リミテッド Mass spectrometer with accelerator device
US9552975B2 (en) 2011-11-04 2017-01-24 Micromass Uk Limited Mass spectrometers comprising accelerator devices
JP2013175440A (en) * 2012-01-25 2013-09-05 Hamamatsu Photonics Kk Ion detection apparatus

Similar Documents

Publication Publication Date Title
JP5632568B1 (en) Multichannel detection for time-of-flight mass spectrometry.
Geno et al. Secondary electron emission induced by impact of low-velocity molecular ions on a microchannel plate
US8735810B1 (en) Time-of-flight mass spectrometer with ion source and ion detector electrically connected
JPS62264546A (en) Mass spectrograph
JP2001517858A (en) Secondary ion generator / detector for time-of-flight mass spectrometer
JPS61179051A (en) Mass analysis of sample in wide mass range using quadruple pole ion trap
US4973842A (en) Lens system for a photo ion spectrometer
US4101771A (en) Ion electron converter
WO1989000883A1 (en) High mass ion detection system and method
JP2001160373A (en) Ion trap mass spectrometry and ion trap mass spectrometer
US6674069B1 (en) In-line reflecting time-of-flight mass spectrometer for molecular structural analysis using collision induced dissociation
US6614019B2 (en) Mass spectrometry detector
JP4606270B2 (en) Time-of-flight measurement device for sample ions, time-of-flight mass spectrometer, time-of-flight mass spectrometry method
JP5582493B2 (en) Microchannel plate assembly and microchannel plate detector
US3579270A (en) Energy selective ion beam intensity measuring apparatus and method utilizing a scintillator to detect electrons generated by the beam
JP2001210267A (en) Particle detector and mass spectrograph using it
JP3018880B2 (en) Mass spectrometer and mass spectrometry method
JP3830344B2 (en) Vertical acceleration time-of-flight mass spectrometer
JP2001057174A (en) Magnetic sector type mass spectometer
Heinen et al. Combination of a field desorption ion source with a quadrupole mass analyzer
US4855596A (en) Photo ion spectrometer
CA2443825A1 (en) Mass spectrometer
JP5979075B2 (en) Time-of-flight mass spectrometer
US5097125A (en) Photo ion spectrometer
WO2000036633A9 (en) In-line reflecting time-of-flight mass spectrometer for molecular structural analysis using collision induced dissociation