JPH0216498A - Radiation image magnifying and observing device - Google Patents

Radiation image magnifying and observing device

Info

Publication number
JPH0216498A
JPH0216498A JP16661588A JP16661588A JPH0216498A JP H0216498 A JPH0216498 A JP H0216498A JP 16661588 A JP16661588 A JP 16661588A JP 16661588 A JP16661588 A JP 16661588A JP H0216498 A JPH0216498 A JP H0216498A
Authority
JP
Japan
Prior art keywords
radiation
rays
visible light
radiation image
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16661588A
Other languages
Japanese (ja)
Other versions
JPH0782120B2 (en
Inventor
Masaru Sugiyama
優 杉山
Shinji Osuga
慎二 大須賀
Akira Oba
昌 大庭
Takeshi Hayakawa
毅 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP63166615A priority Critical patent/JPH0782120B2/en
Publication of JPH0216498A publication Critical patent/JPH0216498A/en
Publication of JPH0782120B2 publication Critical patent/JPH0782120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain the radiation images in the respective wavelength regions of three kinds with good reproducibility without resetting a sample with the same device by providing a radiation source which emits at least two of visible light, UV rays or X-rays, a radiation image magnifying part and a photodetecting means. CONSTITUTION:The radiation source 1 is constituted of a light source of a synchrotron radiation type. This light source emits the radiation of the long wavelength region from the visible light to X-rays. A filter 2 allows transmission of only the visible light when the filter made of borosilicate glass is used; the filter allows transmission of only the UV rays and visible light when the filter made of quartz glass is used; and the filter allows transmission of only the X-rays and visible light when the filter made of polyparaxylane is used. The radiations transmit the sample 4 and are made incident to the radiation image magnifying part 6 through an incident window 5. The magnified radiation image is formed on a photodetector 12. The radiation images in the respective wavelength regions of the above-mentioned three kinds is obtd. with the same device with the good reproducibility in this way without resetting the sample.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可視光、紫外線もしくはX線の少なくとも2つ
の波長領域で試料を観察することが可能な放射線像拡大
観察装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a radiation image magnifying observation device capable of observing a sample in at least two wavelength regions of visible light, ultraviolet rays, and X-rays.

〔従来の技術〕[Conventional technology]

従来、可視光、紫外線もしくはX線の波長領域に利用す
る放射線像拡大観察装置は、それぞれの波長領域ごとに
その光学系が異なるため、各波長領域ごとに専用の顕微
鏡として実現されていた。
Conventionally, radiation image magnification observation devices used in visible light, ultraviolet rays, or X-ray wavelength regions have been implemented as dedicated microscopes for each wavelength region, since the optical systems differ for each wavelength region.

例えば、「パリティ」 (培風館)Vol、01No、
04 (1984)に示されるX線顕微鏡では、X線源
からのX線は試料セット位置に置がれた試料に入射され
、透過X線はX線像拡大部の斜入射反射鏡で反射され、
X線フィルムなどにX線像が形成されている。このため
、従来のX線顕微鏡はX線専用であり、可視光像や紫外
線像の観察には全く用いることができなかった。
For example, "Parity" (Baifukan) Vol. 01 No.
In the X-ray microscope shown in 04 (1984), X-rays from an X-ray source are incident on a sample placed at the sample setting position, and the transmitted X-rays are reflected by an oblique incidence reflector in an X-ray image magnifying section. ,
An X-ray image is formed on an X-ray film or the like. For this reason, conventional X-ray microscopes are only used for X-rays and cannot be used for observing visible light images or ultraviolet light images at all.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、従来装置では各波長ごとに専用の装置を用
いて試料を観察しなければならないため・、ある試料の
可視光像、紫外線像およびX線像を観察しようとすると
きには、その試料を別個の顕微鏡にセットし直さなけれ
ばならない。すると、セットのたびに試料が位置ずれし
たりするため、同一試料による放射線像を可視光、紫外
線もしくはX線の間で再現性よく得ることができながっ
た。
In this way, with conventional equipment, it is necessary to observe the sample using a dedicated device for each wavelength. It must be reinstalled into a separate microscope. As a result, the position of the sample shifts each time it is set, making it impossible to obtain radiation images of the same sample with good reproducibility between visible light, ultraviolet rays, or X-rays.

そこで本発明は、可視光、紫外線もしくはX線の各波長
領域における放射線像を、同一の装置で試料をセットし
直すことなく、再現性よく得ることのできる放射線像拡
大観察装置を提供することを目的とする。
Therefore, the present invention aims to provide a radiation image magnification observation device that can obtain radiation images in each wavelength region of visible light, ultraviolet rays, or X-rays with good reproducibility without resetting the sample in the same device. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る放射線像拡大観察装置は、可視光、紫外線
もしくはX線のうちの少なくとも2つの波長領域の放射
線を試料セット位置に向けて出射する放射線源と、試料
セット位置を通過することにより形成された放射線像を
拡大する放射線像拡大部と、拡大された放射線像を可視
光、紫外線もしくはX線の波長領域ごとに検出する検出
手段とを備える。
The radiation image magnification observation device according to the present invention includes a radiation source that emits radiation in at least two wavelength regions of visible light, ultraviolet rays, or X-rays toward a sample setting position, and a radiation image formed by passing through the sample setting position. The radiation image magnifying section magnifies the radiation image, and the detection means detects the expanded radiation image in each visible light, ultraviolet, or X-ray wavelength region.

ここで、放射線源と試料セット位置の間もしくは試料セ
ット位置と放射線像拡大部の間には、可視光、紫外線も
しくはX線のいずれかの波長領域を選択的に除去するフ
ィルタが介在されていてもよく、拡大された放射線像の
結像位置には、可視光、紫外線もしくはX線の少なくと
もいずれかに感度を有する光電変換手段を設けるように
してもよい。また、放射線像拡大部中の放射線の光路に
は進退可能な反射手段を設け、この反射手段による反射
光の結像位置には当該反射光に感度を有する反射光検出
手段を設けるようにしてもよい。
Here, a filter is interposed between the radiation source and the sample setting position or between the sample setting position and the radiation image magnifying section to selectively remove wavelength ranges of visible light, ultraviolet rays, or X-rays. Alternatively, a photoelectric conversion means sensitive to at least one of visible light, ultraviolet light, and X-rays may be provided at the imaging position of the magnified radiation image. Further, a reflecting means that can move back and forth may be provided in the optical path of the radiation in the radiation image magnifying section, and a reflected light detecting means that is sensitive to the reflected light may be provided at the image formation position of the reflected light by the reflecting means. good.

〔作用〕[Effect]

本発明の構成によれば、フィルタの交換等によって放射
線像を可視光、紫外線もしくはX線の間で適宜に変更で
き、これらの放射線像は各波長領域ごとに放射線像を検
出できる検出手段に結像される。このため、試料の放射
線像を可視光、紫外線もしくはX線の波長領域で選択し
て得ることが可能になる。
According to the configuration of the present invention, the radiation image can be changed appropriately between visible light, ultraviolet rays, or X-rays by replacing filters, etc., and these radiation images are focused on a detection means that can detect radiation images for each wavelength region. imaged. Therefore, it becomes possible to selectively obtain a radiation image of a sample in the wavelength range of visible light, ultraviolet rays, or X-rays.

〔実施例〕〔Example〕

以下、添付図面の第1図および第2図を用いて本発明の
詳細な説明する。なお、図面の説明において同一の要素
には同一の符号を付し、重複する説明を省略する。
Hereinafter, the present invention will be described in detail with reference to FIGS. 1 and 2 of the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals, and redundant description will be omitted.

第1図は本発明の一実施例に係る放射線像拡大観察装置
の構成図である。放射線源1は例えばシンクロトロン放
射型の光源で構成され、この放射線源1は可視光からX
線に至る波長領域の放射線を出射する。すなわち、シン
クロトロン放射光(SOR光)は第2図に示すような波
長分布を有しており、これは放射線[1の前面に配置さ
れたフィルタ2を透過して、試料セット部材3の試料セ
ット位置に設けられた試料4に照射される。ここで、フ
ィルタ2としてはホウ硅酸ガラス製、石英ガラス製ある
いは数μmの厚さのポリパラキシリレン(商品名パリレ
ン)製のものを用いることができる。そして、フィルタ
としてホウ硅酸ガラス製のものを用いたときには紫外線
およびX線がカットされて可視光のみが透過される。石
英ガラス製のものを用いたときには、X線がカットされ
て紫外線および可視光のみが透過される。そして、ポリ
パラキシリレン製のものを用いたときには、300〜3
000A程度の波長の紫外線がカットされてX線および
可視光が透過される。
FIG. 1 is a configuration diagram of a radiation image magnification observation apparatus according to an embodiment of the present invention. The radiation source 1 is composed of, for example, a synchrotron radiation type light source, and this radiation source 1 emits visible light to
It emits radiation in the wavelength range that reaches the line. That is, synchrotron radiation light (SOR light) has a wavelength distribution as shown in FIG. The sample 4 provided at the set position is irradiated. Here, the filter 2 can be made of borosilicate glass, quartz glass, or polyparaxylylene (trade name: Parylene) with a thickness of several μm. When a filter made of borosilicate glass is used, ultraviolet rays and X-rays are cut and only visible light is transmitted. When one made of quartz glass is used, X-rays are cut and only ultraviolet rays and visible light are transmitted. When using polyparaxylylene, 300 to 3
Ultraviolet rays with a wavelength of approximately 000A are cut, and X-rays and visible light are transmitted.

放射線が試料4を透過すると放射線像が形成され、これ
は入射窓5を介して放射線像拡大部6に入射される。こ
こで、入射窓5の材料としてはX線、紫外線および可視
光を良好に透過させ、かつ雰囲気ガスを透過させること
のない材料が用いられ、例えば1〜10μm程度の厚さ
のポリプロピレン膜が適している。入射された放射線は
斜入射反射鏡7で反射され、これによって放射線の波長
領域にかかわりなく放射線像は拡大される。そして、不
要な放射線がストッパ8でカットされたのち、拡大放射
線像が光電面9に結像される。
When the radiation passes through the sample 4, a radiation image is formed, which is incident on the radiation image magnifying section 6 through the entrance window 5. Here, as the material for the entrance window 5, a material that allows X-rays, ultraviolet rays, and visible light to pass through well, but does not allow atmospheric gas to pass through is used. For example, a polypropylene film with a thickness of about 1 to 10 μm is suitable. ing. The incident radiation is reflected by the oblique incidence reflecting mirror 7, thereby magnifying the radiation image regardless of the wavelength range of the radiation. After unnecessary radiation is cut off by the stopper 8, an enlarged radiation image is formed on the photocathode 9.

ここで、放射線の光路には進退自在な反射鏡10が設け
られ、この反射鏡10が支持棒11によって光路から後
退されているとき(国名の実線のとき)には、拡大放射
線像は光電面9に結像されるようになっている。これに
対し、反射鏡10が支持棒11によって放射線の光路に
進出されているとき(図中の点線のとき)には、拡大放
射線像は光検出器12の受光面に結像されるようになっ
ている。
Here, a reflecting mirror 10 that can move forward and backward is provided in the optical path of the radiation, and when this reflecting mirror 10 is retreated from the optical path by a support rod 11 (indicated by the solid line of the country name), the enlarged radiation image is It is designed to be imaged at 9. On the other hand, when the reflecting mirror 10 is advanced into the radiation optical path by the support rod 11 (as indicated by the dotted line in the figure), the enlarged radiation image is formed on the light receiving surface of the photodetector 12. It has become.

拡大放射線像が光電面9に結像されると、これに対応し
た光電子が光電面9から放出され、これによる電子像は
コイル13a、13bによって拡大される。そして、拡
大された電子像はマイクロチャンネルプレート14で増
倍された後、螢光面15に結像されて光学像を形成する
。上記のように、本実施例では放射線像拡大部6に電子
像拡大部16が付設された構造となっている。螢光面1
5に形成された光学像はカメラ17で取り込まれた後に
フレームメモリ18に一時的に蓄えられ、その後にCR
T等を備えたモニタ19に与えられる。一方、このモニ
タ19には光検出器12の出力信号も入力されるように
なっている。
When an enlarged radiation image is formed on the photocathode 9, corresponding photoelectrons are emitted from the photocathode 9, and the resulting electron image is enlarged by the coils 13a and 13b. The enlarged electron image is then multiplied by the microchannel plate 14 and then focused on the fluorescent surface 15 to form an optical image. As described above, this embodiment has a structure in which the electronic image enlarging section 16 is attached to the radiation image enlarging section 6. Fluorescent surface 1
The optical image formed at 5 is captured by the camera 17 and then temporarily stored in the frame memory 18, after which the CR
A monitor 19 equipped with a T or the like is provided. On the other hand, the output signal of the photodetector 12 is also input to this monitor 19.

次に、第1図に示す放射線像拡大観察装置の作用を、可
視光、紫外線およびX線像の検出ごとに説明する。
Next, the operation of the radiation image magnification observation apparatus shown in FIG. 1 will be explained for each detection of visible light, ultraviolet rays, and X-ray images.

まず、可視光像を観察する場合には、フィルタ2として
ホウ硅酸ガラス製のものを用いる。そして、支持棒11
を操作して反射鏡1oを第1図の点線のように、放射線
の光路中に進出させる。すると、放射線源1から出射さ
れた放射線のうち紫外線とX線はフィルタ2でカットさ
れ、可視光のみが試料4に照射される。この可視光像は
放射線像拡大部6で拡大され、反射鏡1oで反射されて
光検出器12の受光面に結像される。従って、モニタ1
9で試料4の可視光像を観察することかできる。
First, when observing a visible light image, the filter 2 is made of borosilicate glass. And the support rod 11
is operated to move the reflecting mirror 1o into the optical path of the radiation as indicated by the dotted line in FIG. Then, of the radiation emitted from the radiation source 1, ultraviolet rays and X-rays are cut by the filter 2, and only visible light is irradiated onto the sample 4. This visible light image is magnified by the radiation image magnifying section 6, reflected by the reflecting mirror 1o, and imaged on the light receiving surface of the photodetector 12. Therefore, monitor 1
9, a visible light image of sample 4 can be observed.

このような可視光像の観察を行なった後、紫外線像の観
察に切り換える場合には、フィルタ2を石英ガラス製の
ものに代える。そして、支持棒11を操作して反射鏡1
0を第1図中の実線のように、放射線の光路から後退さ
せる。すると、放射線源1から出射された放射線のうち
X線はフィルタ2でカットされ、可視光と紫外線のみが
試料4に照射される。このため、可視光像と紫外線像が
光電面9に結像されることになるが、光電面9について
はX線および紫外線にのみ感度を有するように設計して
おくと、紫外線像のみに対応して光電子が放出されるこ
とになる。従って、この光電子による電子像が拡大、増
幅されて螢光面15に形成され、光学的にカメラ17に
取り込まれてフレームメモリ18からモニタ19に送ら
れるので、試料4の紫外線像を観察できる。
After observing such a visible light image, when switching to observation of an ultraviolet image, the filter 2 is replaced with one made of quartz glass. Then, operate the support rod 11 to
0 is moved back from the optical path of the radiation as shown by the solid line in FIG. Then, among the radiation emitted from the radiation source 1, X-rays are cut by the filter 2, and only visible light and ultraviolet rays are irradiated onto the sample 4. Therefore, a visible light image and an ultraviolet image are formed on the photocathode 9, but if the photocathode 9 is designed to be sensitive only to As a result, photoelectrons are emitted. Therefore, the electronic image generated by the photoelectrons is enlarged and amplified and formed on the fluorescent surface 15, and is optically captured by the camera 17 and sent from the frame memory 18 to the monitor 19, so that the ultraviolet image of the sample 4 can be observed.

上記のように可視光像をおよび紫外線像の観察を行なっ
た後にX線像の観察を行なうときには、フィルタ2をポ
リパラキシリレン製のものに交換する。このようにする
と、フィルタ2によって300〜3000Aの波長域の
紫外線がカットされ、可視光およびX線のみが試料4に
照射される。
When observing an X-ray image after observing a visible light image and an ultraviolet image as described above, the filter 2 is replaced with one made of polyparaxylylene. In this way, ultraviolet rays in the wavelength range of 300 to 3000 A are cut by the filter 2, and the sample 4 is irradiated with only visible light and X-rays.

すると、紫外線像の観察の場合と同様に可視光像および
X線像が光電面9に結像される。ところが、光電面9は
可視光に感度を有していないので、結局はX線像のみが
モニタ19で表示されることになる。
Then, a visible light image and an X-ray image are formed on the photocathode 9 similarly to the case of observing an ultraviolet light image. However, since the photocathode 9 has no sensitivity to visible light, only the X-ray image is ultimately displayed on the monitor 19.

なお、本発明は上記実施例に限定されることなく、種々
の変形が可能である。
Note that the present invention is not limited to the above embodiments, and various modifications can be made.

例えば、放射線源としてはSOR光源に限らず、ガスプ
ラズマ光源やレーザプラズマ光源などを適宜に用いるこ
とができる。また、可視光からX線までの広い波長領域
だけでなく、例えば紫外線からX線までの波長領域で適
用可能なものとしてもよい。この場合には、第1図にお
いて、反射鏡10、光検出器12などを省略することが
できる。
For example, the radiation source is not limited to an SOR light source, but a gas plasma light source, a laser plasma light source, or the like can be used as appropriate. Furthermore, it may be applicable not only to a wide wavelength range from visible light to X-rays but also, for example, from ultraviolet rays to X-rays. In this case, the reflecting mirror 10, photodetector 12, etc. can be omitted in FIG.

更に、フィルタ2についても各種の材料製のものを用い
ることかできる。また、電子像拡大部を設けることも必
須ではない。
Furthermore, the filter 2 may be made of various materials. Furthermore, it is not essential to provide an electronic image magnifying section.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り本発明では、フィルタの交換
等によって放射線像を可視光、紫外線もしくはX線の間
で適宜に変更でき、これらの放射線像は各波長領域ごと
に放射線像を検出できる検出手段に結像される。このた
め、可視光、紫外線もしくはX線の各波長領域における
放射線像を、同一の装置で試料をセットし直すことなく
、再現性よく得ることができる。
As explained in detail above, in the present invention, the radiation image can be changed appropriately between visible light, ultraviolet rays, or X-rays by replacing filters, etc., and these radiation images can be detected by a detection method that can detect radiation images for each wavelength region. The image is focused on the means. Therefore, radiation images in each wavelength region of visible light, ultraviolet rays, or X-rays can be obtained with good reproducibility without resetting the sample in the same apparatus.

螢光面、16・・・電子像拡大部、17・・・カメラ、
18・・・フレームメモリ、19・・・モニタ。
Fluorescent surface, 16...Electronic image magnifying unit, 17...Camera,
18...Frame memory, 19...Monitor.

特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷用  芳  樹
Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Yoshiki Hase

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る放射線像拡大観察装置
の構成図、第2図は、シンクロトロン放射光の波長分布
図である。
FIG. 1 is a block diagram of a radiation image magnification observation apparatus according to an embodiment of the present invention, and FIG. 2 is a wavelength distribution diagram of synchrotron radiation light.

Claims (1)

【特許請求の範囲】 1、可視光、紫外線もしくはX線のうちの少なくとも2
つの波長領域の放射線を試料セット位置に向けて出射す
る放射線源と、前記試料セット位置を通過することによ
り形成された放射線像を拡大する放射線像拡大部と、拡
大された前記放射線像を可視光、紫外線もしくはX線の
波長領域ごとに検出する検出手段とを備えることを特徴
とする放射線像拡大観察装置。 2、前記放射線源と前記試料セット位置の間もしくは前
記試料セット位置と前記放射線像拡大部の間には、可視
光、紫外線もしくはX線のいずれかの波長領域を選択的
に除去するフィルタが介在されている請求項1記載の放
射線像拡大観察装置。 3、前記拡大された放射線像の結像位置には、可視光、
紫外線もしくはX線の少なくともいずれかに感度を有す
る光電変換手段が設けられている請求項1記載の放射線
像拡大観察装置。 4、前記放射線像拡大部中の前記放射線の光路には進退
可能な反射手段が設けられ、この反射手段による反射光
の結像位置には当該反射光に感度を有する反射光検出手
段が設けられている請求項1記載の放射線像拡大観察装
置。
[Claims] 1. At least two of visible light, ultraviolet rays, or X-rays
a radiation source that emits radiation in two wavelength ranges toward a sample setting position; a radiation image enlarging unit that enlarges a radiation image formed by passing through the sample setting position; 1. A radiation image magnification observation device comprising: a detection means for detecting each wavelength region of ultraviolet rays or X-rays. 2. A filter is interposed between the radiation source and the sample setting position or between the sample setting position and the radiation image enlarging section, which selectively removes any wavelength range of visible light, ultraviolet rays, or X-rays. The radiographic image magnification observation device according to claim 1, wherein: 3. Visible light,
2. The radiation image magnification observation apparatus according to claim 1, further comprising photoelectric conversion means sensitive to at least one of ultraviolet rays and X-rays. 4. A reflecting means that can move back and forth is provided on the optical path of the radiation in the radiation image enlarging section, and a reflected light detecting means that is sensitive to the reflected light is provided at the imaging position of the reflected light by the reflecting means. The radiation image magnification observation apparatus according to claim 1.
JP63166615A 1988-07-04 1988-07-04 Radiation image magnifying observation device Expired - Fee Related JPH0782120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166615A JPH0782120B2 (en) 1988-07-04 1988-07-04 Radiation image magnifying observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166615A JPH0782120B2 (en) 1988-07-04 1988-07-04 Radiation image magnifying observation device

Publications (2)

Publication Number Publication Date
JPH0216498A true JPH0216498A (en) 1990-01-19
JPH0782120B2 JPH0782120B2 (en) 1995-09-06

Family

ID=15834593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166615A Expired - Fee Related JPH0782120B2 (en) 1988-07-04 1988-07-04 Radiation image magnifying observation device

Country Status (1)

Country Link
JP (1) JPH0782120B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350638A (en) * 1991-05-28 1992-12-04 Toppan Printing Co Ltd Production of transmission type projection screen
JP2016063138A (en) * 2014-09-19 2016-04-25 浜松ホトニクス株式会社 Ultraviolet sensor and ultraviolet detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643600A (en) * 1987-06-25 1989-01-09 Nippon Telegraph & Telephone Optical element and microscope using said element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643600A (en) * 1987-06-25 1989-01-09 Nippon Telegraph & Telephone Optical element and microscope using said element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350638A (en) * 1991-05-28 1992-12-04 Toppan Printing Co Ltd Production of transmission type projection screen
JP2016063138A (en) * 2014-09-19 2016-04-25 浜松ホトニクス株式会社 Ultraviolet sensor and ultraviolet detector

Also Published As

Publication number Publication date
JPH0782120B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US5222113A (en) X-ray microscope
US5177774A (en) Reflection soft X-ray microscope and method
US5311568A (en) Optical alignment means utilizing inverse projection of a test pattern/target
US5912939A (en) Soft x-ray microfluoroscope
WO1998035214A9 (en) Soft x-ray microfluoroscope
Marshall et al. High-resolution x-ray radiography with Fresnel zone plates on the University of Rochester’s OMEGA Laser Systems
Carruthers Mesh-based semitransparent photocathodes
JPH0216498A (en) Radiation image magnifying and observing device
JPH0222600A (en) Radiation image enlargement observation device
JP2948662B2 (en) Radiation image magnifying observation device
JPH0787371A (en) Image pickup device
Hubert et al. Absolute x-ray calibration of a gated x-ray framing camera for the Laser MegaJoule facility in the 0.1 keV–1 keV spectral range
NL9001687A (en) ROENTGEN RESEARCH DEVICE WITH ROENTGEN AMPLIFIER TUBE.
JPH03200099A (en) X-ray microscope
JP3014225B2 (en) Radiation dose reader
US20050069082A1 (en) Scanning x-ray microscope with a plurality of simultaneous x-ray probes on the sample
JPH0221550A (en) X-ray image observation device
Baker et al. Large-format radiographic imaging
JPH04340514A (en) X-ray microscope
JPH0786559B2 (en) Optical element and microscope using the same
Mason et al. Performance of the UV/Optical Telescope (UVOT) on SWIFT
JPH0784096A (en) Zone plate for x-ray illumination
Nakai et al. Absolute Calibration of a Soft X-Ray Streak Camera
JPH01117252A (en) X-ray image observation device
Rohrer et al. Large Format Radiographic Imaging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees