JPH02164998A - Attitude control device for shield excavator - Google Patents

Attitude control device for shield excavator

Info

Publication number
JPH02164998A
JPH02164998A JP63318460A JP31846088A JPH02164998A JP H02164998 A JPH02164998 A JP H02164998A JP 63318460 A JP63318460 A JP 63318460A JP 31846088 A JP31846088 A JP 31846088A JP H02164998 A JPH02164998 A JP H02164998A
Authority
JP
Japan
Prior art keywords
shield
movable plates
attitude control
main unit
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63318460A
Other languages
Japanese (ja)
Other versions
JP2722090B2 (en
Inventor
Shiyunsuke Fujii
藤井 俊祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki Poly Tech Inc
Original Assignee
Iseki Poly Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki Poly Tech Inc filed Critical Iseki Poly Tech Inc
Priority to JP63318460A priority Critical patent/JP2722090B2/en
Publication of JPH02164998A publication Critical patent/JPH02164998A/en
Application granted granted Critical
Publication of JP2722090B2 publication Critical patent/JP2722090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/08Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield
    • E21D9/0875Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield with a movable support arm carrying cutting tools for attacking the front face, e.g. a bucket
    • E21D9/0879Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining with additional boring or cutting means other than the conventional cutting edge of the shield with a movable support arm carrying cutting tools for attacking the front face, e.g. a bucket the shield being provided with devices for lining the tunnel, e.g. shuttering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To correct a main unit for its rolling by pivotally mounting to the front end part of a shield main unit one or more pairs of movable plates and containing the paired movable plates, having a pivotal axial line in a cross section at a right angle with the axial line of the shield main unit, to be arranged in the point symmetry with respect to one point on the axial line. CONSTITUTION:A shield main unit 14 provides from its opening front end part 15 to the rear a partition 16, and a cutter head 18 is provided with a spoke 20 and a bit 22 extending in a radial direction from a point on an axial line of the main unit 14. Next the cutter head 18 rotates excavating with the main unit 14 debris stored in a cutting chamber 28 between the cutter head 18 and the partition 16 via between constitutional parts of the spoke 20. An attitude control device 10 is pivotally mounted to the front end part 15 of the main unit 14, and with respect to one point of its axial line A arranging in the point symmetry one or more pairs of movable plates 32 contained, the debris is discharged by a screw conveyer 30 having one end opened in its lower part to the cutting chamber 28 and the other end extending to the rear. In this way, rolling can be corrected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシールド掘進機のための姿勢制御装置、特に、
地盤掘削中のシールド掘進機がその軸線の周りに回転し
たときすなわちシールド掘進機にローリンクが生じたと
きにそのローリングを修正する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an attitude control device for a shield tunneling machine, in particular,
The present invention relates to a device for correcting the rolling of a shield excavator when it rotates around its axis during ground excavation, that is, when a low link occurs in the shield excavator.

(従来の技術) 従来、シールド掘進機のローリング修正のため、シール
ド掘進機の軸線に直角な方向へ移動可能の板状のスタビ
ライザが配置されている。スタビライザは迎え角を有す
るようにシールド掘進機のtfl進方向に関して傾斜し
ており、スタビライザを周囲地盤に月二人した状態で前
記シール]・掘進機に推進力を午えると、スタビライザ
か受りる周囲地盤の抵抗のためにシールド掘進機はその
軸線の周りに回転され、こ第1により、ローリングの修
i−Eが行なわれる。また、修1F時、スタビライザに
よるJfl、進抵抗のためにシールド掘進機はスタビラ
イザの側に振れる。
(Prior Art) Conventionally, in order to correct the rolling of a shield tunneling machine, a plate-shaped stabilizer movable in a direction perpendicular to the axis of the shield tunneling machine has been arranged. The stabilizer is inclined with respect to the TFL advance direction of the shield tunneling machine so as to have an angle of attack, and when the stabilizer is placed on the surrounding ground, the above-mentioned seal]・When the thrust force is applied to the tunneling machine, the stabilizer or the receiver Due to the resistance of the surrounding ground, the shield machine is rotated about its axis, and this first causes a rolling correction i-E. Also, during the 1st floor repair, the shield tunneling machine swung toward the stabilizer due to the Jfl and progress resistance caused by the stabilizer.

ところで、シールド掘進機の周囲地盤は切羽近傍が最も
乱れが少なく緻密であることから、スタビライザを切羽
近傍に圧入ずれば、これより後方に圧入1j−る場合と
比へて、スタビライザは周囲地盤からより大きい抵抗力
を受け、その結果、シール[・掘進機の修正に必要な回
転角度を容易かつ確実に得ることができる。スタビライ
ザの配置位置をシールド掘進機の111部に設定するこ
とが望ましい1、 ところが、機械式シールド掘進機においては、開放型お
よび密閉型のいずれの掘進機もその前部に馴至を有する
ことから、スタビライザを掘進機の前部に設置しようと
すれば、個室への配置を余儀なくされる。開放型のtl
r+f進機にあ)ては、個室からその後方に砺を搬出す
るだめのコンベヤのような搬送1段にq6を載せるため
に旬6は眉室内てかき[げられるが、価室内に配置され
るスタビライザまたはその駆動手段は(ilftのかき
十げ能率を著し〈損なうという問題かある。他方、密閉
型の掘進機にあっては、個室を密閉状態を維持し・なが
らスタビライザを(16室の外部に突き出し、また、引
き戻3−ことをIIJ能に−う−る完全なシーリングを
得ることか極めて難しいという問題かある。
By the way, the surrounding ground of a shield excavator is densest with the least disturbance near the face, so if the stabilizer is press-fitted near the face, the stabilizer will be removed from the surrounding ground compared to when it is press-fitted further back. It experiences a greater resistance force, so that the rotation angle required for seal correction can be easily and reliably obtained. It is desirable to set the stabilizer at the 111th section of the shield excavator. However, in mechanical shield excavators, both open and closed types have a stabilizer at the front. If the stabilizer was to be installed at the front of the excavator, it would have to be placed in a private room. open type tl
In the case of the r+f advance machine, in order to place q6 on the first stage of the conveyor-like conveyor that transports the grains from the private room to the rear, jun6 is scraped in the eyebrow chamber, but it is not placed in the valence chamber. There is a problem in that the stabilizer or its driving means significantly impairs the scraping efficiency of the (ilft).On the other hand, in the case of an enclosed excavator, the stabilizer (16 The problem is that it is extremely difficult to obtain a perfect seal when protruding to the outside and pulling back.

(発明が解決しようとする課題) 本発明は、シールド掘進機のためのローリンク修正可能
の姿勢制御装置であってこれを機械式シールド掘進機の
前部に配置する場合に前記したような問題を生しさせる
ことのない姿勢制御装置を提供することを1三1的とす
る。
(Problems to be Solved by the Invention) The present invention is a low-link adjustable attitude control device for a shield tunneling machine, which solves the above-mentioned problems when it is disposed at the front of a mechanical shield tunneling machine. Our goal is to provide an attitude control device that does not cause

(課題を解決するための手段、発明の作用および効果) 本発明に係るシールド掘進機のための姿勢制御装置は、
シールド本体の前端部に枢着され、前記シールド本体の
軸線に直角な横断面内に枢軸線を有する少なくとも一対
の可動板を含み、前記可動板が前記シールド本体の軸線
−t=の一点に関して点対称に配置されている。
(Means for Solving the Problems, Actions and Effects of the Invention) The attitude control device for a shield tunneling machine according to the present invention includes:
at least a pair of movable plates pivotally attached to the front end of the shield body and having a pivot line in a cross section perpendicular to the axis of the shield body, the movable plates forming a point with respect to one point of the axis -t= of the shield body; arranged symmetrically.

本発明によりば、シールド掘進機に生したローリンクは
、各i’rJ動板の先端がシールド掘進機の軸線力向前
力に向けられる掘削時の基準位置から各可動板をその枢
Ih1l線の周りに周囲地盤の側または尺対の側へ等角
度を揺動させ、これを維持する間にシールド掘進機に推
力を与えることにより修正することができる。両回動板
を等角度に維持して前記シールド掘進機にtlf力を与
えると、切羽からの両i’il’動板に対する推進反力
のために前記シールド本体の横断面内におりる互いに逆
向きで大きさか等しい力すなわちシールド本体の軸線の
周りの偶力か作用する。この偶力の作用に伴なうシール
ド本体の回転により、シールド掘進機のローリンクか修
正される。
According to the present invention, the low link produced in the shield tunneling machine moves each movable plate along its axis Ih1l from the reference position during excavation where the tip of each i'rJ moving plate is directed toward the forward force of the axial force of the shield tunneling machine. This can be corrected by swinging an equal angle around the ground to the side of the surrounding ground or to the side of the ground, and applying thrust to the shield excavator while maintaining this swing. When both rotating plates are maintained at equal angles and a tlf force is applied to the shield tunneling machine, due to the propulsive reaction force from the face against both i'il' rotating plates, the mutual forces that fall within the cross section of the shield body Forces of equal or opposite direction, ie, a couple about the axis of the shield body, act. The rotation of the shield body due to the action of this couple corrects the low link of the shield excavator.

前記可動板は前記シールド本体の前端部に配置されかつ
該シールド本体の横断面内に枢軸線を有することから、
可動板に揺動力を与える液バージヤツキのような駆動手
段をシールド本体の内面に沿フてかつその軸線力向に向
けて配置することができる。このため、本発明を機械式
シールド掘進機に適用する場合、従来装置で問題となる
個室のかき上げ能率の低下(開放型)や個室のシーリン
グの問題(密閉型)を回避することがてきる。
Since the movable plate is disposed at the front end of the shield body and has a pivot line within the cross section of the shield body,
A driving means, such as a liquid bar jack, for applying a swinging force to the movable plate can be arranged along the inner surface of the shield body and oriented in the direction of the axial force. Therefore, when the present invention is applied to a mechanical shield excavator, it is possible to avoid the problems of the conventional equipment, such as a decrease in the scooping efficiency of the private chamber (open type) and a problem with the sealing of the private chamber (closed type). .

各可動板はその枢軸線が矩形の横断面形状を有するシー
ルド本体の前記矩形の相対する二辺上にそれぞれ配置す
ることができる。また、前記矩形の相対するニー辺土に
枢軸線を有する可動板の教団を二対とすることができる
。これによれば、前記辺のいずれか一方の辺に関する二
つの可動板を前記基準位置から例えば前記周囲地盤の側
に揺動させかつ他方の辺に関する二つの可動板を基準位
置におき、この状態を維持する間に前記シールド本体に
推進力を与えると、揺動された可動板に対する周囲地盤
からの推進反力のために、該可動板を軸としてシールド
本体に回転運動が生じる。したがって、これにより、シ
ールド掘進機のヨーイングを修正することができる。
Each movable plate can be disposed on two opposing sides of the rectangle of the shield main body whose pivot axis has a rectangular cross-sectional shape. Furthermore, there may be two pairs of movable plates having pivot lines on opposing knees of the rectangle. According to this, the two movable plates related to one of the sides are swung from the reference position to the side of the surrounding ground, and the two movable plates related to the other side are placed at the reference position, and the state When a propulsive force is applied to the shield body while maintaining the movable plate, rotational movement occurs in the shield body about the movable plate due to the propulsive reaction force from the surrounding ground against the oscillated movable plate. Therefore, this makes it possible to correct the yawing of the shield tunneling machine.

さらに、前記矩形の残りの二辺」−に枢軸線を有しかつ
Uいに相対する少なくとも一対の可動板を配置すれば、
前記二辺土のいずれか一方に関する可動板を前記基準位
置から周囲地盤の側へ揺動させかつ他方の可動板を基準
イ装置におき、これを糾1.1する間に1)1f記シー
ル[・本体に推進力を与えると、揺動さ、11だ可動板
を中心として揺動し、シールド本体に回転運動が牛しる
。したがって、これにより、シールド掘進機のビッチン
クを修正することかてきる。
Furthermore, if at least a pair of movable plates having pivot lines on the remaining two sides of the rectangle and facing each other are arranged,
The movable plate related to one of the two sides is swung from the reference position to the side of the surrounding ground, and the other movable plate is placed on the reference A device, and while this is being tested, 1) 1f seal [ - When a propulsion force is applied to the main body, it swings around the movable plate 11, causing rotational movement to the shield main body. Therefore, this makes it possible to correct the bitching of the shield tunneling machine.

前記シールド掘進機のフードの一部として構成すること
ができる。また、前記14動板は円形の横断面形状を有
するシールド本体に適用することかできる。
It can be configured as a part of the hood of the shield tunneling machine. Furthermore, the 14 moving plates can be applied to a shield body having a circular cross-sectional shape.

(実hh例) 第1図および第2図を参照すると、本発明に係る姿勢制
御装置10が機械式シールド掘進機12に適用されてい
る。
(Actual hh Example) Referring to FIGS. 1 and 2, an attitude control device 10 according to the present invention is applied to a mechanical shield tunneling machine 12.

図示のシールド掘進機12は縦長の矩形の横断面形状を
有するシールド本体14を備え、シールド本体14には
その開放面端部15がらその後方へ間隔をおいて隔壁1
6が設けられている。地盤の掘削のためにシールド本体
14の前方に配置されたカッタヘッド18は、シールド
本体14の軸線上の点から放射方向へ十字状に伸びるス
ポーク20と該スポークに取り付けられた複数のヒツト
22とから成り、隔壁16に回転可能に支承された回転
軸24にその面端部で接続されている。
The illustrated shield tunneling machine 12 includes a shield main body 14 having a vertically long rectangular cross-sectional shape, and the shield main body 14 has a partition wall 1 spaced apart from the open end 15 of the shield main body 14.
6 is provided. The cutter head 18, which is disposed in front of the shield body 14 for excavating the ground, has a spoke 20 extending cross-shaped in the radial direction from a point on the axis of the shield body 14, and a plurality of humans 22 attached to the spoke. It is connected at its surface end to a rotating shaft 24 rotatably supported by the partition wall 16.

隔壁16を経て後方に伸びる回転軸24はその後端部で
減速機構26を介してモータ28の出力軸に接続されて
いる。
A rotating shaft 24 extending rearward through the partition wall 16 is connected at its rear end to an output shaft of a motor 28 via a speed reduction mechanism 26 .

シールド本体14は、該シールド本体の後方にあって、
掘削されたトンネルの壁面を規定するセクメントとの間
に配置される推進ジヤツキ(図示せず)の作動により、
またはトンネルの壁面を規定する推進管(図示せず)を
介して推力を受りる。シールド本体14とともに推進さ
れるカッタヘッド18の回転によって掘削された土砂す
なわち価は、スポーク20の構成部分間を経て、カッタ
ヘット18と隔壁16との間に規定された(JR室28
に貯まる。廓室28内の媚は、隔壁16を貫通しかつ9
6室28にその−F部で開放する一端部と、シールド本
体14を後方へ伸びる他端部とを有するスクリューコン
ベヤ3゜を介してυF出される。硼室28内の砺は、こ
れがスクリューコンベヤ30の前記一端部に落下するよ
うに、カッタヘッド18の後部に取り付けられ、該カッ
タヘットとともに回転するかき上げ部材(図示せず)に
よってずくい上げられる。
The shield body 14 is located at the rear of the shield body,
By the operation of a propulsion jack (not shown) placed between the segment defining the wall surface of the excavated tunnel,
Alternatively, it receives thrust through a propulsion tube (not shown) that defines the tunnel wall. The earth and sand excavated by the rotation of the cutter head 18 that is propelled together with the shield body 14 passes between the constituent parts of the spokes 20 and is defined between the cutter head 18 and the partition wall 16 (JR room 28
It accumulates in The aphrodisiac in the dressing room 28 penetrates the partition wall 16 and
υF is delivered through a screw conveyor 3° having one end that opens into the sixth chamber 28 at its −F portion, and the other end that extends backward through the shield body 14. The grains in the chamber 28 are scooped up by a scooping member (not shown) attached to the rear of the cutter head 18 and rotating together with the cutter head so that the grains fall onto the one end of the screw conveyor 30.

シールド掘進機のための姿勢制御装置10は、シールド
本体14の前端部15に枢着された少なくとも一対の可
動板を含み、該可動板はシールド本体14の軸線Aの一
点に関して点対称に配置されている。
An attitude control device 10 for a shield tunneling machine includes at least a pair of movable plates pivotally attached to a front end 15 of a shield body 14, and the movable plates are arranged point-symmetrically with respect to a point on the axis A of the shield body 14. ing.

図示の例ては、口封の可動板32(32゜322.32
3.324 )が設けられている。これらの可動板はシ
ールド本体の前端部15の周方向に互いに間隔をおいて
配置され、可動板間に配置された複数(図示の例では可
動板と同数)の板部材34と協同して、カッタヘッド1
8を取り巻く前部フードを形成している。このため、各
可動板32と各板部利34とはほぼ同一・の断面形状を
有し、また、シールド本体14に近接する基端の肉厚が
大きく、先端が鋭利である。各板部材34はその基端て
シールド本体14に連なるように、シールド本体14と
一体に形成、または、シールド本体14に固定されてい
る。したがって、前記板部月34はり動板32に対する
静止板である。
For example, the movable plate 32 of the mouth seal (32°322.32
3.324) is provided. These movable plates are arranged at intervals from each other in the circumferential direction of the front end portion 15 of the shield main body, and cooperate with a plurality of plate members 34 (in the illustrated example, the same number of movable plates) arranged between the movable plates. cutter head 1
It forms a front hood surrounding the 8. Therefore, each movable plate 32 and each plate part 34 have substantially the same cross-sectional shape, and the proximal end adjacent to the shield body 14 has a large wall thickness and a sharp tip. Each plate member 34 is formed integrally with the shield body 14 or is fixed to the shield body 14 so that its proximal end is continuous with the shield body 14 . Therefore, the plate portion 34 is a stationary plate with respect to the moving plate 32.

シールド本体の前端部15がら、互いに隣接する一対の
静止板34間の空間を前方に伸びる一対の間隔をおかれ
たブラケット36が伸び、各可動板32はその基端で開
放し両ブラケット36を受は入れる凹部38を有する。
A pair of spaced apart brackets 36 extend forward through the space between a pair of adjacent stationary plates 34 from the front end 15 of the shield main body, and each movable plate 32 is opened at its base end so that both brackets 36 are connected to each other. The receiver has a recess 38 into which it is placed.

各可動板32は、その一方の側面からその四部38と両
ブラケット36に設けられた孔40とを経て伸び他の一
方の側面に終端するビン42を介して、静lF板34に
連結されている。
Each movable plate 32 is connected to the static IF plate 34 via a pin 42 extending from one side of the movable plate 32 through a hole 40 provided in its four parts 38 and both brackets 36 and terminating on the other side thereof. There is.

ビン42はその両端部で各可動板32に固定さ才1、両
ブラケット部分36に対して滑動可能である。各ビン4
2の軸線は、シールド木体14の軸線Aに直角な横断面
内にあって、該面内の矩形の各辺トを伸びる。
The bin 42 is fixed at its ends to each movable plate 32 and is slidable relative to both bracket portions 36. each bottle 4
The axis 2 is within a cross section perpendicular to the axis A of the shield wooden body 14, and extends along each side of the rectangle within the plane.

第4図から明らかなように、i’iJ動板32の基端お
よびシールド本体の前端面はほぼ同曲率の凸面および凹
面をそれぞれイ1°し、両者間にわずかな間隙かある。
As is clear from FIG. 4, the proximal end of the i'iJ moving plate 32 and the front end surface of the shield body have a convex surface and a concave surface of approximately the same curvature, respectively, at an angle of 1°, and there is a slight gap between them.

両ブラケット36の前端面および可動板の四部38の底
面も、同様に、bいにわずかな間隔をおかれ、同曲率の
凸面および凹面をそれぞれ有する。前記したところによ
り、各可動板32はビン42とともにその軸線の周りに
揺動可能である。静11−板34はシールド本体14の
周面の延長面一4二にある外面を有する。また、可動板
32は前記延長面上に整列〒り能の外面32aを有し、
シールド掘進機12による掘削は、各可動板32の外面
32aを前記延長面内においた状態ずなわち各可動板3
2を基準位置においた状態で行なわれる。
The front end surfaces of both brackets 36 and the bottom surfaces of the four parts 38 of the movable plate are similarly spaced slightly apart and have convex and concave surfaces, respectively, with the same curvature. As described above, each movable plate 32 can swing together with the bin 42 around its axis. The static 11-plate 34 has an outer surface that is an extension of the circumferential surface of the shield body 14. Further, the movable plate 32 has an outer surface 32a that can be aligned on the extended surface,
Excavation by the shield excavator 12 is performed with the outer surface 32a of each movable plate 32 in the extended plane, that is, each movable plate 3
2 is placed at the reference position.

再び第1図を参照すると、二対の可動板32322が矩
形の相対する一対の縦の辺に沿ってがつ各編の辺の両端
近傍にそれぞれ配置され、他の対の可動板323,32
.が前記矩形の一対の横の辺に沿ってかつ各横の辺の両
端近傍に配置されている。他方、静止板34は各編の辺
の中間部と、各横の辺の中間部と、前記矩形のコーナ部
とにそれぞれ配置されている。
Referring again to FIG. 1, two pairs of movable plates 32322 are arranged near both ends of each side of the rectangle along a pair of opposing vertical sides, and the other pairs of movable plates 323, 32
.. are arranged along a pair of horizontal sides of the rectangle and near both ends of each horizontal side. On the other hand, the stationary plates 34 are arranged at the middle part of each side of each stitch, the middle part of each horizontal side, and the corner part of the rectangle.

本発明によれは、地盤の掘削中にシールド本体14がそ
の軸線Aの周りに例えば第1図て見て時用方向に回転す
るローリンクが生じたときには、シールド本体14の推
進を11−め、例えば−・対の可動板32.を前記基準
位置がら周囲地盤の側へ揺動させる。揺動角度は、地質
、ローリンク量等を考慮1ノて定められる。
According to the present invention, when a low link occurs in which the shield body 14 rotates around its axis A in the clockwise direction as seen in FIG. , for example - a pair of movable plates 32. is swung from the reference position toward the surrounding ground. The swing angle is determined by considering the geology, amount of low link, etc.

その後、可動板321を所定の揺動位置に維持する間に
、前記推進ジヤツキ等を作動させることにより、シール
ド本体14に推力を伺与する。このとき、揺動位置にあ
る各可動板32.は周囲地盤、より詳細には切羽から推
進反力を受ける。
Thereafter, while the movable plate 321 is maintained at a predetermined swinging position, thrust is applied to the shield body 14 by operating the propulsion jack or the like. At this time, each movable plate 32. receives a propulsive reaction force from the surrounding ground, more specifically from the face.

両回動板321に作用する前記推進反力は、シールド本
体14の軸線Aに直角な横断面内において互いに逆向き
てありかつ大きさの等しい力の成分、ずなわち前記nF
進反力をFとしかつ各可動板321と前記横断面との成
す角度をαとすると、大きさか(F/2)・cos2α
の分力を有する。
The propulsive reaction forces acting on both rotating plates 321 are force components that are opposite to each other and have equal magnitudes in a cross section perpendicular to the axis A of the shield body 14, that is, the nF
If the forward and reaction force is F and the angle formed between each movable plate 321 and the cross section is α, then the size is (F/2)・cos2α
It has component force of .

また、両回動板321は前記軸線A上の一点に関し゛C
点対称であって該 点から両回動板32への面記■1進
反力の着力点まての距離が互いに等しい。このことから
、シール]・本体14には偶力か働き、この偶力によっ
゛Cシールド本体14がその軸線Aの周りに反時51方
向へ回転され、ローリングが修正される。また、ローリ
ング修11−の際、従来のスタビライザによるローリン
ク量11に伴なうシールド掘進機のヨーインクは牛しな
い。
Further, both rotating plates 321 are connected to one point on the axis A.
They are point symmetrical and the distances from the point to the point where the linear reaction force is applied to both rotating plates 32 are equal. From this, a couple acts on the seal main body 14, and this couple rotates the C shield main body 14 in the counterclockwise direction 51 around its axis A, correcting the rolling. Further, during the rolling adjustment 11-, the yaw ink of the shield excavator due to the low link amount 11 caused by the conventional stabilizer does not occur.

他の一対のII)動板324を用いるときも一対の可動
板321を用いたときと同方向すなわち反時言1方向へ
シールド本体14を回転させることがてきる。したがっ
て、前記時計方向に’AFじたローリングの修正のため
には、可動板321の使用に代えてまたは該可動板32
.とともに一対の可動板324を用いることができる。
When using the other pair of II) movable plates 324, the shield body 14 can also be rotated in the same direction as when using the pair of movable plates 321, that is, in the opposite direction. Therefore, in order to correct the rolling in the clockwise direction, instead of using the movable plate 321 or using the movable plate 32
.. In addition, a pair of movable plates 324 can be used.

二対の可動板を使用するときはより大きい回転力を得る
ことができる。他方、各対の可動板322または323
を使用するときは、シールド本体14は反対方向ずなオ
)ち時計方向への偶力を受りることとなる。したがって
、これらの可動板の一方の対または両方の対の使用は反
時計方向に生じた回転の修正の使用に適する。
Greater rotational force can be obtained when using two pairs of movable plates. On the other hand, each pair of movable plates 322 or 323
When using the shield body 14, the shield body 14 receives a force couple in the opposite direction and also in the clockwise direction. The use of one or both pairs of these movable plates is therefore suitable for use in correction of rotations occurring in the counterclockwise direction.

ところで、各対の可動板32を前記周囲地盤の側ではな
くこれと反対の側である軸線Aの側に揺動させかつこれ
を維持する間にシールド本体14に推力を(・j”j’
するときは、前記周囲地盤の側に揺動させた場合とは反
対力向の偶力が叶じる。したがって、例えば、時用方向
に生じたローリングの修正は、前記可動板32.を前記
周囲地盤の側に揺動させることに代えて、一対の可動板
322を前記軸線への側に揺動させかつこれを維持1−
る間にシールド本体14に411.力をイ」与すること
によってもよい。また、両回動板321を前記周囲地盤
の側に揺動させかつ両回動板322を前記軸線Aの側に
揺動させるときも、同方向への偶力を得ることかてぎる
By the way, while swinging each pair of movable plates 32 not toward the surrounding ground side but toward the opposite side of the axis A, and while maintaining this, a thrust force is applied to the shield body 14 (・j"j'
In this case, a force couple in the opposite direction to that in the case of swinging to the side of the surrounding ground is realized. Therefore, for example, correction of rolling occurring in the clockwise direction can be performed by the movable plate 32. Instead of swinging the movable plates 322 toward the surrounding ground, the pair of movable plates 322 is pivoted toward the axis and maintained 1-
411. to the shield body 14 during the process. It can also be done by giving power. Also, when both rotating plates 321 are swung toward the surrounding ground and both swivel plates 322 are swung toward the axis A, it is possible to obtain a couple in the same direction.

なお、一対の一11J動板32に対する前記着力点の連
結線か水゛■2であるとき、前記分力の作用線が111
1記連結線七に位置することとなるため、偶力は生じな
い。このことから、ローリンク修正は、前記連結線が水
゛Pになる前のローリング量か小さいうちに11なう必
要かある。
In addition, when the connection line of the force application point to the pair of 11J moving plates 32 is water 2, the line of action of the component force is 111
Since it will be located at connection line 7 in 1., no couple will occur. From this, it is necessary to correct the low link by 11 while the amount of rolling is small before the connecting line becomes water.

さらに、第1図の谷照を続けると、二8組の右方および
左ブjの土手の1iJ動板32..322は互いに横力
向に相対して配置されていることから、いずわか−組の
一1ニドの1■動板32.、.322を同じ角度に例え
ば前記周囲地盤の側に揺動させかつ適当な揺動角度を維
持する間にシールド本体14に第11力をイ・ILiす
ると、シールド本体14は、推力抵抗を受りる一組の上
下の可動板32..322の周りに回転運動する。した
がって、いずわが−組の上下の可動板32..322の
使用により、ヨー・イングの修正を行なうことができる
。このとき、他の一組の上下の可動板32..32.を
軸線への側に適当な揺動角度に保持しておc7+は、ヨ
ーインク修正のためのより大きい回転力か得られる。
Continuing with the valley shown in Figure 1, there are 28 sets of right and left bank 1iJ moving plates 32. .. 322 are arranged opposite to each other in the direction of lateral force, so one moving plate 32. ,. 322 to the same angle, for example, to the side of the surrounding ground, and while maintaining the appropriate swing angle, the shield body 14 is subjected to the 11th force, the shield body 14 receives thrust resistance. A set of upper and lower movable plates 32. .. 322. Therefore, the upper and lower movable plates 32. .. The use of 322 allows for yaw correction. At this time, another set of upper and lower movable plates 32. .. 32. By holding the C7+ at a proper swing angle towards the axis, more rotational force is available for yaw and ink correction.

同様に、二組の十ツノおよび下方の左右の11動板32
3,324か互いに縦方向に相対している3、このこと
から、いずれか−組の左右の可動板323,324を例
えば前記周囲地盤の側に揺動させかつその揺動角度を維
持する間にシール]・本体14に推力を付与−づ−ると
、該−組のiiJ動板323,324の周りに回転運動
をする。
Similarly, two sets of jutsuno and the lower left and right 11 moving plates 32
3, 324 are vertically opposed to each other. Therefore, while the left and right movable plates 323, 324 of any pair are swung toward the surrounding ground side and the swiveling angle is maintained. When thrust is applied to the main body 14, it rotates around the set of IIJ moving plates 323, 324.

これにより、ピッチングの修正を行なうことかできる。This allows pitching to be corrected.

また、前記ヨーイング修正におけると同様の理由により
、他の一組の可動板323,32.lを軸線Aの側に適
当な角度に保持してピッヂンク′修止のためのより大き
い回転力を得ることがてきる。
Also, for the same reason as in the yawing correction, another set of movable plates 323, 32 . 1 can be held at an appropriate angle on the side of axis A to obtain a larger rotational force for correcting pidgin'.

前記したことから明らかなように、ローリング修正のた
めには、点対称である少なくとも一対の可動板があれば
よいが、第1図に示すように、複数対の可動板を配置し
ておけば、ローリング修正のために必要なシールド本体
の回転方向に応し゛(、最適なi+J動板な使用し、ま
た、より人きい回中云力を檜:子ることができる。さら
に、ローリング修−1[以外のヨーインクやピッチング
の修iE−をも行なうことかできる。
As is clear from the above, for rolling correction, it is sufficient to have at least one pair of movable plates that are point symmetrical, but as shown in Fig. 1, if multiple pairs of movable plates are arranged, , depending on the direction of rotation of the shield body required for rolling correction (by using the optimal I+J moving plate, it is possible to achieve a more user-friendly turning force. In addition, rolling correction - 1 [You can also perform other yaw ink and pitching modifications.

前記した可動板の配置例に代えて、例えば、前記矩1丁
2の相対する各辺の前記中間位置すなわち静止板34が
配置されている位置に可動板を配置し、他の箇所に静止
板を配置することができる。
Instead of the arrangement example of the movable plate described above, for example, a movable plate may be arranged at the intermediate position of each opposing side of the rectangle 1, 2, that is, the position where the stationary plate 34 is arranged, and the stationary plate is placed at another location. can be placed.

こ第1によりば、最小の数量の可動板でローリンク、ヨ
ーインクおよびピッチングの各修正を行なうことか可能
である。この場合にはまた各可動板の前記ケト形の辺の
方向における長さ寸法を人きくすることが望ましい。
According to the first method, it is possible to perform each correction of the low link, yaw ink, and pitching with a minimum number of movable plates. In this case, it is also desirable that the length of each movable plate in the direction of the sides of the ketone shape be adjusted.

第3図および第4図に小1−ように、各111動板32
は、液圧ジャツギ44な含む駆動機構46により揺動さ
せることができる。
As shown in Figures 3 and 4, each 111 moving plate 32
can be oscillated by a drive mechanism 46 including a hydraulic jack 44.

各液圧ジヤツキ44は、シールド本体14のスキンプレ
ート14aと、該スキンプレートから間隔をおいて配置
された筒状のプレート14b(第2図参照)との間に軸
線Aの方向に配置することかできる。
Each hydraulic jack 44 is arranged in the direction of the axis A between the skin plate 14a of the shield body 14 and a cylindrical plate 14b (see FIG. 2) arranged at a distance from the skin plate. I can do it.

液圧ジヤツキ44は、その二股の後端部44aで、該後
端部と、スキンプレート14aに固定されかつ前記後端
部が受り入れられたブラケット48と、これらを貫通し
かつシールド本体14の軸線Aと直角な方向に伸びるビ
ン50とを介して、スキンプレート14aに枢着されて
いる。
The hydraulic jack 44 has a bifurcated rear end 44a that passes through the rear end, a bracket 48 fixed to the skin plate 14a and in which the rear end is received, and connects the shield body 14. The skin plate 14a is pivotally connected to the skin plate 14a via a pin 50 extending in a direction perpendicular to the axis A of the skin plate 14a.

液圧ジヤツキ44の面端部44b、図示の例ではピスト
ンロッドの先端に取りイ(1りられた−」役の端部にア
ーム部材52の一端部がピン50と平行なピン54を介
して枢着されている。他方、アーム部材52の他端部は
、可動板32の凹部38に受は入れられた両ブラケット
36間にあり、該ブラケットを軒て伸びるビン42かア
ー11部村52の他端部を貫通しかつ該他端部に固定さ
イ1”Cいる。
One end of the arm member 52 is connected to the face end 44b of the hydraulic jack 44, in the illustrated example, at the end of the piston rod, via a pin 54 parallel to the pin 50. On the other hand, the other end of the arm member 52 is located between the brackets 36 which are received in the recesses 38 of the movable plate 32, and the pin 42 or the arm 11 part 52 extends over the brackets. It passes through the other end and is fixed to the other end.

この例によりば、液圧ジヤツキ44を伸長動作させると
、該液圧ジヤツキはその後端部で揺動してシールド本体
の軸線Aと平行にあった液圧シャ・ツキ44の軸線が次
第に傾斜し、この間にその前端部が前進する。こわに伴
なって、アーム部材52の前記一端部かビン42の周り
に揺動1−る。アーム部材52の他端部はビン42に固
定され、また、ビン42は1ijl’動部材32に固定
されていることから、アーム部材52、ビン42および
■]動部材32のヨ’Rkl一体となってビン42の軸
線の周りに回転運動をする。これにより、可動部材32
を基べ1位置からriot記周囲地盤の側へ任意の角度
たり揺動させるとかできる。反対に、液圧ジヤツキ44
を収縮動作させることにより、叫動部月32を逆方向ず
なオつもシールド本体14の軸線Aの側へ任意の角度た
け揺動させることがてきる。
According to this example, when the hydraulic jack 44 is extended, the hydraulic jack swings at its rear end, and the axis of the hydraulic jack 44, which was parallel to the axis A of the shield body, gradually becomes inclined. , during which its front end moves forward. As the arm member 52 stiffens, the one end of the arm member 52 swings around the bottle 42. Since the other end of the arm member 52 is fixed to the bin 42, and the bin 42 is fixed to the moving member 32, the arm member 52, the bin 42, and This causes rotational movement around the axis of the bottle 42. As a result, the movable member 32
It can be swung at any angle or swung from one position to the side of the surrounding ground. On the contrary, hydraulic jack 44
By contracting, the screaming part 32 can be swung in the opposite direction toward the axis A of the shield main body 14 by an arbitrary angle.

第5図に示すように、本発明は円形の横断面形状を有す
るシールド本体14の1)f1端部に配置することがで
きる。矩形の横断面形状を有するシールド本体14に適
用した前記例と異なる点は、可動板32および静止板3
4が、第1図の例ではシールド本体の断面の輪郭に沿っ
て直線的に伸びている( (、!1. u、矩形のコー
ナ部に配置された静]1板は除く。)のに対し、第5図
の例ては円弧状に伸びている点である。そこで、説明の
重複を避けるために、第1図の例の可動板および静]1
板に対応する第5図の例のiiJ動板および静止板に同
一の参照符−)を伺ずに止める。ローリング、ヨーイン
グおよびビッヂングの各修正は、第1図に示す例に準し
て行なうことができる。
As shown in FIG. 5, the present invention can be placed at the 1) f1 end of the shield body 14 having a circular cross-sectional shape. The difference from the above example applied to the shield main body 14 having a rectangular cross-sectional shape is that the movable plate 32 and the stationary plate 3
4 extends linearly along the outline of the cross-section of the shield body in the example shown in Figure 1 (except for plate 1 (,!1.u, static placed at the corner of the rectangle)). On the other hand, in the example of Fig. 5, the points extend in an arc shape.Therefore, in order to avoid duplication of explanation, we will explain the movable plate and the stationary plate in the example of Fig. 1.
iiJ moving plate and stationary plate in the example of FIG. Rolling, yawing, and biting corrections can be made in accordance with the example shown in FIG.

この第5図の例においても、上下および左右の各箇所に
90度の角度間隔で配置された静止板34に代えて、こ
れを可動板とし、かつ、他の全ての箇所に静11−板を
配置することができ、これにより、必要最少限の可動板
の配置でシールド掘進機のローリング、ヨーイングおよ
びビッヂングの修正を行なうことができる。可動板の馬
]メ動も第3図および第4図に示した機構をもって行な
うことがてきる。
In the example shown in FIG. 5 as well, instead of the stationary plates 34 arranged at 90 degree angle intervals at the top, bottom, left and right locations, this is used as a movable plate, and the stationary plates 11-1 are placed at all other locations. This makes it possible to correct the rolling, yawing, and biting of the shield tunneling machine with the minimum number of movable plates required. The movement of the movable plate can also be performed using the mechanism shown in FIGS. 3 and 4.

本発明の姿勢制御装置について、機械式シールド掘進機
のうちの開放型と称されるものについての適用について
説明したが、例えば1i16室に泥水を送り込み、これ
を媚とともに回収する機構を有する密閉型と称さ才する
ものについても適用可能である。もちろん、手掘り式の
シールド掘進機に適用することはiiJ能である。さら
に、本発明は、図示の横断面形状以外の例えば楕円形や
その他の形状の横断面をイjするシールド本体を備える
シールド掘進機に適用することができる。
Regarding the attitude control device of the present invention, the application to what is called an open type of mechanical shield excavator has been explained, but for example, a closed type having a mechanism for sending muddy water into the 1i16 chamber and collecting it with a charm. It can also be applied to things that are called ``skilled''. Of course, it is possible to apply it to a manual shield excavator. Further, the present invention can be applied to a shield excavator including a shield body having a cross-sectional shape other than the illustrated cross-sectional shape, such as an elliptical shape or other shapes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用された矩形の横断面形状を有する
シールド掘進機の正面図、第2図はシールド掘進機の側
部を切欠いて示す側面図、第3図は可動板の駆動機構を
シールド本体の軸線の側から放射力向に見たときの平面
図、第4図は第3図の線4−4に沿って得た縦断面図、
第5図は本発明が適用された円バニの横断面形状を有す
るシールド掘進機のiT而面である。 姿勢制御装置ρ、 :シールド掘進機、 ゛シールド本体、 321.327.323.324  :可動板。 静止板、 駆動機構、 シールド本体の軸線。 代理人 弁理士 松 永 宣 行 第 区 第 図
FIG. 1 is a front view of a shield tunneling machine having a rectangular cross-sectional shape to which the present invention is applied, FIG. 2 is a side view with the side of the shield tunneling machine cut away, and FIG. 3 is a movable plate drive mechanism. is a plan view when viewed from the axial side of the shield body in the direction of radial force, and FIG. 4 is a longitudinal cross-sectional view taken along line 4-4 in FIG. 3.
FIG. 5 shows the iT aspect of a shield tunneling machine having a circular cross-sectional shape to which the present invention is applied. Attitude control device ρ, : Shield excavator, ゛Shield main body, 321.327.323.324 : Movable plate. Axis of stationary plate, drive mechanism, and shield body. Agent Patent Attorney Nobu Matsunaga District No.

Claims (6)

【特許請求の範囲】[Claims] (1)シールド掘進機のシールド本体の前端部に枢着さ
れ、前記シールド本体の軸線に直角な横断面内に枢軸線
を有する少なくとも一対の可動板を含み、前記可動板は
、前記シールド本体の軸線上の一点に関して点対称に配
置されている、シールド掘進機のための姿勢制御装置。
(1) At least a pair of movable plates are pivotally attached to the front end of the shield body of the shield excavator and have pivot axes in a cross section perpendicular to the axis of the shield body, and the movable plates are attached to the front end of the shield body of the shield body. An attitude control device for a shield tunneling machine that is arranged symmetrically with respect to a point on the axis.
(2)前記シールド本体は矩形の横断面形状を有し、各
可動板の枢軸線が前記矩形の相対する各辺上にある、請
求項(1)に記載のシールド掘進機のための姿勢制御装
置。
(2) Attitude control for a shield tunneling machine according to claim (1), wherein the shield main body has a rectangular cross-sectional shape, and the axis of each movable plate is on each opposing side of the rectangle. Device.
(3)前記シールド本体は矩形の横断面形状を有し、ま
た、前記矩形の相対する二辺上に枢軸線を有する二対の
可動板を備える、請求項(1)に記載のシールド掘進機
のための姿勢制御装置。
(3) The shield excavator according to claim (1), wherein the shield main body has a rectangular cross-sectional shape and includes two pairs of movable plates having pivot lines on two opposing sides of the rectangle. Attitude control device for.
(4)前記矩形の残りの二辺上に枢軸線を有する、互い
に相対する少なくとも一対の可動板を備える、請求項(
2)または(3)に記載のシールド掘進機のための姿勢
制御装置。
(4) Claim (4) comprising at least a pair of mutually opposing movable plates having pivot lines on the remaining two sides of the rectangle.
Attitude control device for a shield excavator according to 2) or (3).
(5)前記可動板は前記シールド掘進機の前部フードの
一部を成すに請求項(1)に記載のシールド掘進機のた
めの姿勢制御装置。
(5) The attitude control device for a shield tunneling machine according to claim 1, wherein the movable plate forms a part of a front hood of the shield tunneling machine.
(6)前記シールド本体は円形の横断面形状を有する、
請求項(1)に記載のシールド掘進機のための姿勢制御
装置。
(6) the shield body has a circular cross-sectional shape;
An attitude control device for a shield tunneling machine according to claim (1).
JP63318460A 1988-12-19 1988-12-19 Attitude control device for shield machine Expired - Fee Related JP2722090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318460A JP2722090B2 (en) 1988-12-19 1988-12-19 Attitude control device for shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318460A JP2722090B2 (en) 1988-12-19 1988-12-19 Attitude control device for shield machine

Publications (2)

Publication Number Publication Date
JPH02164998A true JPH02164998A (en) 1990-06-25
JP2722090B2 JP2722090B2 (en) 1998-03-04

Family

ID=18099367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318460A Expired - Fee Related JP2722090B2 (en) 1988-12-19 1988-12-19 Attitude control device for shield machine

Country Status (1)

Country Link
JP (1) JP2722090B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713955A3 (en) * 1994-11-22 1997-06-18 Daiho Corp Shield tunnel boring machine
JP2007120186A (en) * 2005-10-28 2007-05-17 Ohbayashi Corp Shield machine and attitude shifting method using this shield machine
JP2014015727A (en) * 2012-07-06 2014-01-30 East Japan Railway Co Cutting edge structure of lining element for construction of underground structure, and boring method using its cutting edge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826194A (en) * 1981-08-11 1983-02-16 石川島播磨重工業株式会社 Shield drilling machine
JPS59173759U (en) * 1983-05-06 1984-11-20 三菱重工業株式会社 Propulsion tube direction correction device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826194A (en) * 1981-08-11 1983-02-16 石川島播磨重工業株式会社 Shield drilling machine
JPS59173759U (en) * 1983-05-06 1984-11-20 三菱重工業株式会社 Propulsion tube direction correction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713955A3 (en) * 1994-11-22 1997-06-18 Daiho Corp Shield tunnel boring machine
JP2007120186A (en) * 2005-10-28 2007-05-17 Ohbayashi Corp Shield machine and attitude shifting method using this shield machine
JP2014015727A (en) * 2012-07-06 2014-01-30 East Japan Railway Co Cutting edge structure of lining element for construction of underground structure, and boring method using its cutting edge

Also Published As

Publication number Publication date
JP2722090B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JPH02164998A (en) Attitude control device for shield excavator
JP3958982B2 (en) Horizontal drilling direction control method and drilling rod therefor
US4387928A (en) Tunnel excavator
JPH0523676Y2 (en)
JPH0216836B2 (en)
JP3272995B2 (en) Rectangular section tunnel excavator
JP2006166768A (en) Offset working implement
JPH0776993A (en) Cutter oscillating device for rectangular shield excavator
JP4110550B2 (en) Rectangular cross-section machine
SU574533A1 (en) Actuating member of cutter-loader
SU194712A1 (en) Drifting-excavating cutter-loader
JP3062290B2 (en) Shield tunneling machine for flat tunnel
JPH08165894A (en) Deformed cross section excavation tunnel excavator
JP3068260B2 (en) Hydraulic circuit for swing machine of shield machine
JP3073416B2 (en) Tunnel excavator
JP3306339B2 (en) Shield machine
JP3011887B2 (en) Underground excavator
JPH02300498A (en) Multi-face shield excavator
JPH086867Y2 (en) Shield machine
JP3010021B2 (en) Beam tunnel excavator
JPH01318690A (en) Shield excavator
JPH09144473A (en) Articulated tunnel excavator
JPH01310090A (en) Shield excavator
JP2000328873A (en) Control method for shield machine and their device
JPH0321791A (en) Oval shield excavator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees